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Abstract. Vegetation fires affect human infrastructures,
ecosystems, global vegetation distribution, and atmospheric
composition. However, the climatic, environmental, and so-
cioeconomic factors that control global fire activity in vegeta-
tion are only poorly understood, and in various complexities
and formulations are represented in global process-oriented
vegetation-fire models. Data-driven model approaches such
as machine learning algorithms have successfully been used
to identify and better understand controlling factors for
fire activity. However, such machine learning models can-
not be easily adapted or even implemented within process-
oriented global vegetation-fire models. To overcome this gap
between machine learning-based approaches and process-
oriented global fire models, we introduce a new flexible data-
driven fire modelling approach here (Satellite Observations
to predict FIre Activity, SOFIA approach version 1). SOFIA
models can use several predictor variables and functional re-
lationships to estimate burned area that can be easily adapted
with more complex process-oriented vegetation-fire models.
We created an ensemble of SOFIA models to test the impor-
tance of several predictor variables. SOFIA models result in
the highest performance in predicting burned area if they ac-
count for a direct restriction of fire activity under wet condi-
tions and if they include a land cover-dependent restriction or
allowance of fire activity by vegetation density and biomass.
The use of vegetation optical depth data from microwave
satellite observations, a proxy for vegetation biomass and
water content, reaches higher model performance than com-

monly used vegetation variables from optical sensors. We
further analyse spatial patterns of the sensitivity between an-
thropogenic, climate, and vegetation predictor variables and
burned area. We finally discuss how multiple observational
datasets on climate, hydrological, vegetation, and socioe-
conomic variables together with data-driven modelling and
model–data integration approaches can guide the future de-
velopment of global process-oriented vegetation-fire models.

1 Introduction

Wildland fires are important disturbances in the Earth sys-
tem which affect ecosystems, global vegetation distribution,
infrastructures, and human assets, and contribute to atmo-
spheric composition through the release of aerosols, reactive
trace gases, and greenhouse gases (Bowman et al., 2011).
The ignition and spread of fires in ecosystems depend on
the availability and properties of fuel (i.e. biomass and lit-
ter loads, composition, and moisture content), weather con-
ditions, and human activities (Krawchuk and Moritz, 2011;
Moritz et al., 2012). Human activities have a predominant
role in fire ignition, and affect fire behaviour either directly
through fire restriction or indirectly through land manage-
ment and landscape structure (Bowman et al., 2011). Burned
area is a key variable to describe fire impacts on ecosystems
and vegetation distribution (Bond, 2005), and to estimate fire
emissions (Seiler and Crutzen, 1980). Recent estimates of
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average yearly global burned area range from 3.3 to 3.8 mil-
lion km2 (Chuvieco et al., 2016; Giglio et al., 2013), which
is around 4 % of the global vegetated area (Randerson et al.,
2012). On a global scale, burned area shows only a small
inter-annual variability which is stabilized by the annual re-
current patterns of very large burned areas in African savan-
nahs (Giglio et al., 2013). However, in boreal, temperate, and
tropical regions, burned area has a very high inter-annual
variability which is strongly linked to the variability in at-
mospheric circulation patterns, e.g. to El Niño events (An-
dela and van der Werf, 2014; Balzter et al., 2005; Giglio et
al., 2013; Hess et al., 2001). Such years with extreme fire
activity in forests can cause large emissions of greenhouse
gases (Kasischke and Bruhwiler, 2002; Vinogradova et al.,
2015), dominate together with peatland fires the inter-annual
variability of global fire emissions (Page et al., 2002; van
der Werf et al., 2006, 2010), and thus strongly affect atmo-
spheric composition (Langenfelds et al., 2002; Simpson et
al., 2006). Consequently, a realistic simulation of the spa-
tial and temporal variability of burned areas is necessary in
Earth system models (ESMs) and dynamic global vegetation
models (DGVMs) to adequately assess current and future fire
impacts on the Earth system.

Satellite observations of burned area or of active fires can
be used to develop, evaluate, or improve process-oriented
global vegetation-fire models (Poulter et al., 2015b). The
first fire modules within DGVMs like GlobFIRM (global
fire model, Thonicke et al., 2001) were developed in the
late 1990s and early 2000s in absence of global burned area
datasets as reference. Later, regional satellite-derived burned
area datasets were used to evaluate new developed global fire
models such as SPITFIRE (SPread and InTensity of FIRE,
Thonicke et al., 2010). The first global burned area datasets
were derived in the mid-2000s from several optical satellite
sensors such ATSR (Simon et al., 2004), MODIS (Roy et al.,
2005), and SPOT (Grégoire et al., 2003; Tansey et al., 2008).
The increasing temporal coverage of satellite observations
enables to derive multi-year harmonized burned area datasets
like the products from the Global Fire Emissions Database
(GFED) (Giglio et al., 2010, 2013) or from the European
Space Agency (ESA) Climate Change Initiative (CCI) on
fire (Fire CCI) (Chuvieco et al., 2016). Consequently, global
burned area datasets are nowadays commonly used within
model benchmarking systems (Kelley et al., 2013) or to eval-
uate further developments in process-oriented vegetation-fire
models (Kloster et al., 2010; Lasslop et al., 2014; Yue et
al., 2014). Despite such recent model developments, it is not
clear which functional relationships, complexity, and model
parametrizations are most adequate to represent fire activity
(Hantson et al., 2016).

Satellite observations of fire activity can be further in-
tegrated with fire models to estimate model parameters or
to assess the adequacy of functional relationships (Knorr et
al., 2014; Lasslop et al., 2015; Le Page et al., 2015). For
example, parameters of empirical relations were optimized

in SIMFIRE (simple fire model) to predict annual fire fre-
quency from vegetation conditions, fire weather conditions,
and population density (Knorr et al., 2014). Such parameter
optimization approaches are one aspect of model–data inte-
gration or model–data fusion that encompasses a continuous
cycle from the definition of model structures (i.e. predictor
variables and functional relationships), estimation of model
parameters, generalization or upscaling of the model, evalu-
ation of model results, to model application and potentially
back to a reformulation of the model structure (Keenan et
al., 2011; Williams et al., 2009). However, a full model–data
integration cycle has been rarely applied in the development
of global fire models.

In comparison to process-oriented global vegetation-fire
models, data-driven approaches provide an alternative frame-
work to understand and model climate, vegetation, and so-
cioeconomic controls on fire activity. While the develop-
ment of mathematical and computational process-oriented
vegetation-fire models usually starts from a conceptual
model (Gupta et al., 2012), data-driven approaches aim to
derive mathematical and computational models directly from
the data (Solomatine and Ostfeld, 2008). In data-driven ap-
proaches, algorithms from artificial intelligence (e.g. neural
networks), machine learning (e.g. random forest), or evolu-
tionary algorithms (e.g. genetic optimization) are applied to
predict a response variable (here burned area, or fire counts)
from a set of potential predictor variables (Solomatine and
Ostfeld, 2008). If an adequate data-driven model has been de-
rived, the importance of individual variables and the sensitiv-
ities of the response variable to the predictor variables allow
the development of a conceptual model of the studied sys-
tem (Solomatine and Ostfeld, 2008). In global fire modelling,
data-driven fire models have been developed using machine
learning algorithms such as generalized linear models (Bisti-
nas et al., 2014), maximum entropy (Parisien et al., 2016),
or random forest (Aldersley et al., 2011; Archibald et al.,
2009), mainly to identify controls on fire activity. However,
such machine learning models often have complex structures
and are seen as “black boxes”, and thus cannot be easily
adapted or even implemented within process-oriented global
vegetation-fire models. Alternatively, empirical fire models
like SIMFIRE (Knorr et al., 2014) could be generalized to
integrate several different candidate predictor variables and
to then assess the importance and functional relationships.
Consequently, such a flexible data-driven but functional fire
modelling approach would allow exploration of different pre-
dictor variables, similar to in machine learning algorithms,
while potentially revealing model structures that can be more
easily adapted for process-oriented vegetation-fire models.

Satellite observations provide several datasets on vegeta-
tion and moisture conditions that can be used as predictor
variables in data-driven fire models. Time-variant biomass
datasets would be the first choice to represent fuel loads in
empirical fire models because the availability of fuel is a
prerequisite for fire activity (Krawchuk and Moritz, 2011).
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However, current global biomass maps are static (Avitabile et
al., 2016; Saatchi et al., 2011; Thurner et al., 2014) and thus
provide only limited information for fire modelling. Conse-
quently, other proxies of vegetation biomass such as model-
based net primary production (NPP) (Bistinas et al., 2014;
Moritz et al., 2012), satellite-derived vegetation cover (Bisti-
nas et al., 2014; Lehsten et al., 2010), or the fraction of ab-
sorbed photosynthetic active radiation (FAPAR) (Knorr et al.,
2014) have been used as proxies for fuel loads in global em-
pirical fire models. As an alternative, satellite retrievals of
vegetation optical depth (VOD) might be used as a proxy
for fuel loads. VOD is a vegetation variable that is derived
from active or passive microwave satellite observations and
is related to vegetation density and water content (Liu et
al., 2011b; Y. Y. Liu et al., 2013, Vreugdenhil et al., 2016a,
b). VOD has a higher sensitivity to forest biomass than FA-
PAR (Andela et al., 2013) and was used to estimate temporal
changes in biomass (Liu et al., 2015). Thus VOD might be
a valuable predictor variable for the biomass-driven variabil-
ity in fire activity. Satellite datasets of surface soil moisture
might be valuable proxies for the moisture of surface fuels
in empirical fire models (Krueger et al., 2015, 2016) because
they represent the top∼ 3 cm of the soil (Dorigo et al., 2015).
Such datasets might potentially provide useful information
for empirical fire models to represent fuel loads, fuel mois-
ture, or fire weather conditions.

Here we aim to describe and apply a flexible data-driven
fire modelling approach, called SOFIA (Satellite Obser-
vations for FIre Activity). The SOFIA approach provides
a framework to identify the importance of and the func-
tional relationships between observational datasets and the
spatial and temporal variability of burned area while re-
vealing model formulations that could easily be adapted
for more complex vegetation-fire models. We test the ap-
proach using observational datasets of land cover, climate
conditions, soil moisture, vegetation state, and socioeco-
nomics. Based on the philosophy of model–data integra-
tion, we generated several different candidate model struc-
tures, and optimized and evaluated each model against ob-
served burned area time series. Additionally, we simulated
global burned area with the random forest machine learning
approach and with a process-oriented vegetation-fire model
(JSBACH-SPITFIRE) to compare the performance of the de-
rived SOFIA models with two independent state-of-the-art
data-driven and process-oriented modelling approaches, re-
spectively. We used random forest to test whether a more
flexible modelling approach than SOFIA results in better
performances. In comparison to random forest, SOFIA has
the advantage that it could easily be transferred to or im-
plemented in global process-oriented vegetation-fire mod-
els. The SPITFIRE fire module within the JSBACH (Jena
Scheme for Biosphere–Atmosphere Coupling in Hamburg)
land surface model (Lasslop et al., 2014; Rabin et al., 2017)
was used to compare SOFIA results with a global process-
oriented vegetation-fire model.

We first describe the observational datasets and the de-
rived variables that we used to develop SOFIA models
(Sect. 2). Secondly, we describe the SOFIA approach and
the JSBACH-SPITFIRE and random forest modelling ap-
proaches (Sect. 3). In Sect. 4, we first present the global
performance and complexity of SOFIA models (Sect. 4.1)
and how several predictor variables contribute to model per-
formance (Sect. 4.2). Then we compare the best-performing
SOFIA models globally against random forest and JSBACH-
SPITFIRE (Sect. 4.3) and apply the best SOFIA model to
explore spatial patterns of the sensitivity between predictor
variables and burned area (Sect. 4.4). Finally, we discuss
the performance and equifinality of our results (Sect. 5.1)
and the importance of certain predictor variables for global
fire modelling (Sect. 5.2), and suggest the use of multiple
datasets, data-driven modelling, and model–data integration
approaches to improve global process-oriented vegetation-
fire models (Sect. 5.3).

2 Datasets and predictor variables for model
development

We used datasets of global monthly burned area as re-
sponse variables and several datasets on land cover, climate,
soil moisture, vegetation state, and socioeconomic factors as
predictor variables in model development. To make a pre-
selection of relevant predictor variables, we first tested the
predictive performance of various candidate variables such
as absolute values, anomalies, or long-term precedent mean
values of precipitation, wet days, soil moisture, or vegeta-
tion state using a random forest (Fig. A1 in the Appendix).
We generally found a higher importance of the absolute vari-
ables than of the anomalies. For the development of SOFIA
models, we finally selected a set of candidate predictor vari-
ables based on their importance, their interpretability, and
how closely they are related to fire activity (by avoiding vari-
ables that account for indirect effects) (Table 1).

We based the analysis mostly on long-term harmonized or
multi-satellite merged datasets in order to derive appropri-
ate SOFIA models for long-term (i.e. decadal) variability in
burned area that is covered for the period 1995–2015 of the
GFED burned area dataset (Giglio et al., 2013). Although
state-of-the-art single satellite sensors may provide informa-
tion in higher quality, the use of such datasets would restrict
the temporal coverage of the analysis. Given the common
coverage of the used predictor datasets, the analysis was con-
sequently performed for the period 1997–2011, on monthly
time steps, and at a 0.25◦ spatial resolution. This is also com-
parable to common application domains of state-of-the art
global process-oriented vegetation-fire models (Rabin et al.,
2017). Datasets were temporally and spatially aggregated or
interpolated if they originally differed from these temporal
and spatial resolutions (details in the following sections for
each dataset).
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Table 1. Description of used datasets and derived predictor variables.

Dataset Derived variables Description

Burned area (response variable)

GFED GFED burned area version 4 (Giglio et al., 2013), http://www.globalfiredata.org
GFED.BA Fractional burned area of a 0.25◦ grid cell, used for optimization of SOFIA models

Fire CCI ESA Fire CCI burned area version 4.1 (Chuvieco et al., 2016), http://cci.esa.int/data
CCI.BA Fractional burned area of a 0.25◦ grid cell, independent dataset in evaluation

Predictor variables

Land cover/plant functional types (PFTs)

Land cover CCI ESA land cover_cci version 1.6.1, http://maps.elie.ucl.ac.be/CCI/viewer/index.php
Land cover classes were translated to fractional coverages of plant functional types (PFTs) in 0.25◦ grid cells (Poulter et
al., 2015a) (Appendix Table A1).
CCI.LC.Tree.BE Broadleaved evergreen trees
CCI.LC.Tree.BD Broadleaved deciduous trees
CCI.LC.Tree.NE Needle-leaved evergreen trees
CCI.LC.Tree.ND Needle-leaved deciduous trees
CCI.LC.Shrub.BE Broadleaved evergreen shrubs
CCI.LC.Shrub.BD Broadleaved deciduous shrubs
CCI.LC.Shrub.NE Needle-leaved evergreen shrubs
CCI.LC.Herb Natural grass and herbaceous vegetation
CCI.LC.Crop Cropland and managed grass
CCI.LC.HrbCrp Natural and managed grass and croplands=Herb+Crop
CCI.LC.Tree Coverage of trees=Tree.BE+Tree.BD+Tree.NE+Tree.ND
CCI.LC.Shrub Coverage of shrubs=Shrub.BE+Shrub.BD+Shrub.NE
CCI.LC.Broadleaf Coverage of broadleaved vegetation=Tree.BE+Tree.BD+Shrub.BE+Shrub.BD
CCI.LC.Needleleaf Coverage of needle-leaved vegetation=Tree.NE+Tree.ND+Shrub.NE

Climate and soil moisture

CRU CRU TS3.23 climate data (Harris et al., 2014), https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23
CRU.T.orig Mean monthly air temperature (◦C)
CRU.T.annual Mean air temperature in the actual month and the 12 precedent months
CRU.WET.orig Monthly number of wet days
CRU.WET.annual Mean number of wet days in the actual month and the 12 precedent months
CRU.DTR.orig Mean monthly diurnal temperature range (K)

GPCC GPCC precipitation version 7, https://doi.org/10.5676/DWD_GPCC/FD_M_V7_050
GPCC.P.orig Monthly total precipitation (mm)
GPCC.P.annual Total precipitation in the actual month and the 12 precedent months

Soil moisture
CCI

ESA soil moisture_cci version 02.3, http://cci.esa.int/data

CCI.SM.orig Mean monthly surface soil moisture
CCI.SM.annual Mean surface soil moisture in the actual month and the 12 precedent months

Vegetation state

GIMMS FAPAR GIMMS fraction of absorbed photosynthetic active radiation version 3g (Zhu et al., 2013),
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html
GIMMS.FAPAR.orig Mean monthly FAPAR
GIMMS.FAPAR.pre FAPAR in the precedent month
GIMMS.FAPAR.annual Mean FAPAR in the 12 precedent months

VOD Multi-sensor harmonized vegetation optical depth (Liu et al., 2011b, 2015), provided by Y. Liu
Liu.VOD.orig Mean monthly VOD
Liu.VOD.pre VOD in the precedent month
Liu.VOD.annual Mean VOD in the 12 precedent months

Socioeconomics

PD GRUMP population density version 1 (years 1990, 1995, 2000) (Balk et al., 2006), https://doi.org/10.7927/H4R20Z93
PD.med Population density (individuals km−2), median estimate of three methods for temporal inter-

and extrapolation (spline interpolation, linear interpolation, interpolation with last value as
constant)

NLDI Night light development index (year 2006) (Elvidge et al., 2012), http://ngdc.noaa.gov/eog/dmsp/download_nldi.html
NLDI Night light development index, but grid cells without night lights or population set to 1.01
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2.1 Burned area

Global monthly burned area data were taken from the Global
Fire Emissions Database (GFED) (Giglio et al., 2013) and
the ESA Fire CCI datasets (Chuvieco et al., 2016). GFED
version 4 provides monthly burned area time series at a
0.25◦ spatial resolution for the period 1995–2015 based on a
combination of the MODIS burned area product (from 2000
onwards) with active fire observations from VIRS (Visible
and Infrared Scanner) and ATSR (Along-Track Scanning Ra-
diometer) (before 2000) (Giglio et al., 2013). Fire CCI ver-
sion 4.1 provides burned area time series at 0.25◦ spatial res-
olution for the period 2005–2011 based on a combination of
MERIS data and MODIS thermal anomalies (Alonso-Canas
and Chuvieco, 2015; Chuvieco et al., 2016). Because of the
longer temporal coverage, the GFED dataset was used as
the response variable in model development and for model
evaluation. The Fire CCI dataset was used as an independent
burned area dataset in model evaluation. Differences between
the two datasets reflect the uncertainty in satellite-derived
burned area. For both datasets burned area is expressed as
the fractional burned area of a 0.25◦ grid cell.

2.2 Land cover

Land cover data were taken from the ESA land cover CCI
product which provides three global land cover maps at
300 m spatial resolution covering the epochs 1998–2002,
2003–2007, and 2008–2012. We did not use the original land
cover classification of the maps, but translated land cover
classes into plant functional types (PFTs) to be compara-
ble with the classification used in global vegetation mod-
els (Poulter et al., 2011). The translation followed largely
the rules by Poulter et al. (2015a) with some modifica-
tions to avoid coverage of broad-leaved evergreen trees and
shrubs in boreal and Arctic regions (Table A1). The fol-
lowing nine PFTs were derived: broadleaved evergreen tree
and shrub (Tree.BE, Shrub.BE), broadleaved deciduous tree
and shrub (Tree.BD, Shrub.BD), needle-leaved evergreen
tree and shrub (Tree.NE, Shrub.NE), needle-leaved decidu-
ous tree (Tree.ND), natural grass or herbaceous vegetation
(Herb), and managed grasslands or crops (Crop). The land
cover maps were spatially aggregated and expressed as the
fractional coverage of PFTs within a 0.25◦ grid cell.

We further aggregated the coverage of PFTs within each
0.25◦ grid cell to the total coverages of trees (Tree= sum
of all tree PFTs, Table 1), shrubs (Shrub), and herbaceous
vegetation including croplands (HrbCrp=Herb+Crop). To
potentially characterize fuel types based on the dominant
leaf type, PFTs were further aggregated into needle-leaved
(Needleleaf) and broadleaved vegetation (Broadleaf) vegeta-
tion.

As land cover distribution is affected by fires, the land
cover maps may regionally contain effects of past fires. Con-
sequently, it can happen that fire activity is explained by the

impact of the actual fire activity already present in a land
cover map. We tried to reduce this effect by shifting the land
cover maps by 2 years. This means that the map for the epoch
1998–2002 is used for the years ≤ 2004, the map for the
epoch 2003–2007 for the period 2005–2009, and the map
for the period 2008–2012 for the years ≥ 2010. However, the
three maps have only marginal temporal differences, so that
the impact of assigning land cover maps to certain years is
rather small.

2.3 Climate

We used monthly data of mean air temperature, diurnal tem-
perature range (DTR), and monthly number of wet days from
the Climate Research Unit (CRU) TS3.2 dataset (Harris et
al., 2014). DTR has been long used as predictor for fire
weather conditions because it is sensitive to stable weather
conditions that are usually associated to low humidity and are
supportive for fire activity (Bistinas et al., 2014; Venevsky et
al., 2002). These datasets provide monthly climate time se-
ries at 0.5◦ resolution based on spatially interpolated weather
station observations. Precipitation was taken from the Global
Precipitation Climatology Center (GPCC) version 7 dataset
(Schneider et al., 2015). All climate datasets were resampled
to 0.25◦ using the nearest neighbour method in order to avoid
smoothing of climate anomalies through alternative resam-
pling methods such as bilinear interpolation.

We used the monthly values and long-term conditions of
climate datasets as predictor variables (Table 1). As long-
term conditions, we computed the mean temperature, mean
diurnal temperature range, mean number of wet days, and
total precipitation of the actual month and the 12 preceding
months.

2.4 Soil moisture

Surface soil moisture was taken from the ESA CCI soil
moisture dataset (version 02.3 COMBINED) which is based
on a merging of soil moisture products from various ac-
tive and passive satellite sensors (Dorigo et al., 2015; Liu
et al., 2011a, 2012). The dataset represents the upper soil
layer (∼ 2 cm) and is available at a 0.25◦ spatial resolution
and daily time step for the period 1979–2015. The long-term
dynamic of the soil moisture dataset is consistent and envi-
ronmentally plausible, as demonstrated in a comparison with
precipitation, soil moisture, and Normalized Difference Veg-
etation Index trends from independent datasets or land sur-
face models (Albergel et al., 2013; Dorigo et al., 2012).

As soil moisture cannot be accurately retrieved underneath
dense (tropical) forests, estimates are not available in all re-
gions, and thus the dataset has spatial gaps. We excluded such
grid cells in the full analysis. Soil moisture time series were
aggregated to monthly mean values. Temporal gaps in soil
moisture time series were filled using a season-trend regres-
sion model as described in Forkel et al. (2013) and based
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on Verbesselt et al. (2010a, b), but without accounting for
breakpoints. However, some years in some grid cells were
excluded from the entire analysis if soil moisture estimates
were only available for less than 3 months within this year.

We used the monthly soil moisture values and long-term
soil moisture conditions as predictor variables (Table 1).
Long-term soil moisture conditions were computed as the
mean soil moisture of the actual month and the 12 preced-
ing months.

2.5 Vegetation state

To account for effects of vegetation phenology, biomass,
or vegetation water content on fire activity, we used the
GIMMS3g FAPAR (Zhu et al., 2013) and a VOD dataset (Liu
et al., 2011b). GIMMS3g FAPAR is a long-term multi-sensor
merged dataset of FAPAR and is based on the GIMMS3g
NDVI (Normalized Difference Vegetation Index) dataset
with a spatial resolution of 1/12◦ and a temporal resolution
of 16 days for the period 1981 to 2012 (Pinzon and Tucker,
2014). GIMMS3g FAPAR was aggregated to 0.25◦ spatial
resolution and averaged to monthly time steps. VOD by Liu
et al. (2011b) is a long-term harmonized dataset from several
passive microwave sensors. The VOD dataset has a spatial
resolution of 0.25◦ and a monthly temporal resolution for the
period 1988–2012.

Permanent gaps in FAPAR or VOD time series (mostly
gaps occurring in winter at northern latitudes) were filled
with the minimum value of each time series (Forkel et al.,
2015) and remaining gaps were filled using the season-trend
regression model (Forkel et al., 2013).

We used the monthly FAPAR or VOD values of the prece-
dent month as predictor variables because the vegetation of
the actual month is likely affected by the fire event which we
aim to explain. Additionally, we computed the mean FAPAR
and VOD of the 12 precedent months as long-term vegetation
state predictor variables.

2.6 Socioeconomic variables

We used satellite-based datasets on population density
and socioeconomic development as predictor variables for
burned area.

Population density (PD) was taken from the Global Rural-
Urban Mapping Project (GRUMP) V1 dataset (Balk et al.,
2006). This dataset is based on (sub-)national population
statistics, satellite observations of night-time lights, and the
spatial distribution of cities to provide estimates of popula-
tion density on a 1 km grid for the years 1990, 1995, and
2000. The dataset was aggregated to 0.25◦. The dataset was
temporally interpolated between 1990 and 2000 and extrap-
olated between 2000 and 2011 for each grid cell to achieve
a full coverage for the period 1997–2011. The interpolated
time series is the median estimate from three interpolation
methods (repeating the last value as a constant, linear inter-

polation, spline interpolation). This allowed us to make use
of the temporal information of the population density dataset.

As an indicator of socioeconomic development, we used
the Night Light Development Index (NLDI) (Elvidge et al.,
2012). The NLDI is derived from satellite observations of
light emissions during night and an independent estimate
of population density. The NLDI ranges between 0 (light
emissions equally distributed among people, highest devel-
opment) and 1 (light emissions concentrated on one per-
son, lowest development). The NLDI is highly correlated
with electrification rates and the human development index
(Elvidge et al., 2012). The dataset is available at a 0.25◦ spa-
tial resolution for the year 2006. The NLDI is not available
for grid cells without a population or without detected night
lights, which introduces gaps into the global NLDI map. We
filled these gaps with a value of 1.01 (indicating very low
development or natural ecosystems) in order to not introduce
spatial gaps of the NLDI dataset into the empirical modelling
of burned area.

3 Modelling approaches and model–data analysis

3.1 SOFIA modelling approach

SOFIA is a data-driven fire model approach that allows us
to test several alternative functional relationships and asso-
ciated variables to predict fractional burned area. The basic
structure of SOFIA fire models is inspired by SIMFIRE (sim-
ple fire model) which uses empirical relationships to estimate
fire frequency from vegetation (i.e. FAPAR), fire weather
conditions, and socioeconomic variables (Knorr et al., 2014).
In SOFIA we generalize the SIMFIRE approach by using and
testing several alternative predictor variables as controls for
fire activity. Each SOFIA model structure is based on the as-
sumption that potentially the entire vegetated area can burn,
but burning is actually restricted by several functional rela-
tionships to controlling factors:

BAt =
∑g=N

g=1
Ag · fg,t , (1)

where BA is the fractional burned area of a grid cell at time
step t ,A is the fractional coverage of land cover group g, and
fg is a factor that controls fire spread (0= fully restricted
burning and 1= unconstrained burning) for a specific land
cover group. Land cover groups g can for example be classi-
fied according to growth forms (trees, shrubs, grasses, crops),
plant functional types (PFTs), or any other potentially mean-
ingful separation of land cover. The factor fg is a product of
individual functions that represent climatic, environmental,
and socioeconomic controls on fire:
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fg =

i=N∏
i=1
f
(
xi,g

)
, (2)

f (xi,g)=min
[

1,
maxg,i

1+ e(−sli,g×(x−x0i,g))

]
, (3)

where x is the value of an environmental or socioeconomic
variable i; and max, sl and x0 are parameters of a logistic
function. We used the minimum value from 1 and the logis-
tic function, and included max as a free parameter to allow
the representation of exponential relationships within the ba-
sic structure of logistic functions. Parameters of the logistic
functions can be either defined per vegetation cover group or
as global parameters. Variables x can be for example veg-
etation state variables such as FAPAR or VOD to represent
fuel loads, climate variables such as the number of wet days
or diurnal temperature range to represent fire weather condi-
tions, and socioeconomic variables such as population den-
sity or NLDI to represent human effects on fire activity. Con-
sequently, the development of an actual SOFIA model re-
quires two steps, namely the definition of a model structure
(i.e. selection of candidate predictor variables, Sect. 3.2) and
the estimation of the model parameters (Sect. 3.3).

SOFIA models allow us to reproduce the typical right-
tailed distribution of burned area (i.e. many grid cells and
months with no burned area in comparison to relatively few
grid cells and months with fire activity). The underlying
functional relationships can take step-wise, linear, sigmoidal,
or exponential shapes depending on the parameters of the lo-
gistic functions (Fig. 1). Similar model structures like SOFIA
where a response variable is controlled by a product of sev-
eral functions have been previously applied in environmen-
tal modelling, for example, in light-use efficiency models to
simulate NPP (Cai et al., 2014; Nemani et al., 2003) or in
phenology models to simulate leaf development (Forkel et
al., 2014; Jolly et al., 2005; Stöckli et al., 2011). The response
value of the functional relationship can also be used to map
sensitivities of burned area to environmental or socioeco-
nomic variables. Such a mapping of controls was previously
done for plant productivity (Nemani et al., 2003) and phe-
nology (Forkel et al., 2014; Jolly et al., 2005) based on red–
green–blue (RGB) composite maps. Here we will demon-
strate how this approach can be used to investigate spatial
patterns of sensitivities between burned area and climatic,
environmental, and socioeconomic controls on fire activity.

3.2 Testing controlling factors and predictor variables
in SOFIA models

To test appropriate controlling factors and related predictor
variables in SOFIA models, we defined several alternative
model structures. Each SOFIA model uses a specific land
cover grouping scheme and several functional relationships
for fire activity.
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Figure 1. Example of a SOFIA model structure with three land
cover groups (i.e. herbaceous vegetation and crops, shrubs, trees)
and five controlling factors on fire activity. The example is taken
from SOFIA model SF.124421 (Table 2). (a) Histogram of the
simulated fractional burned area. Response functions of fractional
burned area on the (b) Night Light Development Index, (c) diur-
nal temperature range, (d) number of wet days, (e) fraction of ab-
sorbed photosynthetic active radiation in the month before a fire,
and (f) mean vegetation optical depth in the 12 precedent months.
max, sl, and x0 are parameters of the logistic functions.

We tested different land cover grouping schemes to as-
sess the required complexity of SOFIA models to region-
alize model parameters. As grouping schemes we either
used growth forms (“GrowthForm” including the variables
Tree, Shrub, and HrbCrp; Table 1), growth forms with
crops separated from herbaceous vegetation (“GrowthForm-
Crop” including Tree, Shrub, Herb, and Crop), leaf types
(“LeafType” including Needleleaf, Broadleaf, Herb, and
Crop), or PFTs (“PFT” using the nine PFTs). Differences be-
tween GrowthForm and GrowthFormCrop will allow assess-
ment of whether a separation of croplands from herbaceous
vegetation is necessary to explain fire activity. The LeafType
grouping scheme may potentially be useful because needles

www.geosci-model-dev.net/10/4443/2017/ Geosci. Model Dev., 10, 4443–4476, 2017



4450 M. Forkel et al.: A data-driven approach to identify controls on global fire activity

Table
2.Perform

ance
ofthe

bestSO
FIA

and
ofrandom

forestm
odels

in
predicting

globaldistributed
m

onthly
burned

area
tim

e
series

in
the

optim
ization

and
evaluation

data
subsets,

respectively.R
esultsforallSO

FIA
m

odelsare
provided

in
Table

A
2.Please

note
thatresultsforJSB

A
C

H
-SPIT

FIR
E

are
notincluded

in
thistable

because
ofitscoarserspatialresolution.

N
am

e
M

odelstructure
and

included
predictorvariables

G
FE

D
.B

A
as

reference
(1997–2011)

C
C

I.B
A

as
reference

(2005–2011)

O
ptim

ization
subset

E
valuation

O
ptim

ization
E

valuation
(1817

cells,even
years)

subset
subset

subset
(data

used
foroptim

ization)
(1212

cells,)
(even

(uneven
(data

used
foroptim

ization)
uneven

years)
years)

years)

SSE
A

IC
IoA

FV
IoA

FV
IoA

FV
IoA

FV
G

FE
D

C
om

parison
ofG

FE
D

.B
A

w
ith

C
C

I.B
A

–
–

–
–

–
–

0.78
−

0.19
0.85

0.06

B
estSO

FIA
m

odels

SF.204422
G

row
thForm

C
rop,C

R
U

.W
E

T.orig,L
iu.V

O
D

.annual,
51.88

199.8
0.44

−
1.44

0.39
−

1.55
0.42

−
1.53

0.41
−

1.53
G

IM
M

S.FA
PA

R
.pre,C

R
U

.T.annual
SF.203512

G
row

thForm
C

rop,G
PC

C
.P.orig,G

IM
M

S.FA
PA

R
.annual,

52.17
200.3

0.43
−

1.45
0.42

−
1.54

0.45
−

1.49
0.45

−
1.51

L
iu.V

O
D

.pre,C
R

U
.T.annual

SF.324202
L

eafType,N
L

D
I,C

R
U

.W
E

T.orig,
52.92

183.8
0.41

−
1.49

0.37
−

1.65
0.39

−
1.59

0.35
−

1.65
G

PC
C

.P.annual,C
R

U
.T.annual

SF.124421
G

row
thForm

,N
L

D
I,C

R
U

.W
E

T.orig,L
iu.V

O
D

.annual,
53.40

184.8
0.40

−
1.51

0.39
−

1.51
0.39

−
1.59

0.41
−

1.51
G

IM
M

S.FA
PA

R
.pre,C

R
U

.D
T

R
.orig

R
andom

forestm
odels

R
F1

R
andom

forestbased
on

allvariables
as

in
Table

1
8.36

–
0.95

−
0.59

0.58
−

1.24
0.77

−
0.76

0.58
−

1.24
R

F2
L

ike
R

F1
butw

ithoutC
C

I.SM
variables

8.58
–

0.95
−

0.60
0.58

−
1.26

0.77
−

0.77
0.58

−
1.26

R
F.124421

R
andom

forestusing
the

sam
e

variables
as

24.05
–

0.81
−

1.23
0.41

−
1.69

0.65
−

1.35
0.40

−
1.70

the
SO

FIA
m

odelSF.124421

Geosci. Model Dev., 10, 4443–4476, 2017 www.geosci-model-dev.net/10/4443/2017/



M. Forkel et al.: A data-driven approach to identify controls on global fire activity 4451

usually decompose more slowly than broadleaves and thus
form larger pools of litter fuel. Differences between Growth-
FormCrop and LeafType allow assessment of whether model
parameters should be separated rather by growth form or by
leaf type. The PFT land cover grouping scheme is finally
used to assess whether the interaction of growth forms and
leaf types is required to regionalize model parameters.

We defined five controlling factors on fire activity and as-
signed several corresponding predictor variables to each con-
trolling factor to evaluate the following required components
of SOFIA models.

Human influences represent potential relations between
socioeconomic indicators and burned area. As predictor vari-
ables we used either population density with a global param-
eter set (PD), NLDI with a global parameter set (NLDI),
or NLDI with parameters that vary per land cover group
(NLDI.g).

Temperature effects represent potential relations between
diurnal temperature range (CRU.DTR.orig) or long-term air
temperature (CRU.T.annual) and burned area.

Direct wetness effects represent the obvious restriction of
fire activity by wet conditions. We included either the current
month’s number of wet days (CRU.WET.orig), precipitation
(GPCC.P.orig), or surface soil moisture (CCI.SM.orig).

Direct vegetation effects represent potential relations be-
tween the precedent vegetation state and burned area.
Therefore we either used previous month’s FAPAR
(GIMMS.FAPAR.pre) or VOD (Liu.VOD.pre) as predictor
variables.

Long-term wetness or vegetation effects represent poten-
tial relations between long-term averaged precedent condi-
tions of wetness or vegetation variables and burned area.
Several reasons exist to test long-term averaged predic-
tor variables as structural components of SOFIA mod-
els. Firstly, long-term conditions of precipitation and soil
moisture are strongly linked to plant productivity espe-
cially in semi-arid ecosystems and thus might represent
variations in vegetation and fuel loads. Secondly, long-
term conditions of FAPAR and VOD are more closely re-
lated to vegetation coverage or biomass and thus might
better represent fuel loads than the actual monthly val-
ues. As predictor variables for long-term conditions, we
used aggregated values from the 12 precedent months for
the number of wet days (CRU.WET.annual), precipitation
(GPCC.P.annual), soil moisture (CCI.SM.annual), FAPAR
(GIMMS.FAPAR.annual), or VOD (Liu.VOD.annual).

We also allowed that a certain controlling factor is not in-
cluded in a model to test whether this controlling factor is
generally needed in the SOFIA model. This set-up of control-
ling factors and associated predictor variables allows the def-
inition of several candidate model structures (Table A2). For
example, SOFIA model SF.124421 (the coding is described
in Table A2) used growth forms as a land cover grouping
scheme, the NLDI for human influences, diurnal tempera-
ture range as a temperature effect, the number of wet days

as a direct wetness effect, the previous month’s FAPAR as
a direct vegetation effect, and long-term precedent VOD as
a long-term vegetation effect (Fig. 1). The model structure
determines the complexity which we assess here based on
the number of controlling factors within a SOFIA model and
on the number of parameters N in a model (N = number of
controlling factors × number of land cover groups × 3 pa-
rameters). We required that SOFIA models include at least
three controlling factors and have fewer than 100 parame-
ters. This results in 2712 candidate SOFIA models. We opti-
mized and evaluated 95 randomly selected models from the
set of candidate models (Table A2). Although this selection
does not allow a full factorial assessment of controlling fac-
tors and predictor variables in SOFIA models, it is a trade-off
between computational feasibility and an assessment of the
tendency of a factor regarding model performance.

3.3 Optimization and evaluation of SOFIA models

3.3.1 Model optimization

After the definition of candidate SOFIA models, parameters
for each controlling function need to be estimated for each
model to achieve an optimal performance. The parameters
p of the logistic functions of each controlling factor were
estimated by minimizing the sum-of-squared error (SSE) be-
tween the monthly observed (obs) and simulated (sim) frac-
tional burned areas:

SSE=
∑i=N

i=1
(simi − obsi)2, (4)

where i is an index over grid cells and months. We also tested
alternative cost functions in the optimization which trans-
form burned area data, which explicitly account for variance,
or which were based on burned area anomalies instead of ab-
solute area in order to potentially better predict the variability
of observed burned area (Table A3).

The minimization of SSE was performed by apply-
ing a genetic optimization algorithm. The used algorithm
(GENOUD, genetic optimization using derivatives) com-
bines a global search algorithm (i.e. genetic optimization)
with a local search algorithm (i.e. BFGS) (Mebane and
Sekhon, 2011). GENOUD was already previously used to
estimate parameters in a dynamic global vegetation model
(Forkel et al., 2014). Here we applied GENOUD by using
500 individuals (i.e. parameter sets) per generation, and al-
lowed the algorithm to run for a maximum of 30 generations.
The parameter sets of the first generation were generated ran-
domly. The second generation is generated by using several
operators to clone, mutate, and crossover the best parameter
sets of the first generation (Mebane and Sekhon, 2011). The
BFGS local search algorithm was first used starting from the
best parameter set that evolved in the 28th generation in or-
der to avoid overly fast convergence of the algorithm towards
a local optimum.
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3.3.2 Model selection and evaluation

We selected the best-performing SOFIA models from all op-
timized candidate models based on the Akaike information
criterion (AIC) (Burnham and Anderson, 2002). The AIC is a
metric to empirically infer appropriate model structures from
several candidate models based on performance (in terms of
SSE) and by penalizing for model complexity (in terms of
the number of model parameters N ):

AIC= 2×N − 2× log(e−SSE). (5)

Given a certain performance threshold, the best model has
the lowest AIC value (Burnham and Anderson, 2002).

To evaluate the simulated spatial–temporal patterns and
temporal dynamics of fractional burned area, we used the
index of agreement (IoA) and the fractional variance (FV)
(Janssen and Heuberger, 1995):

IoA= 1−
∑i=N
i=1 (obsi − simi)

2∑i=N
i=1

(∣∣simi − obs
∣∣+ |obsi − obs|

)2 , (6)

FV=
σsim− σobs

0.5× (σsim+ σobs)
, (7)

where obs, sim and σobs, σsim are the means and variances
of the observations and simulations, respectively. IoA ranges
between 0 (worst fit) and 1 (best fit) and is an overall ef-
ficiency metric that is sensitive to correlation and bias. FV
ranges between −2 and 2 (best agreement at 0), where neg-
ative values indicate an underestimation and positive values
an overestimation of the observed variance.

3.3.3 Data sampling for model optimization and
evaluation

We sampled several grid cells from the global datasets (0.25◦

resolution) to optimize and evaluate all candidate SOFIA
models. A sampling of grid cells is necessary to retain
enough independent data for evaluation of SOFIA models
and because optimization of all SOFIA models on the en-
tire global datasets with 0.25◦ spatial resolution, monthly
time steps, and 15 years was computationally not feasible.
However, the sampling needs to represent the global spa-
tial patterns and the entire statistical distribution of burned
area, including extreme fire events. Therefore, we performed
a sampling of grid cells stratified by regions (representing
biomes) and by the statistical distribution of burned area. We
first computed the maximum annual burned area for all grid
cells in 1997–2011 to represent the spatial distribution of ex-
treme fire years. Regions were defined based on land cover
and climate zone (Kottek et al., 2006) (Fig. A2). For each
region, we classified the annual maximum burned area of
each 0.25◦ grid cell into 100 classes according to regional
quantiles of the maximum annual burned area (e.g. class 1
covers quantile 0 (minimum) to quantile 0.01 and the last

class covers quantile 0.99 to 1 (maximum) of regional an-
nual maximum burned area). We then randomly sampled grid
cells for each regional quantile class. In total, 3161 grid cells
were sampled with most of the cells in savannahs and tropical
croplands (n= 953, largest region) and fewest cells in boreal
needle-leaved deciduous forests (n= 135, smallest region)
(Fig. A2b). Consequently, the sampled grid cells are repre-
sentative of the global statistical distributions (Fig. A 2c–e)
and spatial patterns of fire activity (Fig. A2f).

The sampled grid cells were further divided into a sub-
set for optimization (60 % of the sampled grid cells) and for
evaluation (40 % of the sampled grid cells). The time peri-
ods in both subsets were further divided according to years
for which the monthly data were used for optimization (even
years in 1998 to 2010) and for which the monthly data were
used for evaluation (uneven years in 1997 to 2011). We used
every second year for optimization or evaluation to avoid po-
tential temporal changes in the quality of multi-sensor satel-
lite datasets (e.g. burned area, soil moisture, FAPAR, and
VOD) affecting the evaluation of model results. Based on
this sampling scheme, 1817 grid cells (= 152.628 monthly
observations in even years) were used for optimization and
1212 grid cells (= 116.352 monthly observations in uneven
years) were used for evaluation. Note that fewer observations
were used in the optimization and evaluation subsets for the
comparison against the Fire CCI burned area dataset because
this dataset starts only in 2005.

We applied the best-performing SOFIA models to all
global 0.25◦ grid cells to compare them globally with the
GFED and CCI burned area datasets and with JSBACH-
SPITFIRE. From these global results, we compared maps of
mean annual burned area and regional statistical distributions
and temporal dynamics of annual burned area for the period
2005–2011. Therefore we aggregated burned area from the
datasets and from the best SOFIA models to the coarse spa-
tial resolution of JSBACH (1.875◦× 1.875◦).

3.4 Data-driven fire modelling with random forest

We used the random forest machine learning approach to
evaluate if the basic structure of SOFIA models is flexible
enough to predict burned area or if a more flexible mod-
elling approach can reach higher performances. Random for-
est is a regression approach that can consider non-linear,
non-monotonic and abrupt, and non-additive relations be-
tween multiple predictor variables and a response variable
(Breiman, 2001). Random forest is an ensemble of multi-
ple regression trees that are trained based on the response
variable. Each tree uses a randomly selected set of predictor
variables and data points (Breiman, 2001). Random forest
was already previously applied to identify controls on vege-
tation dynamics and on fire activity (Aldersley et al., 2011;
Archibald et al., 2009). We used 500 trees per random for-
est. For the training of the random forest, we used the same
data subset that was also used to optimize SOFIA models

Geosci. Model Dev., 10, 4443–4476, 2017 www.geosci-model-dev.net/10/4443/2017/



M. Forkel et al.: A data-driven approach to identify controls on global fire activity 4453

(Sect. 3.3.3). The analysis was performed using the random-
Forest package in R (Liaw and Wiener, 2002).

We performed three different random forest model ex-
periments. Model experiment RF1 used all predictor vari-
ables from Table 1 to explore the potential performance
of the used datasets to predict burned area. Model ex-
periment RF2 used all predictor variables except for the
variables from the soil moisture dataset in order to ap-
ply random forest globally and to compare the results
with SOFIA independently of the spatial gaps of the
soil moisture dataset. Model experiment RF.124421 uses
the same predictor variables as SOFIA model SF.124421
(i.e. CCI.LC.Tree/Shrub/HrbCrp, NLDI, CRU.WET.orig,
Liu.VOD.annual, GIMMS.FAPAR.pre, CRU.DTR.orig) in
order to compare the performance of the two model ap-
proaches based on the same predictor variables.

3.5 Process-oriented fire modelling with
JSBACH-SPITFIRE

We simulated burned area with the SPITFIRE (spread and in-
tensity of fire) fire module within the JSBACH (Jena Scheme
for Biosphere-Atmosphere Coupling in Hamburg) land sur-
face model in order to compare the performance of SOFIA
models to a state-of-the art global vegetation-fire model. This
comparison potentially allows us to provide suggestions for
the further development of global vegetation-fire models.

JSBACH is the land component of the MPI (Max Planck
Institute for Meteorology) Earth system model (Raddatz et
al., 2007). SPITFIRE is a physically based fire module that
simulates fire ignitions (based on lightning and population
density), fire spread, and fire effects depending on weather
conditions, vegetation type and structure, fuel moisture, and
fuel size (Thonicke et al., 2010). SPITFIRE was originally
developed for the LPJ (Lund-Potsdam-Jena) dynamic global
vegetation model (Thonicke et al., 2010). For the implemen-
tation of SPITFIRE in JSBACH, two parameters in SPIT-
FIRE were adjusted, one related to human ignitions and the
other related to the drying of fuels (Lasslop et al., 2014). Ad-
ditionally, the relation between wind speed and the rate of fire
spread was modified (Lasslop et al., 2015) and a decrease in
fire duration with increasing population density was imple-
mented (Hantson et al., 2015a).

JSBACH was applied at a spatial resolution of
1.875◦× 1.875◦. JSBACH runs on a half-hourly time
step, while the SPITFIRE module is called at daily time
steps. A detailed description of the simulation set-up is
given in the FireMIP (fire model inter-comparison project)
protocol, from which we use JSBACH baseline simulation
SF1 (Rabin et al., 2017). Following a spin-up period to equi-
librate carbon pools (continued until the slow carbon pool
varied less than 1 % between consecutive 50-year periods),
a transient simulation was started in 1700. Data on land use
(Hurtt et al., 2011) and population density (Goldewijk et al.,
2010) were used starting in 1700 and interpolated to annual

resolution. The CO2 concentration of the atmosphere was
provided starting from 1750 at annual resolution (Le Quéré
et al., 2014). CO2 concentration before 1750 was set to the
value of 1750. Climate forcing is based on the CRUNCEPv5
dataset (1901–2013) (Wei et al., 2014). Climate data were
recycled over the years 1901–1920 before 1901.

4 Results

4.1 Performance and complexity of SOFIA models

The optimized candidate SOFIA models covered wide ranges
of complexities and performances (Fig. 2, Table 2). The best-
performing SOFIA models reasonably explained the monthly
spatial–temporal patterns of fractional burned area (i.e. up
to IoA= 0.45 for SF.230512, Table 2) but underestimated
the observed variance (i.e. negative FV, best FV=−1.44 for
SF.204422). Although the comparison of the GFED and Fire
CCI burned area datasets showed only a moderate agreement
(IoA= 0.85 and FV= 0.06), the performance of SOFIA
models was similar for both datasets (Table 2). The perfor-
mance of SOFIA models was very similar for the optimiza-
tion and evaluation data subsets, which shows that SOFIA
models can be robustly applied to different spatial and tem-
poral domains. The SOFIA model with the lowest AIC con-
sidered only three controlling factors and had 21 parameters
(SF.124002, Table A2). However, this model reached only a
poor performance (IoA= 0.29 and FV=−1.68 in the opti-
mization subset). Consequently, this model is not suited to
simulating global fire activity. Therefore we selected the best
SOFIA models according to both performance (IoA≥ 0.4)
and AIC (AIC≤ 200) (Fig. 2a). The four best SOFIA mod-
els had different combinations of predictor variables, which
demonstrates the equifinality in predicting global burned
area. However, the results show that SOFIA models were ro-
bust enough to predict global monthly fractional burned area
for different spatial and temporal domains and using different
datasets.

We also tested if alternative cost functions in the optimiza-
tion of SOFIA models would reduce the underestimation of
the observed variance of burned area. The tested alternative
cost functions explicitly accounted for variance, burned area
anomalies, or were based on transformed burned area values
(Table A3). Although a cost function based on IoA and FV
reached better performances in terms of IoA (best IoA= 0.45
against CCI.BA in the evaluation subset) and reproduced the
observed variance of burned area (FV= 0 against GFED in
the training subset), the resulting model overestimated mean
fractional burned area which is reflected by a high SSE (Ta-
ble A3). Other alternative cost functions resulted in weaker
performances than the default SSE cost function. Conse-
quently, we used the SSE-based cost function for the opti-
mization of all SOFIA models.
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Figure 2. Effect of the complexity of SOFIA models on the performance. Model performance is expressed as the index of agreement between
simulated and observed (GFED) monthly burned area time series in the optimization data subset. (a) Scatterplot of the index of agreement
against the AIC classified by the used land cover grouping scheme. (b, c) Effect of the number of variables (= number of controlling factors)
and parameters on model performance, respectively. The star symbol in (b) indicates a significantly higher IoA of models, with four instead
of three or five variables (Wilcoxon rank sum test, p ≤ 0.05). The four best SOFIA models (IoA≥ 0.395 and AIC≤ 200) are highlighted by
a red box in (a) and by coloured points in (b) and (c).

The performance of SOFIA models varied with model
complexity. SOFIA models that used a higher number of con-
trolling factors (n= 4 or 5) had on average a better perfor-
mance than models with only three factors (Fig. 2b). How-
ever, very complex SOFIA models with a high number of
parameters (n= 70–90) did not necessarily result in higher
performances than models with an average number of pa-
rameters (n= 30–70, Fig. 2c). Models with a low number of
parameters (n< 30) had on average low performances, but
we also found some SOFIA models with few parameters that
reached good performances (e.g. SF.124021 with only 30 pa-
rameters, Table A2). The four best SOFIA models had be-
tween 30 and 50 parameters. The number of parameters in
SOFIA models was mostly affected by the choice of a cer-
tain land cover grouping scheme to regionalize model pa-
rameters. Models that used the GrowthForm (three groups),
GrowthFormCrop or LeafType (both four groups) group-
ing schemes reached much lower AIC values than mod-
els that used the PFT grouping scheme (with nine PFTs)
(Fig. 2a). These results demonstrate that SOFIA models with
a higher number of predictor variables but a medium number
of model parameters reached the best performances in pre-
dicting global monthly spatial–temporal patterns of burned
area.

Random forest models reached slightly better perfor-
mances than the best-performing SOFIA models. The ran-
dom forest model based on all variables reached very good
performance in training (IoA= 0.95 for RF1) and moderate
performances in the evaluation subset (IoA= 0.58 for RF1,
Table 2). The random forest models with (RF1) and without
(RF2) soil moisture variables reached similar performances.
Similar to the SOFIA models, the employed random forests
underestimated the observed variance. However, when using
random forest with the same set of predictor variables as

SOFIA (RF.124421 vs. SF.124421), random forest reached
even weaker performances (IoA= 0.4, FV=−1.7 in evalua-
tion against CCI burned area) than the corresponding SOFIA
model. Thus the highly flexible structure of the random for-
est machine learning approach did not necessarily result in
a much better performance than the best-performing SOFIA
models. Consequently, the SOFIA approach offers enough
flexibility to assess different controlling factors and its func-
tional relationships to predict burned area.

4.2 Required controlling factors and adequate
predictor variables in SOFIA models

The performance of SOFIA models depended on the con-
trolling factor and associated predictor variables that were
used in model structures (Fig. 3). The choice of a certain
land cover grouping scheme in SOFIA models to regionalize
model parameters had only weak effects on model perfor-
mance (Fig. 3a). Although models based on the GrowthForm
scheme had on average weaker performances than models
based on land cover grouping schemes with croplands, the
best SOFIA models were not related to a certain land cover
grouping scheme.

Including human influences as controlling factors in
SOFIA models did not improve model performance
(Fig. 3b). The best models either did not consider human in-
fluences or considered human influences through NLDI as
global controlling function. However, NLDI did in average
not contribute to higher performances. SOFIA models that
used population density had on average weaker performance
than SOFIA models that used NLDI or that did not consider
human influences. The weaker performance of population
density as component in SOFIA models could be caused by
the general model structure in which potential burned area
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Figure 3. Effect of controlling factors and associated predictor variables in SOFIA models on the performance in simulating global monthly
burned area dynamics. Performance is expressed as the index of agreement between simulated and observed (GFED) monthly burned area
for the training data subset. Boxplots show the distribution of IoA based on all SOFIA model experiments that include the respective variable.
Star symbols indicate a significantly higher IoA of a variable in comparison to the “no” group of each controlling factor (Wilcoxon rank sum
test, p≤ 0.05). Distribution of IoA depending on the used (a) land cover grouping scheme; and variables to account for (b) human influence;
(c) temperature effects; (d) direct wetness effects; (e) direct vegetation effects; and (f) long-term wetness or vegetation effects. The best
models (IoA > 0.4 and AIC < 200) are highlighted with coloured dots.

equals the total vegetated area: As highly populated areas
are usually associated with low vegetation cover, potential
burned area is low as well, and thus population density does
not provide further information. However, the SOFIA mod-
els (SF.314511) revealed a global decline of burned area with
increasing population density (Fig. A4), a finding which is in
agreement with previous studies (Andela et al., 2017; Bisti-
nas et al., 2014; Knorr et al., 2014). Although two of the best
SOFIA models did not contain any variable for human in-
fluences (SF.204422, SF.203512), they however considered
the fractional coverage of croplands in the used land cover
grouping scheme. Consequently, these two models consid-
ered human influence on fire indirectly through the coverage
of croplands. These results suggest that human influences on
fire activity can be relatively interchangeably described in
SOFIA models by the coverage of croplands, NLDI, or pop-
ulation density.

Considering temperature variables in SOFIA models
caused on average better model performances than model
structures without temperature variables (Fig. 3c). However,
we also found one model without a temperature control that

reached good performance (SF.233210, Table A2). All of
the best-performing models included a diurnal temperature
range or pre-fire annual mean temperature as controlling fac-
tors. These results show that temperature-related variables
are important predictors in SOFIA.

The consideration of direct wetness effects in SOFIA mod-
els had the largest positive impact on model performance
(Fig. 3d). Models that did not consider direct wetness effects
had lower performances than models that used soil moisture,
precipitation, or the number of wet days. Especially models
based on the number of wet days reached significant higher
IoA than models without direct wetness effects (Wilcoxon
rank sum test, p ≤ 0.05). Consequently, direct wetness ef-
fects on fire activity were a required component of SOFIA
models to predict burned area.

Including or not including direct vegetation controls did
not lead to a significant change in the performance of
the SOFIA models (Fig. 3e). The best models either did
not consider direct vegetation effects (SF.324202) or used
pre-fire FAPAR (SF.204422, SF.124421) or pre-fire VOD
(SF.203512). This suggests that precedent FAPAR and VOD
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conditions did not provide additional information to predict
burned area in SOFIA models.

On the contrary, considering long-term wetness or vege-
tation effects in SOFIA models caused significantly higher
model performances than not considering these effects
(Fig. 3f). Especially SOFIA models that used pre-fire annual
precipitation or VOD reached significantly higher IoA. Mod-
els with long-term effects based on soil moisture, the number
of wet days, or FAPAR had on average similar performances
to models without long-term effects. However, we also found
some good models that used long-term conditions of FA-
PAR (e.g. SF.203512). These results demonstrate that long-
term conditions in vegetation productivity (reflected by an-
nual precipitation) or vegetation structure (reflected by VOD
or FAPAR) were required components of SOFIA models to
predict burned area.

Based on the performances of the different controlling
factors and associated predictor variables, the ideal SOFIA
model should include the NLDI as a human influence, one
variable to account for temperature effects, the number of wet
days as a direct wetness effect, and pre-fire annual conditions
of precipitation or VOD as long-term wetness/vegetation ef-
fects. This ideal model structure is realized in two of the
best-performing SOFIA models (SF.124421 and SF.324202,
Fig. 3). The choices of a certain land cover grouping scheme
or of a direct vegetation effect are secondary components of
SOFIA model structures. The distribution of model parame-
ters in SF.124421 after optimization reflects the fact that pa-
rameters for the functional relationships with the NLDI, the
number of wet days, and VOD were well constrained and
thus were the most sensitive parameters within this model
to estimate global monthly burned area dynamics. These pa-
rameter estimates and distributions could potentially be used
as prior parameter estimates to further constrain SOFIA mod-
els.

4.3 Global evaluation of burned area from different
modelling approaches

4.3.1 Global spatial patterns

The best SOFIA models were applied globally to assess
their performance in simulating global and regional spatial–
temporal patterns of annual total burned area with respect
to random forest models and JSBACH-SPITFIRE. All three
model approaches reproduced well the global spatial pattern
of mean annual burned area with large burned area in Africa,
Australia, and tropical South America, and smaller amounts
of burned area in the rest of the world (0.663≥ IoA≤ 0.841,
Fig. 4). However, models were often biased in comparison
to the observational datasets. The global mean annual burned
area was 341 Mha for the GFED dataset and 346 Mha for
the CCI dataset, and is estimated much higher (464 Mha)
based on assumptions about undetected small fires (Ran-
derson et al., 2012). Although JSBACH-SPITFIRE overes-

timated global burned area (∼ 32 %) in comparison to the
GFED and CCI datasets, it was however tuned (by adjusting
ignitions) to reproduce the burned area estimates, including
small fires. Results from the SOFIA and random forest mod-
els cannot be directly compared to these global burned values
because they have gaps both in space and time depending on
the missing values in the used predictor variables. Therefore,
we masked the GFED and CCI datasets with the spatial–
temporal distribution of gaps in all SOFIA and random for-
est models and recomputed the global mean annual burned
area (Fig. 4). All SOFIA models underestimated global mean
annual burned area (−24 to −40 %, Fig. 4). Random forest
model RF2 overestimated (∼ 60 %) and random forest model
RF.124421 reached a realistic (3–5 % overestimation) global
mean annual burned area. Despite the fact that all models
reproduced well the global spatial pattern of annual burned
area, the maps indicate regional differences, especially in
extra-tropical regions.

4.3.2 Variability in tundra and boreal forests

Regionally, we found varying performances of SOFIA mod-
els, random forest, and JSBACH-SPITFIRE in simulating
spatial–temporal and statistical distributions of annual to-
tal burned area (Fig. 5). In northern regions (boreal forests
and tundra), differences between all datasets and mod-
els were large: whereas three SOFIA models produced
almost no fire activity and thus had very poor perfor-
mances, model SF.124421 reached medium performances
(IoA= 0.48 vs. CCI in boreal needleleaf deciduous forests,
Fig. 5c). The main difference between these SOFIA mod-
els is that SF.124421 used the diurnal temperature range and
the other three SOFIA models used annual pre-fire temper-
ature as temperature effects on fire activity. Thus the results
suggest that mean annual temperature is not an appropriate
predictor variable to represent boreal fire activity within a
global fire model. Random forest models strongly overesti-
mated mean annual burned area in northern regions.

In the tundra, all models had very low performances,
but SF.124421 reproduced at least the mean annual burned
area from the GFED dataset. However, the GFED and CCI
datasets also strongly disagree in the tundra (IoA= 0.17 and
FV=−1.91 for CCI vs. GFED, Fig. 5a) while only mod-
erately agreeing in boreal forests. We found that SOFIA
and random forest models agreed slightly better with the
CCI dataset than with the GFED dataset in northern regions,
although the GFED dataset was used for training. In bo-
real needle-leaved evergreen forests, SF.124421 reproduced
mean annual burned area and reached the highest IoA of all
models (Fig. 5b).

In boreal needle-leaved deciduous forests, the random for-
est models reached the highest performance (IoA= 0.52 for
RF2 against CCI) but overestimated mean annual burned
area. SF.124421 and JSBACH-SPITFIRE only slightly over-
estimated mean annual burned and reached medium per-
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Figure 4. Mean annual fractional burned area in 2005–2011 from observational datasets and global fire models. Numbers in brackets are
the global mean annual burned area. In the case of the ∗ symbol, the computation of global total annual burned area considered the com-
mon spatial–temporal occurrence of missing values in all SOFIA and random forest models in the 0.25◦ grid cells. IoA is shown with
respect to GFED (red) and CCI (blue), respectively. All maps were aggregated to the coarsest common spatial resolution (i.e. JSBACH,
∼ 1.875× 1.875◦) for the computation of IoA and total burned area.

formances (IoA= 0.47 for SF.124421 vs. CCI, IoA= 0.31
for JSBACH-SPITFIRE vs. CCI) (Fig. 5c). In summary, al-
though SF.124421 had only moderate performances in north-
ern regions, it reached slightly better performances than ran-
dom forest models and JSBACH-SPITFIRE. However, these
results demonstrate the need to further investigate fire activ-
ity in tundra and boreal forests by improving the agreement
of satellite datasets and by developing more appropriate em-
pirical and process-oriented fire models.

4.3.3 Variability in temperate regions and the
Mediterranean

In temperate regions, SOFIA models generally outperformed
random forest models and JSBACH-SPITFIRE in reproduc-
ing the observed spatial–temporal and statistical distributions
of annual total burned area (Fig. 5d–f). The random forest
models and JSBACH-SPITFIRE overestimated mean annual
burned area in all temperate regions.

In temperate forests and croplands, SF.124421 reached the
best performance of all models (IoA= 0.43 and FV=−0.2
vs. GFED), whereas the other three SOFIA models had
weaker performances (Fig. 5d). Random forest models
reached medium IoA (up to 0.4 for RF.124421 vs. GFED)
but overestimated mean annual burned area. JSBACH-
SPITFIRE had medium IoA and overestimated mean annual
burned area in comparison to GFED and CCI.

In the Mediterranean, all SOFIA models had medium to
good performances (0.28≤ IoA≤ 0.75) and outperformed

JSBACH-SPITFIRE and random forest models (Fig. 5e).
The performance was usually higher in comparison to the
CCI dataset than in comparison to the GFED dataset be-
cause GFED contained far fewer very large burned areas
and thus also had on average a smaller burned area than the
CCI dataset. Models SF.204422 and SF.203512 (both using
the GrowthFormCrop scheme and no human influence) had
better performances than models SF.324202 and SF.124421
(both using the NLDI). This indicates that the better perfor-
mance is related to how croplands and human influences are
represented in these models.

In the steppes, all SOFIA models reproduced the observed
mean annual burned area, and some reached medium perfor-
mances (IoA= 0.48 for SF.324202 vs. CCI, Fig. 5f). These
results for temperate regions and the Mediterranean demon-
strate that SOFIA models can realistically reproduce ob-
served fire activity.

4.3.4 Variability in tropical regions

In tropical regions, SOFIA models had good performances
in reproducing the observed spatial–temporal and statisti-
cal distributions of annual total burned area and had com-
parable or better performances than the random forest mod-
els and JSBACH-SPITFIRE (Fig. 5g–h). In savannahs and
tropical croplands, all SOFIA and random forest models and
JSBACH-SPITFIRE had good performances in reproducing
the spatial–temporal distribution of annual total burned area
(0.63≤ IoA≤ 0.78) but underestimated the variance and ex-
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(g) Savannas and tropical croplands
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Figure 5. Regional distributions of annual total burned area per 1.875◦ grid cells from datasets and global fire models for the years 2005–
2011. Bars show the mean of the distribution. Horizontal bands at the top of each bar are error estimates for the mean value (i.e. 95 % highest
density intervals). Violins show the distribution of values. Colours represent the index of agreement between a model and both (i.e. GFED
and CCI) datasets. For GFED and CCI, the index of agreement was computed only with respect to the other observational burned area dataset.
The extent of regions is shown in Fig. A1a.

treme fire years (−1.2≤FV≤−0.4). This underestimation
of very large burned areas in savannahs is the main cause of
the underestimation of the mean annual burned area in this
region and of the global total burned area by SOFIA models.
SF.324202 and SF.124421 had slighter better performances
than the other two SOFIA models.

In tropical forests, all SOFIA models had medium to
good performances in reproducing the spatial–temporal dis-
tribution of annual total burned area (0.61≤ IoA≤ 0.68),
but also underestimated the variance and extreme fire years
(−1.16≤FV≤−0.36, Fig. 5h). However, the FV of all mod-

els was usually better in comparison to the CCI dataset than
for the GFED dataset. The CCI dataset had fewer very large
burned areas and thus a smaller variance than the GFED
dataset in tropical forests (FV=−0.22 for CCI vs. GFED).
Random forest models reached moderate but weaker perfor-
mances than SOFIA models. JSBACH-SPITFIRE had a low
performance in reproducing the spatial–temporal variability
(IoA= 0.33 vs. GFED), but reproduced mean annual burned
area. These results demonstrate that SOFIA models better re-
produce observed fire activity in tropical regions than random
forests or JSBACH-SPITFIRE.
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In summary, we found that all modelling approaches
(SOFIA, random forest, JSBACH-SPITFIRE) had relatively
good performances in savannahs and tropical croplands. All
SOFIA models had relatively good performances in tropical
forests and the Mediterranean. Only some SOFIA models
reached good performances in temperate forests and crop-
lands (SF.124421) and in steppes (SF.324202). Random for-
est models and JSBACH-SPITFIRE had generally weaker
performances than SOFIA models. Model SF.124421 (Fig. 1)
had the best performance from all SOFIA models in the tun-
dra, boreal forests, temperate forests and croplands; it had
very good performance in savannahs and tropical forests;
and it outperformed random forest and JSBACH-SPITFIRE
in steppes and the Mediterranean. Consequently, we finally
identified SF.124421 as the globally best-performing SOFIA
model from the tested set of model structures.

4.4 Sensitivity of burned area to climate, vegetation,
and human predictor variables

The underlying functional relationships in SOFIA models
allow us to map the sensitivities of burned area to human,
vegetation, and climate variables. To demonstrate such a po-
tential application of a SOFIA model, we mapped mean
responses from each functional relationship for the period
1997–2011 from SOFIA model SF.124421 (Fig. 6). Based
on this model, human influences (i.e. the NLDI) restricted
burned area in most parts of Europe and southern Russia,
eastern and south-eastern Asia, India, central and eastern
North America, south-eastern South America, southern Aus-
tralia, and New Zealand (Fig. 6a). These regions correspond
to the most populated and developed regions of the world.
This pattern was caused by the underlying functional rela-
tionship of SF.124421 where NLDI < 1 (i.e. developed re-
gions) restricted and NLDI > 1 (i.e. unpopulated regions or
natural ecosystems) allowed fire activity (Fig. 1b). These re-
sults indicate a predominant restricting effect of humans on
fire activity.

Temperature effects in SF.124421, expressed as diurnal
temperature range, allowed fire activity mostly in the semi-
deserts of western North America, in the Sahel, and in Aus-
tralia, and had a moderate restriction effect in tropical forests
and the tundra (Fig. 6b). These spatial patterns were caused
by the controlling function that had a strong sigmoidal in-
crease in fire activity with a diurnal temperature range in
shrublands and allowed moderate fire activity in herbaceous
vegetation and croplands (Fig. 1c).

Direct wetness effects, expressed as the number of wet
days, generally allowed fire activity in all forest regions and
moderately restricted fire activity in the rest of the world
(Fig. 6c). The underlying controlling function in SF.124421
showed no sensitivity for forests, a weak positive relation in
herbaceous vegetation and croplands, and a strong exponen-
tial decrease in fire activity with an increasing number of wet
days in shrublands (Fig. 1d).

As a direct vegetation effect, pre-fire FAPAR restricted fire
activity in herbaceous vegetation and croplands of central
North America, central Asia, the northern Sahel, the Kala-
hari, central Australia, and parts of South America (Fig. 6d).
On the other hand, pre-fire FAPAR supported fire activity
mostly in the southern Sahel and northern and eastern Aus-
tralia. These patterns were caused by a general strong re-
striction of fire activity with pre-fire FAPAR in herbaceous
vegetation and croplands and an exponential increase in fire
activity with increasing pre-fire FAPAR in shrublands in
SF.124421 (Fig. 1e).

As a long-term vegetation effect, 12-month precedent
mean vegetation optical depth strongly supported fire ac-
tivity in central North America, central Asia, the Tibetan
Plateau, the Sahel, parts of India, the Kalahari, Australia (ex-
cept the interior), and northern Patagonia (Fig. 6e). In all
other regions, annual VOD had a moderate effect on fire
activity in SF.124421. The underlying controlling function
in SF.124421 showed an exponential increase in fire activ-
ity with annual VOD in shrublands, an exponential decrease
with annual VOD in herbaceous vegetation and croplands,
and a strong restriction across all VOD ranges for trees
(Fig. 1f). The diverging responses with annual VOD in shrub-
lands and herbaceous vegetation indicate that fire activity in-
creases with higher vegetation density or biomass in shrub-
lands but decreases with increasing vegetation water content
in herbaceous vegetation, respectively. Additionally, the gen-
eral restriction of fire activity with VOD for trees indicates
that fire activity is restricted by vegetation density or high
vegetation water content in forests.

We further combined the controlling functions of
SF.124421 to investigate combined controls on fire activ-
ity. Therefore we created a red–green–blue composite map
in which the red channel contains the NLDI functional re-
lationship, the green channel contains the mean of the di-
rect (precedent month FAPAR) and long-term vegetation (12-
month precedent VOD) effect, and the blue channel contains
the climate effects (mean response of functional relationships
to the number of wet days and diurnal temperature range)
from SF.124421 (Fig. 6f). Generally, bright colours on this
map indicate a strong restriction of fire activity (small burned
area) and dark colours indicate that fire activity is allowed
(large burned area). Regionally, different combinations of so-
cioeconomic, vegetation, and climate factors controlled fire
activity. Socioeconomic development dominantly restricted
fire activity in western North America and in populated re-
gions of boreal forests (red colours). Vegetation predomi-
nantly suppressed fire activity in southern boreal and tropi-
cal forests (green colours). Primarily climate conditions and
secondly socioeconomic development restricted fire activity
in semi-deserts of the northern Sahel, central Asia, the Kala-
hari, and south-western Australia (purple colours). Socioe-
conomic development and climate equally suppressed fire
activity in the Mediterranean, India, eastern Asia, and east-
ern South America (pink colour). Both socioeconomic de-
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velopment and vegetation conditions suppressed fire activity
in most parts of Europe, central and eastern North America,
and eastern China (yellow/orange colours). Both climate and
vegetation conditions suppressed fire activity in the tundra
and in central Australia (cyan colours). All factors moder-
ately supported fire activity in boreal forests and strongly
support fire activity in large parts of the Sahel, southern
Africa, northern Australia, and western North America (dark
colours). We want to point out that these sensitivities might
look different if SOFIA models with alternative but adequate
model structures are applied for such an analysis. However,
the results highlight that fire activity is controlled by region-
ally diverse and complex interactions of human, vegetation,
and climate factors.

5 Discussion and conclusions

5.1 Performance and equifinality of SOFIA models

We developed the SOFIA modelling approach as a frame-
work to explore the importance of and the functional rela-
tionships between different predictor variables and burned
area while relying on relatively simple model structures.
The best SOFIA models reached globally average perfor-
mances but outperformed the JSBACH-SPITFIRE state-of-
the-art process-oriented vegetation-fire model. We interpret
the globally medium and regionally varying performances as
current upper limits that can be reached with the used pre-
dictor datasets and variables because the more flexible and
highly adaptive machine learning algorithm random forest
did not achieve much higher performance in the evaluation
data subset. These upper limits in model performance might
be for several reasons.

Uncertainties in the observations for the predictor and re-
sponse variables inhibit the development of models with high
performance. For example, we found regionally partly large
differences between the two burned area datasets, especially
in northern regions. These uncertainties originate from differ-
ences in sensor characteristics and in the ability of the used
algorithms to detect small fires.

Other processes and variables are important for the spread
of fires but cannot be resolved at the used spatial and tem-
poral resolution. For example, on local to regional scales the
spread of fire is controlled by landscape structure and topog-
raphy whereas climatic controls are usually more important
on larger scales (Archibald et al., 2009; Z. Liu et al., 2013;
Parisien et al., 2010). Most of the regional controls can likely
not be resolved at the used spatial resolution (0.25◦) although
this resolution is already higher than the resolution of most
global vegetation-fire models. Also wind speed and direction
is an important control on the spread of fires on short tem-
poral scales but this effect cannot accurately be represented
based on monthly data (Bistinas et al., 2014).

There is a lack of global observations that directly repre-
sent fuel loads, fuel moisture, or modes of human fire usage.
For example, all of the used predictor variables are only prox-
ies for fuel loads (FAPAR or VOD) or fuel moisture (surface
soil moisture), but do not directly represent such fuel condi-
tions. Similarly, data on population density or socioeconomic
development are used as proxies for human effects on fire,
but cannot represent the complex social, economic, and cul-
tural practices and policies of human fire use and manage-
ment.

The four best SOFIA models reached similar perfor-
mances in savannas and tropical croplands, and in tropical
forests, which demonstrates the equifinality in fire modelling.
Equifinality, i.e. the presence of multiple adequate models
and parameter sets that result in very similar responses, is a
general problem in environmental modelling (Beven, 2006).
General approaches to avoid equifinal models are the use of
multiple datasets of the same variable to account for errors
or uncertainties in model forcing or reference data, the test-
ing of different cost functions to constrain certain parame-
ters, the inclusion of prior parameter uncertainties in the cost
function, or the application of models to new observational
data or under different conditions (Beven, 2006; Beven and
Binley, 2014; Williams et al., 2009). In our analysis, we were
able to rule out three of four initially equifinal SOFIA mod-
els based on the application of these models to the global
data and by regional comparisons against two burned area
datasets. The results from the optimized SOFIA models al-
low extraction of parameter values and ranges for each func-
tional relationship. To give an example, parameters that con-
trol the functional relationship with (1) socioeconomic de-
velopment (NLDI), with (2) diurnal temperature range and
the number of wet days in shrublands, and with (3) VOD
were well constrained in SOFIA model SF.124421 (Fig. A3).
These parameters could potentially be used as prior param-
eter values in a more constrained analysis in the future. The
presence of equifinality in SOFIA model structures suggests
the inclusion of such prior parameter uncertainties for each
functional relationship to better constrain individual SOFIA
models. This technique can be applied in future generations
of individual SOFIA models by using the current versions as
prior parameter estimates and uncertainties.

5.2 Importance of predictor variables and implications
for global fire modelling

The derived SOFIA models and the spatial patterns of sensi-
tivities show a sharp decline in burned area with increasing
socioeconomic development or population density and thus
agree with previous studies that show a primarily negative
effect of human activities, population density, or croplands
on burned area (Andela et al., 2017; Archibald et al., 2013;
Bistinas et al., 2014; Chuvieco and Justice, 2010; Knorr et
al., 2014). Strikingly, our results suggest that human effects
on global burned area can be expressed by either cropland
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Figure 6. Example of combined climate, vegetation, and human controls on fire activity based on the SOFIA model SF.124421. The maps
in (a–e) show the average response value for each functional relationship for the period 1997–2011. High values (1, red) indicate that this
factor allows unlimited burning and low values (0, blue) indicate that this factor restricts burning. The map in (f) is a red-green-blue composite
of the human influence (map in a, red channel), the combined direct and long-term vegetation effect (mean of d and e, green channel), and the
climate effect (mean of b and c, blue channel). Bright and dark colours indicate a strong restriction and allowance of fire activity, respectively.

area, NLDI, or population density, but the combination of
these factors did not improve the performances of SOFIA
models. These variables all serve as proxies for the negative
relationship between humans and burned area, but do not di-
rectly describe human activities of fire use or suppression.
For example, regional studies have shown that various in-
formation on infrastructure, land use, and other relevant so-
cioeconomic indicators are important to predict fire activ-
ity (Archibald et al., 2009; Arndt et al., 2013; Parisien et
al., 2016). However, such spatially and temporally resolved
datasets and assessments are missing for the global scale.
Certainly, our results do not imply that croplands are unim-
portant for the global variability of burned area. Agricultural
fires account for around 10 % of all global fires (Korontzi et
al., 2006) and for around 5 % of global burned area (Giglio et
al., 2013) and are used to remove harvest residues or to fer-
tilize soils. However, croplands show more small fires than
large fires (Hantson et al., 2015b). As we here used the GFED
burned area datasets that were not corrected for small fires
(Giglio et al., 2013), small agricultural fires are likely mis-

represented in this dataset and thus cannot be accurately anal-
ysed within the SOFIA approach. The representation of agri-
cultural fires in a global fire model needs to account for var-
ious land use patterns and practices that go far beyond nat-
ural climate–vegetation relationships (Le Page et al., 2015;
Magi et al., 2012; Rabin et al., 2015). By taking into account
this complexity, agricultural fires are often not represented in
global vegetation-fire models because they do not directly af-
fect natural vegetation and carbon cycle dynamics (Hantson
et al., 2016), unless agricultural fires escape to nearby forests
(Cano-Crespo et al., 2015). In summary, an improved rep-
resentation of human effects on fire in global vegetation-fire
models is currently lacking since globally consistent, tempo-
rally and spatial resolved, relevant information on infrastruc-
ture and socioeconomics is not available.

Direct wetness effects, especially based on the number of
wet days, were the component of SOFIA models that con-
tributed most to model performance (Fig. 3). These results
are in agreement with previous results that identified the
number of dry days (the inverse of the number of wet days)
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as an important variable to predict fire activity (Bistinas et
al., 2014). Especially for shrublands, we identified strong
exponential relationships with the number of wet days and
the diurnal temperature range. Currently, shrubs are not con-
sidered in all ecosystem models (e.g. not in models of the
LPJ family, Sitch et al., 2003), which suggests the need to
implement and parameterize shrub PFTs to improve simula-
tions of fire activity. The number of wet days and the diur-
nal temperature range are also used in process-oriented fire
models like SPITFIRE to compute the Nesterov index (a fire
weather index) and fuel moisture content (Thonicke et al.,
2010). Here we confirm that the use of the diurnal tempera-
ture range and the number of wet days are appropriate pre-
dictor variables to simulate fuel moisture conditions and thus
fire activity. However, while the Nesterov index is used as a
fire weather index in many fire modules of global vegetation
models (Lasslop et al., 2014; Prentice et al., 2011; Thonicke
et al., 2010; Venevsky et al., 2002; Yue et al., 2014), stud-
ies on forest fire management rely more often on alternative
fire weather indices such as from the Canadian Forest Fire
Weather Index (FWI) (Bedia et al., 2012; Stocks et al., 1989).
We also show that direct wetness effects can be represented
by satellite-derived surface soil moisture. Additionally, sev-
eral other indices have been derived from satellite data to
estimate fuel moisture conditions (Yebra et al., 2013). Con-
sequently, it is necessary to systematically compare the pre-
dictive power of fire weather indices, satellite-derived and
reanalysis-based surface soil moisture data, and soil mois-
ture schemes of ecosystem models to potentially improve
the direct effect of wet conditions on fire activity in global
vegetation-fire models.

Long-term vegetation effects contributed strongly to the
performance of SOFIA models and thus indicate an impor-
tant role of vegetation dynamics in the spatial–temporal vari-
ability of fire activity. Consequently, global vegetation mod-
els require a good representation of vegetation distribution
and dynamics to realistically simulate fire activity. Vegeta-
tion distribution can be improved either through the prescrip-
tion of high-quality land cover maps in land surface models
or by improving model structures and by constraining model
parameters that affect vegetation dynamics in DGVMs. For
both approaches, time-variant, e.g. annually resolved, land
cover maps would be very valuable for realistically reflecting
vegetation dynamics. However, it is currently unclear how
realistic land cover dynamics are represented for example
by the three epochs of the ESA CCI land cover maps or by
annual or seasonal maps of the MODIS land cover product
(Broxton et al., 2014). Hence intensified efforts are required
to check the plausibility of land cover changes in current and
upcoming time-variant land cover maps.

SOFIA models with a long-term effect of VOD had bet-
ter performances than models without this effect. The good
performance of SOFIA models with VOD as predictor vari-
able likely reflects variability in fuel loads because VOD is
sensitive to vegetation density and biomass (Andela et al.,

2013; Liu et al., 2015). The importance of VOD suggests
that processes such as carbon allocation, turnover and vegeta-
tion mortality which all control biomass dynamics need to be
carefully assessed in global vegetation models in order to ac-
curately simulate fuel loads and hence fire activity. The find-
ing of a strong restriction of fire activity with VOD in forests
corresponds to previous findings that show that woody vege-
tation tends to restrict burned area either because moist wood
is more difficult to ignite than dry grass or litter, or because
forests provide generally more moist conditions (Kelley and
Harrison, 2014). Fire activity increases with biomass at low
vegetation densities and strongly decreases with increasing
biomass and very high vegetation densities but the actual
fire activity is enhanced or restricted by moisture conditions
(Krawchuk and Moritz, 2011; Murphy et al., 2011). Con-
sequently, the SOFIA approach and the identified sensitivi-
ties of fire activity with direct wetness effects and with VOD
confirm and implement previous conceptual models where
fire activity follows a biomass gradient and is modulated by
moisture conditions (Krawchuk and Moritz, 2011; Murphy
et al., 2011).

5.3 From satellite data to improved global
vegetation-fire models

The better performance of SOFIA models compared to
JSBACH-SPITFIRE and the generally good performance
especially in temperate and tropical regions demonstrate
the potential of the SOFIA approach to improve global
vegetation-fire models. The SOFIA approach can be poten-
tially adapted to more complex global vegetation-fire mod-
els such as SPITFIRE. Thereby the functional relationships
in SOFIA models should rely on forcing datasets (e.g. tem-
perature, precipitation) and simulated state variables (e.g. lit-
ter and soil moisture, biomass compartments, litter stocks,
vegetation structure) of the vegetation models. This also al-
lows the representation of feedbacks of changing vegetation
conditions on fire activity. By applying the SOFIA approach
to forcing and state variables of a process-oriented vegeta-
tion model, more adequate predictor variables could be po-
tentially identified and finally model performance could be
improved.

In order to represent realistic vegetation-fire interactions,
vegetation models need to satisfactorily reproduce observed
patterns and dynamics of fuel moisture and vegetation state
variables. Consequently, it is necessary to test and improve
global vegetation-fire models against multiple observational
datasets that cover various aspects of vegetation-fire interac-
tions: for example, satellite datasets on land cover, FAPAR,
VOD, biomass (Avitabile et al., 2016; Saatchi et al., 2011;
Thurner et al., 2014), and estimates of litter fuels (Pettinari
and Chuvieco, 2016) may be useful to constrain vegetation
dynamics, biomass allocation, and fuel loads; datasets on sur-
face soil moisture, VOD, and evapotranspiration (Tramon-
tana et al., 2016) may be useful to test hydrological schemes
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and to constrain fuel moisture; and datasets on burned area,
fire size (Hantson et al., 2015b), fire radiative power, fuel
consumption (Andela et al., 2016; van Leeuwen et al., 2014),
or separations between natural and agricultural fires (Ko-
rontzi et al., 2006; Le Page et al., 2010; Magi et al., 2012)
may be useful for constraining fire behaviour. Such datasets
are currently under-exploited in the development of global
vegetation-fire models because (1) they were still missing
at the time of model development (Thonicke et al., 2001),
(2) there is only little experience in applying formal model–
data integration approaches within global fire modelling, or
(3) no appropriate model components or observation opera-
tors exist that link for example modelled fuel moisture with
satellite-derived surface soil moisture or modelled biomass
compartments with VOD. For example, it is currently unclear
which physiological processes, morphological plant compo-
nents, and ecosystem structures contribute to a certain VOD
signal (Vreugdenhil et al., 2016a). Consequently, it is neces-
sary to better understand the plant and ecosystem controls on
VOD to improve global vegetation-fire models.

Previously developed global fire models commonly used
observed data for model evaluation, but did not undertake
a formal model–data integration cycle from the definition
of model structures, model parameter estimation, to model
evaluation, and potentially back to a re-formulation of model
structures by using observational data. In our study we firstly
applied the full model–data integration cycle to derive an
optimal structure for an empirical global fire model to pre-
dict global burned area. However, in order to apply model–
data integration for global process-oriented vegetation-fire
models, multiple datasets on vegetation, hydrological, and
fire-related variables should be used to realistically constrain
vegetation-fire interactions. Hence there is a need to develop
appropriate observation operators and to extend currently
existing model–data integration frameworks of global veg-
etation models (Forkel et al., 2014; Kaminski et al., 2013;
MacBean et al., 2016; Schürmann et al., 2016) to the cor-
responding fire modules in order to formally assess model
structures and to constrain model parameters. In summary,
model–data integration frameworks need to be developed
that make use of multiple satellite datasets on vegetation and
moisture proxies in order to improve the representation of fire
in global vegetation models and thus to better understand in-
teractions of fire with ecosystems and the atmosphere within
the Earth system.

Code availability. The code for this study is organized into sev-
eral R packages and is available from https://r-forge.r-project.org/
R/?group_id=1612. Thereby the SOfireA package contains the basic
SOFIA model structure and functions to optimize and plot SOFIA
models, and the ModelDataComp package contains functions for
model–data comparison such as model evaluation metrics and com-
parison plots. R package randomForest was used for random forest
fits (Liaw and Wiener, 2002).

Data availability. The used original data are available under the
URLs or DOIs, or can be obtained from PIs as indicated in Ta-
ble 1. The pre-processed (spatially and temporally interpolated)
data for the optimization and evaluation data subsets are included
as the example dataset “firedata” in the SOfireA R package (http:
//r-forge.r-project.org/R/?group_id=1612).
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Figure A1. Importance of several predictor variables for predicting
monthly burned area using a random forest. Importance is expressed
as the percentage increment in mean squared error if a certain vari-
able is not included in a random forest. Thus, the most important
variables cause the largest increment in MSE. Variables that include
“orig” or “anom” indicate original absolute values and anomalies
(relative to the mean seasonal cycle), respectively. “filterX” indi-
cates mean values over the X precedent months before the actual
month for which burned area should be predicted. In total 132 vari-
ables were included in this analysis, but variables below rank 53 are
not shown in this figure).
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(a)

(b)

(c) (d)

(e) (f)

Figure A2. Representativeness of sampled 0.25◦ grid cells for global patterns of burned area (based on GFED burned data). (a) Spatial
distribution of the grid cells of the optimization and evaluation data subsets and regions for regional analyses of results. Regions are TUND
(tundra), BONE (boreal needle-leaved evergreen and mixed forests), BOND (boreal needle-leaved deciduous forests), TEFC (temperate
forests and croplands), MEDI (Mediterranean regions), STEP (steppes), SAVC (savannahs and tropical croplands), and TRFO (tropical
forests). (b) Distribution of mean annual burned area per region from the sampled grid cells. Numbers indicate the number of grid cells per
regions. (c–f) Comparison of mean and maximum annual burned between all global grid cells and the sampled grid cells. (c) and (d): distri-
bution of maximum and mean annual burned. (e) Quantiles of mean and maximum annual burned area. (f) Latitudinal gradients of annual
burned area. Latitudinal gradients are smoothing splines fitted to the 0.95 quantile of mean and maximum annual burned area, respectively.
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Table A2. Structure and performance of all tested candidate SOFIA models. N denotes the number of model parameters. SSE, AIC, IoA,
and FV are based on monthly burned area time series in the optimization and evaluation data subsets from the GFED and CCI datasets,
respectively. Model experiments are ordered by SSE. The best SOFIA models (IoA ≥ 0.4 and AIC ≤ 200.5) are highlighted in bold font.

Structure of SOFIA models: used control factors and associated variables

Grouping scheme (groups)
1 GrowthForm
2 GrowthFormCrop
3 LeafType
4 PFT
Human influence (human)
0 no
1 PD.med (global)
2 NLDI (global)
3 NLDI.g (per group)
Direct wetness effect (wet.dir)
0 no
1 CCI.SM.orig
2 (unused)
3 GPCC.P.orig
4 CRU.WET.orig

Long-term wetness/productivity effect (wetveg.longterm)
0 no
1 CCI.SM.orig.filter13
2 GPCC.P.orig.filter13
3 CRU.WET.orig.filter13
4 Liu.VOD.orig.filter13
5 GIMMS.FAPAR.orig.filter13
Direct vegetation effect (veg.dir)
0 no
1 Liu.VOD.orig.lagneg1
2 GIMMS.FAPAR.orig.lagneg1
Temperature effect (temp)
0 no
1 CRU.DTR.orig
2 CRU.T.orig.filter13

Example: SF.204422= (2) GrowthFormCrop+ (0) no human influence+ (4) CRU.WET.orig+ (4) Liu.VOD.orig.filter13
+ (2) GIMMS.FAPAR.orig.lagneg1+ (2) CRU.T.orig.filter13

Name Model structure and included Comparison against Comparison against
variables GFED.BA (1997–2011) CCI.BA (2005–2011)

Training (1817 cells, Evaluation Training Evaluation
even years) (1212 cells, (even (uneven

Data used for parameter uneven) years) years)
optimization years)

N Groups Human Wet.dir Wetveg. Veg.dir temp SSE AIC IoA FV IoA FV IoA FV IoA FV
longterm

SF.204422 48 2 0 4 4 2 2 51.88 199.8 0.44 −1.44 0.39 −1.55 0.42 −1.53 0.41 −1.53
SF.203512 48 2 0 3 5 1 2 52.17 200.3 0.43 −1.45 0.42 −1.54 0.45 −1.49 0.45 −1.51
SF.304522 48 3 0 4 5 2 2 52.92 201.8 0.41 −1.49 0.40 −1.58 0.40 −1.57 0.42 −1.59
SF.324202 39 3 2 4 2 0 2 52.92 183.8 0.41 −1.49 0.37 −1.65 0.39 −1.59 0.35 −1.65
SF.234422 60 2 3 4 4 2 2 52.99 226.0 0.41 −1.49 0.35 −1.63 0.40 −1.58 0.33 −1.64
SF.233210 48 2 3 3 2 1 0 53.10 202.2 0.40 −1.50 0.34 −1.69 0.41 −1.57 0.32 −1.68
SF.124421 39 1 2 4 4 2 1 53.40 184.8 0.40 −1.51 0.39 −1.51 0.39 −1.59 0.41 −1.51
SF.124021 30 1 2 4 0 2 1 54.05 168.1 0.37 −1.56 0.36 −1.56 0.37 −1.64 0.37 −1.57
SF.204501 36 2 0 4 5 0 1 54.09 180.2 0.37 −1.56 0.31 −1.76 0.36 −1.63 0.29 −1.76
SF.314511 51 3 1 4 5 1 1 54.14 210.3 0.37 −1.55 0.34 −1.63 0.35 −1.63 0.34 −1.62
SF.424102 84 4 2 4 1 0 2 54.37 276.7 0.37 −1.55 0.35 −1.63 0.36 −1.63 0.36 −1.63
SF.234421 60 2 3 4 4 2 1 54.40 228.8 0.36 −1.56 0.33 −1.63 0.36 −1.64 0.34 −1.63
SF.314420 39 3 1 4 4 2 0 54.55 187.1 0.36 −1.58 0.32 −1.68 0.33 −1.65 0.32 −1.68
SF.333221 60 3 3 3 2 2 1 54.57 229.1 0.35 −1.57 0.32 −1.71 0.35 −1.64 0.30 −1.69
SF.224211 51 2 2 4 2 1 1 54.59 211.2 0.35 −1.58 0.36 −1.55 0.36 −1.65 0.37 −1.56
SF.204202 36 2 0 4 2 0 2 54.62 181.2 0.35 −1.58 0.35 −1.52 0.35 −1.67 0.36 −1.54
SF.424201 84 4 2 4 2 0 1 54.62 277.2 0.35 −1.58 0.34 −1.61 0.35 −1.66 0.34 −1.61
SF.234102 48 2 3 4 1 0 2 54.64 205.3 0.35 −1.58 0.31 −1.74 0.35 −1.65 0.31 −1.76
SF.321221 51 3 2 1 2 2 1 54.66 211.3 0.35 −1.58 0.32 −1.73 0.35 −1.64 0.29 −1.72
SF.204502 36 2 0 4 5 0 2 54.66 181.3 0.35 −1.59 0.28 −1.80 0.34 −1.66 0.26 −1.80
SF.314201 39 3 1 4 2 0 1 54.77 187.5 0.35 −1.58 0.32 −1.67 0.35 −1.65 0.31 −1.67
SF.314211 51 3 1 4 2 1 1 54.85 211.7 0.35 −1.58 0.30 −1.75 0.34 −1.64 0.30 −1.75
SF.304211 48 3 0 4 2 1 1 54.88 205.8 0.34 −1.61 0.30 −1.70 0.32 −1.68 0.30 −1.70
SF.321021 39 3 2 1 0 2 1 55.12 188.2 0.34 −1.61 0.31 −1.70 0.32 −1.68 0.30 −1.70
SF.214320 39 2 1 4 3 2 0 55.15 188.3 0.33 −1.62 0.32 −1.65 0.32 −1.68 0.33 −1.66
SF.114401 30 1 1 4 4 0 1 55.31 170.6 0.33 −1.61 0.29 −1.69 0.33 −1.68 0.30 −1.68
SF.410311 84 4 1 0 3 1 1 55.57 279.1 0.32 −1.64 0.31 −1.76 0.33 −1.68 0.34 −1.75
SF.203321 48 2 0 3 3 2 1 55.81 207.6 0.31 −1.64 0.31 −1.69 0.32 −1.68 0.34 −1.68
SF.133402 36 1 3 3 4 0 2 55.97 183.9 0.31 −1.64 0.29 −1.60 0.32 −1.70 0.29 −1.59
SF.124002 21 1 2 4 0 0 2 56.35 154.7 0.29 −1.68 0.29 −1.72 0.27 −1.75 0.29 −1.73
SF.424520 84 4 2 4 5 2 0 56.41 280.8 0.29 −1.66 0.22 −1.78 0.28 −1.71 0.20 −1.79
SF.423220 84 4 2 3 2 2 0 56.48 281.0 0.29 −1.67 0.28 −1.71 0.30 −1.72 0.28 −1.72
SF.200211 36 2 0 0 2 1 1 56.49 185.0 0.28 −1.68 0.25 −1.81 0.28 −1.71 0.23 −1.80
SF.201021 36 2 0 1 0 2 1 56.60 185.2 0.28 −1.69 0.28 −1.74 0.28 −1.73 0.30 −1.73
SF.110221 30 1 1 0 2 2 1 56.60 173.2 0.28 −1.69 0.28 −1.74 0.28 −1.73 0.30 −1.73
SF.201412 48 2 0 1 4 1 2 56.65 209.3 0.27 −1.72 0.31 −1.66 0.25 −1.78 0.35 −1.66
SF.303122 48 3 0 3 1 2 2 56.75 209.5 0.24 −1.79 0.23 −1.85 0.25 −1.82 0.24 −1.85
SF.423502 84 4 2 3 5 0 2 56.84 281.7 0.27 −1.69 0.27 −1.73 0.27 −1.75 0.28 −1.73
SF.124222 39 1 2 4 2 2 2 57.05 192.1 0.26 −1.70 0.23 −1.79 0.25 −1.76 0.21 −1.80
SF.103402 27 1 0 3 4 0 2 57.31 168.6 0.25 −1.72 0.24 −1.74 0.26 −1.76 0.25 −1.73
SF.404401 81 4 0 4 4 0 1 57.37 276.7 0.25 −1.73 0.19 −1.83 0.24 −1.78 0.18 −1.84
SF.114102 30 1 1 4 1 0 2 57.37 174.7 0.25 −1.72 0.25 −1.76 0.25 −1.76 0.27 −1.76
SF.103521 36 1 0 3 5 2 1 57.54 187.1 0.24 −1.73 0.25 −1.75 0.25 −1.77 0.26 −1.75
SF.303511 48 3 0 3 5 1 1 57.60 211.2 0.23 −1.76 0.22 −1.82 0.23 −1.78 0.22 −1.82
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Table A2. Continued.

Name Model structure and Comparison against GFED.BA Comparison against CCI.BA
included variables (1997–2011) (2005–2011)

Training (1817 cells, Evaluation Training Evaluation
even years) Data used (1212 cells, (even (uneven

for parameter uneven) years) years)
optimization years)

N Groups Human Wet.dir Wetveg. Veg.dir temp SSE AIC IoA FV IoA FV IoA FV IoA FV
longterm

SF.401301 81 4 0 1 3 0 1 57.66 277.3 0.22 −1.77 0.18 −1.85 0.21 −1.80 0.17 −1.85
SF.203420 36 2 0 3 4 2 0 57.68 187.4 0.24 −1.74 0.24 −1.76 0.24 −1.78 0.24 −1.76
SF.311312 51 3 1 1 3 1 2 57.76 217.5 0.23 −1.76 0.22 −1.84 0.23 −1.78 0.25 −1.82
SF.223520 39 2 2 3 5 2 0 57.77 193.5 0.21 −1.82 0.21 −1.83 0.21 −1.85 0.22 −1.83
SF.224001 27 2 2 4 0 0 1 58.07 170.1 0.22 −1.76 0.22 −1.80 0.21 −1.81 0.24 −1.80
SF.301421 48 3 0 1 4 2 1 58.13 212.3 0.21 −1.79 0.18 −1.86 0.21 −1.81 0.18 −1.85
SF.303301 36 3 0 3 3 0 1 58.21 188.4 0.21 −1.78 0.20 −1.86 0.21 −1.81 0.20 −1.85
SF.321421 51 3 2 1 4 2 1 58.29 218.6 0.22 −1.76 0.17 −1.83 0.22 −1.80 0.16 −1.83
SF.220220 27 2 2 0 2 2 0 58.53 171.1 0.19 −1.81 0.19 −1.83 0.18 −1.85 0.19 −1.84
SF.214112 51 2 1 4 1 1 2 58.62 219.2 0.20 −1.78 0.15 −1.85 0.20 −1.82 0.14 −1.84
SF.211512 51 2 1 1 5 1 2 58.63 219.3 0.19 −1.80 0.20 −1.81 0.19 −1.83 0.20 −1.81
SF.231220 48 2 3 1 2 2 0 58.71 213.4 0.19 −1.80 0.20 −1.76 0.18 −1.86 0.20 −1.77
SF.131201 36 1 3 1 2 0 1 58.81 189.6 0.18 −1.81 0.21 −1.79 0.19 −1.84 0.23 −1.79
SF.333021 48 3 3 3 0 2 1 58.87 213.7 0.18 −1.83 0.16 −1.88 0.18 −1.86 0.17 −1.88
SF.301211 48 3 0 1 2 1 1 58.89 213.8 0.18 −1.82 0.15 −1.89 0.19 −1.84 0.15 −1.89
SF.221512 51 2 2 1 5 1 2 58.92 219.8 0.16 −1.87 0.16 −1.88 0.16 −1.89 0.17 −1.88
SF.130212 36 1 3 0 2 1 2 59.30 190.6 0.16 −1.84 0.17 −1.83 0.15 −1.87 0.18 −1.83
SF.130512 36 1 3 0 5 1 2 59.32 190.6 0.16 −1.84 0.17 −1.84 0.16 −1.87 0.18 −1.85
SF.131500 27 1 3 1 5 0 0 59.38 172.8 0.15 −1.85 0.13 −1.88 0.15 −1.88 0.13 −1.88
SF.310212 39 3 1 0 2 1 2 59.42 196.8 0.15 −1.85 0.13 −1.91 0.14 −1.88 0.13 −1.91
SF.221111 51 2 2 1 1 1 1 59.44 220.9 0.16 −1.84 0.17 −1.84 0.15 −1.87 0.18 −1.84
SF.100322 27 1 0 0 3 2 2 59.47 172.9 0.15 −1.85 0.17 −1.85 0.14 −1.88 0.17 −1.86
SF.311021 39 3 1 1 0 2 1 59.52 197.0 0.15 −1.85 0.14 −1.91 0.14 −1.88 0.14 −1.91
SF.210102 27 2 1 0 1 0 2 59.54 173.1 0.15 −1.86 0.15 −1.90 0.13 −1.89 0.15 −1.90
SF.301120 36 3 0 1 1 2 0 59.58 191.2 0.13 −1.88 0.10 −1.90 0.11 −1.89 0.09 −1.90
SF.421502 84 4 2 1 5 0 2 59.59 287.2 0.15 −1.86 0.15 −1.90 0.14 −1.88 0.16 −1.90
SF.414011 84 4 1 4 0 1 1 59.60 287.2 0.14 −1.86 0.14 −1.91 0.13 −1.88 0.15 −1.91
SF.323502 39 3 2 3 5 0 2 59.61 197.2 0.15 −1.84 0.17 −1.80 0.16 −1.87 0.18 −1.79
SF.111510 30 1 1 1 5 1 0 59.64 179.3 0.13 −1.88 0.11 −1.91 0.12 −1.90 0.11 −1.91
SF.211421 51 2 1 1 4 2 1 59.64 221.3 0.14 −1.86 0.11 −1.92 0.13 −1.88 0.09 −1.92
SF.111502 30 1 1 1 5 0 2 59.68 179.4 0.14 −1.87 0.15 −1.88 0.13 −1.89 0.15 −1.88
SF.133002 27 1 3 3 0 0 2 59.72 173.4 0.14 −1.86 0.15 −1.88 0.14 −1.88 0.16 −1.87
SF.113001 21 1 1 3 0 0 1 59.77 161.5 0.15 −1.82 0.12 −1.88 0.17 −1.85 0.11 −1.88
SF.120510 21 1 2 0 5 1 0 59.81 161.6 0.14 −1.88 0.13 −1.89 0.13 −1.90 0.14 −1.89
SF.210322 39 2 1 0 3 2 2 59.84 197.7 0.13 −1.88 0.12 −1.91 0.12 −1.90 0.12 −1.91
SF.130310 27 1 3 0 3 1 0 59.93 173.9 0.12 −1.89 0.13 −1.91 0.12 −1.91 0.13 −1.92
SF.220510 27 2 2 0 5 1 0 59.94 173.9 0.13 −1.88 0.12 −1.90 0.12 −1.91 0.13 −1.90
SF.220201 27 2 2 0 2 0 1 60.14 174.3 0.11 −1.91 0.12 −1.91 0.10 −1.93 0.12 −1.91
SF.113201 30 1 1 3 2 0 1 60.17 180.3 0.12 −1.88 0.13 −1.93 0.12 −1.90 0.14 −1.93
SF.123512 39 1 2 3 5 1 2 60.23 198.5 0.13 −1.88 0.10 −1.92 0.13 −1.90 0.10 −1.92
SF.201420 36 2 0 1 4 2 0 60.24 192.5 0.10 −1.92 0.09 −1.93 0.09 −1.94 0.09 −1.94
SF.201101 36 2 0 1 1 0 1 60.24 192.5 0.11 −1.90 0.09 −1.92 0.10 −1.91 0.08 −1.92
SF.101320 27 1 0 1 3 2 0 60.33 174.7 0.11 −1.90 0.11 −1.92 0.10 −1.92 0.11 −1.92
SF.300212 36 3 0 0 2 1 2 60.45 192.9 0.11 −1.91 0.14 −1.91 0.11 −1.92 0.16 −1.91
SF.331502 48 3 3 1 5 0 2 60.51 217.0 0.10 −1.91 0.08 −1.94 0.08 −1.93 0.08 −1.94
SF.110120 21 1 1 0 1 2 0 60.67 163.3 0.08 −1.94 0.09 −1.95 0.07 −1.95 0.09 −1.95
SF.120120 21 1 2 0 1 2 0 60.69 163.4 0.08 −1.93 0.09 −1.94 0.08 −1.94 0.09 −1.94
SF.111500 21 1 1 1 5 0 0 60.76 163.5 0.06 −1.96 0.06 −1.97 0.05 −1.97 0.06 −1.97
SF.230101 36 2 3 0 1 0 1 60.91 193.8 0.07 −1.94 0.08 −1.95 0.07 −1.95 0.08 −1.95
SF.333511 60 3 3 3 5 1 1 61.51 243.0 0.03 −1.98 0.02 −1.99 0.02 −1.98 0.02 −1.99
SF.430021 81 4 3 0 0 2 1 61.56 285.1 0.04 −1.98 0.04 −1.98 0.04 −1.98 0.04 −1.98
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