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Abstract 

Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. 

However, the climatic, environmental and socioeconomic factors that control global fire activity in vegetation are only poorly 

understood, and in various complexities and formulations represented in global process-oriented vegetation-fire models. Data-

driven model approaches such as machine learning algorithms have successfully been used to identify and better understand 15 

controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented 

within process-oriented global vegetation/fire models. To overcome this gap between machine learning-based approaches and 

process-oriented global fire models, we here introduce a new flexible data-driven fire modelling approach (Satellite 

Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and 

functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire 20 

models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result 

in the highest performance in predicting burned area if they account for a direct restriction of fire activity at wet conditions 

and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use 

of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, 

reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial 25 

patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally 

discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with 

data-driven modelling and model-data integration approaches can guide the future development of global process-oriented 

vegetation-fire models.  

1 Introduction 30 

Wildland fires are important disturbances in the Earth system which affect ecosystems, global vegetation distribution, 

infrastructures and human assets, and contribute to atmospheric composition through the release of aerosols, reactive trace 

gases, and greenhouse gases (Bowman et al., 2011). The ignition and spread of fires in ecosystems depend on the availability 

and properties of fuel (i.e. biomass and litter loads, composition, and moisture content), weather conditions, and human 

activities (Krawchuk and Moritz, 2011; Moritz et al., 2012). Human activities have a predominant role in fire ignition, and 35 

affect fire behaviour either directly through fire restriction or indirectly through land management and landscape structure 

(Bowman et al., 2011). Burned area is a key variable to describe fire impacts on ecosystems and vegetation distribution (Bond, 

2005), and to estimate fire emissions (Seiler and Crutzen, 1980). Recent estimates of average yearly global burned area range 

from 3.3 to 3.8 million km2 (Chuvieco et al., 2016; Giglio et al., 2013) which is around 4 % of the global vegetated area 



2 

 

(Randerson et al., 2012). On a global scale, burned area shows only a small inter-annual variability which is stabilized by the 40 

annual recurrent patterns of very large burned areas in African savannahs (Giglio et al., 2013). However, in boreal, temperate 

and tropical regions, burned area has a very high inter-annual variability which is strongly linked to the variability in 

atmospheric circulation patterns, e.g. to El Niño events (Andela and van der Werf, 2014; Balzter et al., 2005; Giglio et al., 

2013; Hess et al., 2001). Such years with extreme fire activity in forests can cause large emissions of greenhouse gases 

(Kasischke and Bruhwiler, 2002; Vinogradova et al., 2015), dominate together with peatland fires the inter-annual variability 45 

of global fire emissions (Page et al., 2002; van der Werf et al., 2006, 2010), and thus strongly affect atmospheric composition 

(Langenfelds et al., 2002; Simpson et al., 2006). Consequently, a realistic simulation of the spatial and temporal variability of 

burned area is necessary in Earth System Models (ESMs) and Dynamic Global Vegetation Models (DGVMs) to adequately 

assess current and future fire impacts on the Earth system.  

Satellite observations of burned area or of active fires can be used to develop, evaluate, or improve process-oriented global 50 

vegetation-fire models (Poulter et al., 2015b). The first fire modules within DGVMs like GlobFIRM (global fire model, 

Thonicke et al. (2001)) were developed in the late 1990s and early 2000s in absence of global burned area datasets as reference. 

Later, regional satellite-derived burned area datasets were used to evaluate new developed global fire models such as 

SPITFIRE (SPread and InTensity of FIRE, Thonicke et al. (2010)). The first global burned area datasets were derived in the 

mid-2000s from several optical satellite sensors such ATSR (Simon et al., 2004), MODIS (Roy et al., 2005), and SPOT 55 

(Grégoire et al., 2003; Tansey et al., 2008). The increasing temporal coverage of satellite observations enables to derive multi-

year harmonized burned area datasets like the products from the Global Fire Emissions Database (GFED) (Giglio et al., 2010, 

2013) or from the European Space Agency (ESA) Climate Change Initiative (CCI) on fire (Fire CCI) (Chuvieco et al., 2016). 

Consequently, global burned area datasets are nowadays commonly used within model benchmarking systems (Kelley et al., 

2013) or to evaluate further developments in process-oriented vegetation-fire models (Kloster et al., 2010; Lasslop et al., 2014; 60 

Yue et al., 2014). Despite such recent model developments, it is not clear which functional relationships, complexity, and 

model parametrizations are most adequate to represent fire activity (Hantson et al., 2016). 

Satellite observations of fire activity can be further integrated with fire models to estimate model parameters or to assess the 

adequacy of functional relationships (Knorr et al., 2014; Lasslop et al., 2015; Le Page et al., 2015). For example, parameters 

of empirical relations were optimized in SIMFIRE (simple fire model) to predict annual fire frequency from vegetation 65 

conditions, fire weather conditions, and population density (Knorr et al., 2014). Such parameter optimization approaches are 

one aspect of model-data integration or model-data fusion that encompasses a continuous cycle from the definition of model 

structures (i.e. predictor variables and functional relationships), estimation of model parameters, generalization or upscaling 

of the model, evaluation of model results, to model application and potentially back to a reformulation of the model structure 

(Keenan et al., 2011; Williams et al., 2009). However, a full model-data integration cycle has been rarely applied in the 70 

development of global fire models.  

In comparison to process-oriented global vegetation-fire models, data-driven approaches provide an alternative framework to 

understand and model climate, vegetation, and socioeconomic controls on fire activity. While the development of mathematical 

and computational process-oriented vegetation-fire models usually starts from a conceptual model (Gupta et al., 2012), data-

driven approaches aim to derive mathematical and computational models directly from the data (Solomatine and Ostfeld, 75 

2008). In data-driven approaches, algorithms from artificial intelligence (e.g. neural networks), machine learning (e.g. random 

forest), or evolutionary algorithms (e.g. genetic optimization) are applied to predict a response variable (here burned area, or 

fire counts) from a set of potential predictor variables (Solomatine and Ostfeld, 2008). If an adequate data-driven model has 

been derived, the importance of individual variables and the sensitivities of the response variable to the predictor variables 

allow to develop a conceptual model about the studied system (Solomatine and Ostfeld, 2008). In global fire modelling, data-80 

driven fire models have been developed using machine learning algorithms such as generalized linear models (Bistinas et al., 

2014), maximum entropy (Parisien et al., 2016), or random forest (Aldersley et al., 2011; Archibald et al., 2009) mainly to 



3 

 

identify controls on fire activity. However, such machine learning models often have complex structures, are seen as “black 

boxes”, and thus cannot be easily adapted or even implemented within process-oriented global vegetation/fire models. 

Alternatively, empirical fire models like SIMFIRE (Knorr et al., 2014) could be generalized to integrate several different 85 

candidate predictor variables and to then assess the importance and functional relationships. Consequently, such a flexible 

data-driven but functional fire modelling approach would allow exploring different predictor variables similar as in machine 

learning algorithms while potentially revealing model structures that can be more easily adapted for process-oriented 

vegetation-fire models. 

Satellite observations provide several datasets on vegetation and moisture conditions that can be used as predictor variables in 90 

data-driven fire models. Time-variant biomass datasets would be the first choice to represent fuel loads in empirical fire models 

because the availability of fuel is a prerequisite for fire activity (Krawchuk and Moritz, 2011). However, current global biomass 

maps are static (Avitabile et al., 2016; Saatchi et al., 2011; Thurner et al., 2014) and thus provide only limited information for 

fire modelling. Consequently, other proxies of vegetation biomass such as model-based net primary production (NPP) (Bistinas 

et al., 2014; Moritz et al., 2012), satellite-derived vegetation cover (Bistinas et al., 2014; Lehsten et al., 2010), or the fraction 95 

of absorbed photosynthetic active radiation (FAPAR) (Knorr et al., 2014) have been used as proxies for fuel loads in global 

empirical fire models. As an alternative, satellite retrievals of vegetation optical depth (VOD) might be used as proxy for fuel 

loads. VOD is a vegetation variable that is derived from active or passive microwave satellite observations and is related to 

vegetation density and water content (Liu et al., 2011b, 2013a, Vreugdenhil et al., 2016a, 2016b). VOD has a higher sensitivity 

to forest biomass than FAPAR (Andela et al., 2013) and was used to estimate temporal changes in biomass (Liu et al., 2015). 100 

Thus VOD might be a valuable predictor variable for the biomass-driven variability in fire activity. Satellite datasets of surface 

soil moisture might be valuable proxies for the moisture of surface fuels in empirical fire models (Krueger et al., 2015, 2016) 

because they represent the top ~3 cm of the soil (Dorigo et al., 2015). Such datasets might potentially provide useful 

information for empirical fire models to represent fuel loads, fuel moisture, or fire weather conditions.  

Here we aim to describe and apply a flexible data-driven fire modelling approach, called SOFIA (Satellite Observations for 105 

FIre Activity). The SOFIA approach provides a framework to identify the importance and the functional relationships between 

observational datasets and the spatial and temporal variability of burned area while revealing model formulations that could 

be easily adapted for more complex vegetation-fire models. We test the approach using observational datasets of land cover, 

climate conditions, soil moisture, vegetation state, and socioeconomics. Based on the philosophy of model-data integration, 

we generated several different candidate model structures, and optimized and evaluated each model against observed burned 110 

area time series. Additionally, we simulated global burned area with the random forest machine learning approach and with a 

process-oriented vegetation-fire model (JSBACH-SPITFIRE) to compare the performance of the derived SOFIA models with 

two independent state-of-the art data-driven and process-oriented modelling approaches, respectively. We used random forest 

to test if a more flexible modelling approach than SOFIA results in higher performances. In comparison to random forest, 

SOFIA has the advantage that it could be easily transferred to or implemented in global process-oriented vegetation-fire 115 

models. The SPITFIRE fire module within the JSBACH (Jena scheme for biosphere-atmosphere coupling in Hamburg) land 

surface model (Lasslop et al., 2014; Rabin et al., 2016) was used to compare SOFIA results with a global process-oriented 

vegetation-fire model.  

We first describe the observational datasets and the derived variables that we used to develop SOFIA models (Sect. 2). 

Secondly, we describe the SOFIA approach, and the JSBACH-SPITFIRE and random forest modelling approaches (Sect. 3). 120 

In Section 4, we first present the global performance and complexity of SOFIA models (Sect. 4.1) and how several predictor 

variables contribute to model performance (Sect. 4.2). Then we compare the best performing SOFIA models globally against 

random forest and JSBACH-SPITFIRE (Sect. 4.3) and apply the best SOFIA model to explore spatial patterns of the sensitivity 

between predictor variables and burned area (Sect. 4.4). Finally, we discuss the performance and equifinality of our results 

(Sect. 5.1), the importance of certain predictor variables for global fire modelling (Sect 5.2), and suggest the use of multiple 125 
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datasets, data-driven modelling and model-data integration approaches to improve global process-oriented vegetation-fire 

models (Sect. 5.3). 

2 Datasets and predictor variables for model development 

We used datasets of global monthly burned area as response variable and several datasets on land cover, climate, soil moisture, 

vegetation state, and socioeconomic factors as predictor variables in model development. To make a pre-selection of relevant 130 

predictor variables, we first tested the predictive performance of various candidate variables such as absolute values, 

anomalies, or long-term precedent mean values of precipitation, wet days, soil moisture, or vegetation state using random 

forest (Figure A1). We generally found a higher importance of the absolute variables than of the anomalies. For the 

development of SOFIA models, we finally selected a set of candidate predictor variables based on their importance, their 

interpretability, and based on how closely they are related to fire activity (by avoiding variables that account for indirect 135 

effects) (Table 1).  

We based the analysis mostly on long-term harmonized or multi-satellite merged datasets in order to derive appropriate SOFIA 

models for long-term (i.e. decadal) variability in burned area that is covered for the period 1995–2015 of the GFED burned 

area dataset (Giglio et al., 2013). Although state-of-the-art single satellite sensors may provide information in higher quality, 

the use of such datasets would restrict the temporal coverage of the analysis. Given the common coverage of the used predictor 140 

datasets, the analysis was consequently performed for the period 1997–2011, on monthly time steps, and on a 0.25° spatial 

resolution. This is also comparable to common application domains of state-of-the art global process-oriented vegetation-fire 

models (Rabin et al., 2016). Datasets were temporally and spatially aggregated or interpolated if they originally differed from 

these temporal and spatial resolutions (details in the following sections for each dataset). 

 145 

Table 1: Description of used datasets and derived predictor variables.  

Dataset Derived variables Description 

Burned area (response variable) 

GFED burned area version 4 (Giglio et al., 2013), http://www.globalfiredata.org 

GFED.BA Fractional burned area of a 0.25° grid cell, used for optimization of SOFIA models  

ESA Fire CCI burned area version 4.1 (Chuvieco et al., 2016), http://cci.esa.int/data 

CCI.BA Fractional burned area of a 0.25° grid cell, independent dataset in evaluation 

Predictor variables 

Land cover / plant functional types (PFTs) 

ESA land cover_cci version 1.6.1, http://maps.elie.ucl.ac.be/CCI/viewer/index.php 
Land cover classes were translated to fractional coverages of plant functional types (PFTs) in 0.25° grid cells (Poulter 
et al., 2015a) (Table A 1). 

CCI.LC.Tree.BE Broadleaved evergreen trees 

CCI.LC.Tree.BD Broadleaved deciduous trees 

CCI.LC.Tree.NE Needle-leaved evergreen trees 

CCI.LC.Tree.ND Needle-leaved deciduous trees 

CCI.LC.Shrub.BE Broadleaved evergreen shrubs 

CCI.LC.Shrub.BD Broadleaved deciduous shrubs 

CCI.LC.Shrub.NE Needle-leaved evergreen shrubs 

CCI.LC.Herb Natural grass and herbaceous vegetation 

CCI.LC.Crop Cropland and managed grass 

CCI.LC.HrbCrp Natural and managed grass and croplands = Herb + Crop 

CCI.LC.Tree Coverage of trees = Tree.BE + Tree.BD + Tree.NE + Tree.ND 

CCI.LC.Shrub Coverage of shrubs = Shrub.BE + Shrub.BD + Shrub.NE  

CCI.LC.Broadleaf Coverage of broadleaved vegetation = Tree.BE + Tree.BD + Shrub.BE + Shrub.BD 

CCI.LC.Needleleaf Coverage of needle-leaved vegetation = Tree.NE + Tree.ND + Shrub.NE 

Climate and soil moisture 

CRU TS3.23 climate data (Harris et al., 2014), https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23 

CRU.T.orig Mean monthly air temperature (°C) 

CRU.T.annual Mean air temperature in the actual month and the 12 precedent months  

CRU.WET.orig Monthly number of wet day 

CRU.WET.annual Mean number of wet days in the actual month and the 12 precedent months  

CRU.DTR.orig Mean monthly diurnal temperature range (K) 

GPCC precipitation version 7, http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V7_050 

GPCC.P.orig Monthly total precipitation (mm)  

http://www.globalfiredata.org/
http://cci.esa.int/data
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23
http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V7_050
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GPCC.P.annual Total precipitation in the actual month and the 12 precedent months  

ESA soil moisture_cci version 02.3, http://cci.esa.int/data 

CCI.SM.orig Mean monthly surface soil moisture 

CCI.SM.annual Mean surface soil moisture in the actual month and the 12 precedent months  

Vegetation state 

GIMMS fraction of absorbed photosynthetic active radiation version 3g (Zhu et al., 2013), 
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html 

GIMMS.FAPAR.orig Mean monthly FAPAR 

GIMMS.FAPAR.pre FAPAR in the precedent month  

GIMMS.FAPAR.annual Mean FAPAR in the 12 precedent months  

Multi-sensor harmonized vegetation optical depth (Liu et al., 2011b, 2015), provided by Y. Liu  

Liu.VOD.orig Mean monthly VOD 

Liu.VOD.pre VOD in the precedent month  

Liu.VOD.annual Mean VOD in the 12 precedent months  

Socioeconomics 

GRUMP population density version 1 (years 1990, 1995, 2000) (Balk et al., 2006), http://dx.doi.org/10.7927/H4R20Z93 

PD.med 
Population density (individuals km-2), median estimate of three methods for temporal inter- 
and extrapolation (spline interpolation, linear interpolation, interpolation with last value as 
constant) 

Night light development index (year 2006) (Elvidge et al., 2012), http://ngdc.noaa.gov/eog/dmsp/download_nldi.html 

NLDI Night light development index, but grid cells without night lights or population set to 1.01 

 

2.1 Burned area 

Global monthly burned area data was taken from the Global Fire Emissions Database (GFED) (Giglio et al., 2013) and the 

ESA Fire CCI datasets (Chuvieco et al., 2016). GFED version 4 provides monthly burned area time series on a 0.25° spatial 150 

resolution for the period 1995-2015 based on a combination of the MODIS burned area product (from 2000 onwards) with 

active fire observations from VIRS (Visible and Infrared Scanner) and ATSR (Along-Track Scanning Radiometer) (before 

2000) (Giglio et al., 2013). Fire CCI version 4.1 provides burned area time series on 0.25° spatial resolution for the period 

2005-2011 based on a combination of MERIS data and MODIS thermal anomalies (Alonso-Canas and Chuvieco, 2015; 

Chuvieco et al., 2016). Because of the longer temporal coverage, the GFED dataset was used as the response variable in model 155 

development and for model evaluation. The Fire CCI dataset was used as an independent burned area dataset in model 

evaluation. Differences between the two datasets reflect the uncertainty in satellite-derived burned area. For both datasets 

burned area is expressed as the fractional burned area of a 0.25° grid cell.  

2.2 Land cover 

Land cover data was taken from the ESA land cover CCI product which provides three global land cover maps at 300 m spatial 160 

resolution covering the epochs 1998-2002, 2003-2007, and 2008-2012. We did not use the original land cover classification 

of the maps but translated land cover classes into plant functional types (PFTs) to be comparable with the classification used 

in global vegetation models (Poulter et al., 2011). The translation followed largely the rules by Poulter et al. (2015a) with some 

modifications to avoid coverage of broad-leaved evergreen trees and shrubs in boreal and arctic regions (Table A 1). The 

following nine PFTs were derived: broadleaved evergreen tree and shrub (Tree.BE, Shrub.BE), broadleaved deciduous tree 165 

and shrub (Tree.BD, Shrub.BD), needle-leaved evergreen tree and shrub (Tree.NE, Shrub.NE), needle-leaved deciduous tree 

(Tree.ND), natural grass or herbaceous vegetation (Herb), and managed grasslands or crops (Crop). The land cover maps were 

spatially aggregated and expressed as the fractional coverage of PFTs within a 0.25° grid cell.  

We further aggregated the coverage of PFTs within each 0.25° grid cell to the total coverages of trees (Tree = sum of all tree 

PFTs, Table 1), shrubs (Shrub), and herbaceous vegetation including croplands (HrbCrp = Herb + Crop). To potentially 170 

characterise fuel types based on the dominant leaf type, PFTs were further aggregated into needle-leaved (Needleleaf) and 

broadleaved vegetation (Broadleaf) vegetation.  

As land cover distribution is affected by fires, the land cover maps may regionally contain effects of past fires. Consequently, 

it can happen that fire activity is explained with the impact of the actual fire activity already present in a land cover map. We 

tried to reduce this effect by shifting the land cover maps by 2 years. This means that the map for the epoch 1998–2002 is used 175 

http://cci.esa.int/data
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html
http://dx.doi.org/10.7927/H4R20Z93
http://ngdc.noaa.gov/eog/dmsp/download_nldi.html
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for the years ≤ 2004, the map for the epoch 2003–2007 for the period 2005–2009, and the map for the period 2008–2012 for 

the years ≥ 2010. However the three maps have only marginal temporal differences so that the impact of assigning land cover 

maps to certain years is rather small. 

2.3 Climate 

We used monthly data of mean air temperature, diurnal temperature range (DTR), and monthly number of wet days from the 180 

Climate Research Unit (CRU) TS3.2 dataset (Harris et al., 2014). DTR has been long used as predictor for fire weather 

conditions because it is sensitive to stable weather conditions that are usually associated to low humidity and are supportive 

for fire activity (Bistinas et al., 2014; Venevsky et al., 2002). These datasets provide monthly climate time series at 0.5° 

resolution based on spatially interpolated weather station observations. Precipitation was taken from the Global Precipitation 

Climatology Center (GPCC) version 7 dataset (Schneider et al., 2015). All climate datasets were resampled to 0.25° using the 185 

nearest neighbour method in order to avoid smoothing of climate anomalies through alternative resampling methods such as 

bilinear interpolation.  

We used the monthly values and long-term conditions of climate datasets as predictor variables (Table 1). As long-term 

conditions, we computed the mean temperature, mean diurnal temperature range, mean number of wet days, and the total 

precipitation of the actual month and the 12 precedent months.  190 

2.4 Soil moisture 

Surface soil moisture was taken from the ESA CCI soil moisture dataset (version 02.3 COMBINED) which is based on a 

merging of soil moisture products from various active and passive satellite sensors (Dorigo et al., 2015; Liu et al., 2011a, 

2012). The dataset represents the upper soil layer (~ 2cm) and is available on a 0.25° spatial resolution and daily time step for 

the period 1979-2015. The long-term dynamic of the soil moisture dataset is consistent and environmentally plausible as 195 

demonstrated in a comparison with precipitation, soil moisture, and normalized difference vegetation index trends from 

independent datasets or land surface models (Albergel et al., 2013; Dorigo et al., 2012).  

As soil moisture cannot be accurately retrieved underneath dense (tropical) forests, estimates are not available in all regions 

and thus the dataset has spatial gaps. We excluded such grid cells in the full analysis. Soil moisture time series were aggregated 

to monthly mean values. Temporal gaps in soil moisture time series were filled using a season-trend regression model as 200 

described in Forkel et al. (2013) and based on Verbesselt et al. (2010a, 2010b) but without accounting for breakpoints. 

However, some years in some grid cells were excluded from the entire analysis if soil moisture estimates were only available 

for less than 3 months within this year.  

We used the monthly soil moisture values and long-term soil moisture conditions as predictor variables (Table 1). Long-term 

soil moisture conditions were computed as the mean soil moisture of the actual month and the 12 precedent months.  205 

2.5 Vegetation state  

To account for effects of vegetation phenology, biomass, or vegetation water content on fire activity, we used the GIMMS3g 

FAPAR (Zhu et al., 2013) and a VOD dataset (Liu et al., 2011b). GIMMS3g FAPAR is a long-term multi-sensor merged 

dataset of FAPAR and is based on the GIMMS3g NDVI (Normalized Difference Vegetation Index) dataset with a spatial 

resolution of 1/12° and a temporal resolution of 16 days for the period 1981 to 2012 (Pinzon and Tucker, 2014). GIMMS3g 210 

FAPAR was aggregated to 0.25° spatial resolution and averaged to monthly time steps. VOD by Liu et al. (2011b) is a long-

term harmonized dataset from several passive microwave sensors. The VOD dataset has a spatial resolution of 0.25° and a 

monthly temporal resolution for the period 1988-2012. 
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Permanent gaps in FAPAR or VOD time series (mostly gaps occurring in winter in northern latitudes) were filled with the 

minimum value of each time series (Forkel et al., 2015) and remaining gaps were filled using the season-trend regression 215 

model (Forkel et al., 2013).  

We used the monthly FAPAR or VOD values of the precedent month as predictor variables because vegetation of the actual 

month is likely affected by the fire event which we aim to explain. Additionally, we computed mean FAPAR and VOD of the 

12 precedent months as long-term vegetation state predictor variables.  

2.6 Socioeconomic variables 220 

We used satellite-based datasets on population density and socioeconomic development as predictor variables for burned area.  

Population density (PD) was taken from the Global Rural-Urban Mapping Project (GRUMP) V1 dataset (Balk et al., 2006). 

This dataset is based on (sub-)national population statistics, satellite observations of night-time lights, and the spatial 

distribution of cities to provides estimates of population density on a 1 km grid for the years 1990, 1995, and 2000. The dataset 

was aggregated to 0.25°. The dataset was temporally interpolated between 1990 and 2000 and extrapolated between 2000 and 225 

2011 for each grid cell to achieve a full coverage for the period 1997-2011. The interpolated time series is the median estimate 

from three interpolation methods (repeating last value as a constant, linear interpolation, spline interpolation). This allowed to 

make use of the temporal information of the population density dataset.  

As an indicator for socioeconomic development, we used the night light development index (NLDI) (Elvidge et al., 2012). 

NLDI is derived from satellite observations of light emissions during night and an independent estimate of population density. 230 

NLDI ranges between 0 (light emissions equally distributed among people, highest development) and 1 (light emissions 

concentrated at one person, lowest development). NLDI is highly correlated with electrification rates and the human 

development index (Elvidge et al., 2012). The dataset is available on a 0.25° spatial resolution for the year 2006. NLDI is not 

available for grid cells without population or without detected night lights, which introduces gaps in the global NLDI map. 

We filled these gaps with a value of 1.01 (indicating very low development or natural ecosystems) in order to not introduce 235 

spatial gaps of the NLDI dataset in the empirical modelling of burned area.  

3 Modelling approaches and model-data analysis  

3.1 SOFIA modelling approach 

SOFIA is a data-driven fire model approach that allows to test several alternative functional relationships and associated 

variables to predict fractional burned area. The basic structure of SOFIA fire models is inspired by SIMFIRE (simple fire 240 

model) which uses empirical relationships to estimate fire frequency from vegetation (i.e. FAPAR), fire weather conditions, 

and socioeconomic variables (Knorr et al., 2014). In SOFIA we generalize the SIMFIRE approach by using and testing several 

alternative predictor variables as controls for fire activity. Each SOFIA model structure is based on the assumption that 

potentially the entire vegetated area can burn but burning is actually restricted by several functional relationships to controlling 

factors: 245 

𝐵𝐴𝑡 = ∑ 𝐴𝑔 ∗ 𝑓𝑔,𝑡
𝑔=𝑁
𝑔=1  (1) 

where BA is the fractional burned area of a grid cell at time step t, Ag is the fractional coverage of land cover group g, and fg is 

a factor that controls fire spread [0 = fully restricted burning and 1 = un-constrained burning] for a specific land cover group. 

Land cover groups g can for example be classified according to growth forms (trees, shrubs, grasses, crops), plant functional 

types (PFTs), or any other potentially meaningful separation of land cover. The factor fg is a product of individual functions 250 

that represent climatic, environmental, and socioeconomic controls on fire: 

𝑓𝑔 = ∏ 𝑓(𝑥𝑖,𝑔)𝑖=𝑁
𝑖=1   (2) 
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𝑓(𝑥𝑖,𝑔) = min [1,
𝑚𝑎𝑥𝑔,𝑖

1+𝑒
(−𝑠𝑙𝑖,𝑔× (𝑥 − 𝑥0𝑖,𝑔))

]  (3) 

where x is the value of an environmental or socioeconomic variable i; and max, sl and x0 are parameters of a logistic function. 

We used the minimum value from 1 and the logistic function, and included max as a free parameter to allow the representation 255 

of exponential relationships within the basic structure of logistic functions. Parameters of the logistic functions can be either 

defined per vegetation cover group or as global parameters. Variables x can be for example vegetation state variables such as 

FAPAR or VOD to represent fuel loads, climate variables such as the number of wet days or diurnal temperature range to 

represent fire weather conditions, and socioeconomic variables such as population density or NLDI to represent human effects 

on fire activity. Consequently, the development of an actual SOFIA model requires two steps, namely the definition of a model 260 

structure (i.e. selection of candidate predictor variables, Sect. 3.2) and the estimation of the model parameters (Sect. 3.3).  

SOFIA models allow to reproduce the typical right-tailed distribution of burned area (i.e. many grid cells and months with no 

burned area in comparison to relatively few grid cells and months with fire activity). The underlying functional relationships  

can take step-wise, linear, sigmoidal, or exponential shapes depending on the parameters of the logistic functions (Figure 1). 

Similar model structures like SOFIA where a response variable is controlled by a product of several functions have been 265 

previously applied in environmental modelling for example in light-use efficiency models to simulate NPP (Cai et al., 2014; 

Nemani et al., 2003) or in phenology models to simulate leaf development (Forkel et al., 2014; Jolly et al., 2005; Stöckli et al., 

2011). The response value of the functional relationship can also be used to map sensitivities of burned area to environmental 

or socioeconomic variables. Such a mapping of controls was previously done for plant productivity (Nemani et al., 2003) and 

phenology (Forkel et al., 2014; Jolly et al., 2005) based on red-green-blue (RGB) composite maps. Here we will demonstrate 270 

how this approach can be used to investigate spatial patterns of sensitivities between burned area and climatic, environmental 

and socioeconomic controls on fire activity.  
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Figure 1: Example of a SOFIA model structure with three land cover groups (i.e. herbaceous vegetation and crops, shrubs, trees) 275 
and five controlling factors on fire activity. The example is taken from the SOFIA model SF.124421 (Table 2). (a) Histogram of the 

simulated fractional burned area. Response functions of fractional burned area on (b) night light development index, (c) diurnal 

temperature range, (d) number of wet days, (e) fraction of absorbed photosynthetic active radiation in the month before a fire, and 

(f) mean vegetation optical depth in the 12 precedent months. max, sl, and x0 are parameters of the logistic functions. 

 280 

3.2 Testing controlling factors and predictor variables in SOFIA models 

To test appropriate controlling factors and related predictor variables in SOFIA models, we defined several alternative model 

structures. Each SOFIA model uses a specific land cover grouping scheme and several functional relationships for fire activity.  

We tested different land cover grouping schemes to assess the required complexity of SOFIA models to regionalize model 

parameters. As grouping schemes we either used growth forms (“GrowthForm” including the variables Tree, Shrub, and 285 

HrbCrp; Table 1), growth forms with crops separated from herbaceous vegetation (“GrowthFormCrop” including Tree, Shrub, 

Herb, Crop), leaf types (“LeafType” including Needleleaf, Broadleaf, Herb, Crop), or PFTs (“PFT” using the nine PFTs). 

Differences between GrowthForm and GrowthFormCrop will allow assessing if a separation of croplands from herbaceous 

vegetation is necessary to explain fire activity. The LeafType grouping scheme may potentially be useful because needles 

usually decompose slower than broadleaves and thus form larger pools of litter fuel. Differences between GrowthFormCrop 290 

and LeafType allow assessing if model parameters should be separated rather by growth form or by leaf type. The PFT land 
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cover grouping scheme is finally used to assess if the interaction of growth forms and leaf types is required to regionalize 

model parameters.  

We defined five controlling factors on fire activity and assigned several corresponding predictor variables to each controlling 

factor to evaluate required components of SOFIA models: 295 

1. Human influences represent potential relations between socioeconomic indicators and burned area. As predictor variables 

we used either population density with a global parameter set (PD), NLDI with a global parameter set (NLDI), or NLDI 

with parameters that vary per land cover group (NLDI.g). 

2. Temperature effects represent potential relations between diurnal temperature range (CRU.DTR.orig) or long-term air 

temperature (CRU.T.annual) and burned area.  300 

3. Direct wetness effects represent the obvious restriction of fire activity by wet conditions. We included either the actual-

month number of wet days (CRU.WET.orig), precipitation (GPCC.P.orig), or surface soil moisture (CCI.SM.orig). 

4. Direct vegetation effects represent potential relations between the precedent vegetation state and burned area. Therefore 

we either used previous-month FAPAR (GIMMS.FAPAR.pre) or VOD (Liu.VOD.pre) as predictor variables. 

5. Long-term wetness or vegetation effects represent potential relations between long-term averaged precedent conditions of 305 

wetness or vegetation variables and burned area. Several reasons exist to test long-term averaged predictor variables as 

structural components of SOFIA models. Firstly, long-term conditions of precipitation and soil moisture are strongly 

linked to plant productivity especially in semi-arid ecosystems and thus might represent variations in vegetation and fuel 

loads. Secondly, long-term conditions of FAPAR and VOD are more closely related to vegetation coverage or biomass 

and thus might better represent fuel loads than the actual monthly values. As predictor variables for long-term conditions, 310 

we used aggregated values from the 12 precedent months for the number of wet days (CRU.WET.annual), precipitation 

(GPCC.P.annual), soil moisture (CCI.SM.annual), FAPAR (GIMMS.FAPAR.annual), or VOD (Liu.VOD.annual). 

We also allowed that a certain controlling factor is not included in a model to test if this controlling factor is generally needed 

in the SOFIA model. This setup of controlling factors and associated predictor variables allows the definition of several 

candidate model structures (Table A 2). For example, the SOFIA model SF.124421 (the coding is described in Table A 2) used 315 

growth forms as land cover grouping scheme, NLDI for human influences, diurnal temperature range as temperature effect, 

the number of wet days as direct wetness effect, previous-month FAPAR as direct vegetation effect, and long-term precedent 

VOD as long-term vegetation effect (Figure 1). The model structure determines the complexity which we assess here based 

on the number of controlling factors within a SOFIA model and on the number of parameters N in a model (N = number of 

controlling factors * number of land cover groups * 3 parameters). We required that SOFIA models included at least 3 320 

controlling factors and have less than 100 parameters. This results in 2712 candidate SOFIA models. We optimized and 

evaluated 95 randomly selected models from the set of candidate models (Table A 2). Although this selection does not allow 

a full factorial assessment of controlling factors and predictor variables in SOFIA models, it is a trade-off between 

computational feasibility and an assessment of the tendency of a factor regarding model performance.  

3.3 Optimization and evaluation of SOFIA models  325 

3.3.1 Model optimization 

After the definition of candidate SOFIA models, parameters for each controlling function need to be estimated for each model 

to achieve an optimal performance. The parameters p of the logistic functions of each controlling factor were estimated by 

minimizing the sum-of-squared error (SSE) between the monthly observed (obs) and simulated (sim) fractional burned area: 

𝑆𝑆𝐸 = ∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)
2𝑖=𝑁

𝑖=1  (4) 330 

where i is an index over grid cells and months. We also tested alternative cost functions in the optimization which transform 

burned area data, explicitly account for variance or which were based on burned area anomalies instead of absolute area in 

order to potentially better predict the variability of observed burned area (Table A 3).  
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The minimization of SSE was performed by applying a genetic optimization algorithm. The used algorithm (GENOUD, genetic 

optimization using derivatives) combines a global search algorithm (i.e. genetic optimization) with a local search algorithm 335 

(i.e. BFGS) (Mebane and Sekhon, 2011). GENOUD was already previously used to estimate parameters in a dynamic global 

vegetation model (Forkel et al., 2014). Here we applied GENOUD by using 500 individuals (i.e. parameter sets) per generation, 

and allowed the algorithm to run for maximum 30 generations. The parameter sets of the first generation were generated 

randomly. The second generation is generated by using several operators to clone, mutate, and crossover the best parameter 

sets of the first generation (Mebane and Sekhon, 2011). The BFGS local search algorithm was first used starting from the best 340 

parameter set that evolved in the 28th generation in order to avoid a too fast convergence of the algorithm towards a local 

optimum. 

3.3.2 Model selection and evaluation  

We selected the best performing SOFIA models from all optimized candidate models based on the Akaike Information 

Criterion (AIC) (Burnham and Anderson, 2002). AIC is a metric to empirically infer appropriate model structures from several 345 

candidate models based on performance (in terms of SSE) and by penalizing for model complexity (in terms of the number of 

model parameters N): 

𝐴𝐼𝐶 = 2 × 𝑁 − 2 × 𝑙𝑜𝑔(𝑒−𝑆𝑆𝐸) (5) 

Given a certain performance threshold, the best model has the lowest AIC value (Burnham and Anderson, 2002). 

To evaluate the simulated spatial-temporal patterns and temporal dynamics of fractional burned area, we used the index of 350 

agreement (IoA) and the fractional variance (FV) (Janssen and Heuberger, 1995):  

𝐼𝑜𝐴 = 1 − 
∑ (𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖)2𝑖=𝑁

𝑖=1

∑ (|𝑠𝑖𝑚𝑖− 𝑜𝑏𝑠̅̅ ̅̅ ̅| + |𝑜𝑏𝑠𝑖− 𝑜𝑏𝑠̅̅ ̅̅ ̅|)2𝑖=𝑁
𝑖=1

 (6) 

𝐹𝑉 =
𝜎𝑠𝑖𝑚 − 𝜎𝑜𝑏𝑠

0.5 × (𝜎𝑠𝑖𝑚 + 𝜎𝑜𝑏𝑠)
 (7) 

where 𝑜𝑏𝑠̅̅ ̅̅ ̅ , 𝑠𝑖𝑚̅̅ ̅̅ ̅ and σobs, σsim are the means and variances of the observations and simulations, respectively. IoA ranges 

between 0 (worst fit) and 1 (best fit) and is an overall efficiency metric that is sensitive to correlation and bias. FV ranges 355 

between -2 and 2 (best agreement at 0) where negative values indicate an underestimation and positive values an overestimation 

of the observed variance.  

3.3.3 Data sampling for model optimization and evaluation 

We sampled several grid cells from the global datasets (0.25° resolution) to optimize and evaluate all candidate SOFIA models. 

A sampling of grid cells is necessary to retain enough independent data for evaluation of SOFIA models and because 360 

optimization of all SOFIA models on the entire global datasets with 0.25° spatial resolution, monthly time steps, and 15 years 

was computationally not feasible. However the sampling needs to represent the global spatial patterns and the entire statistical 

distribution of burned area, including extreme fire events. Therefore, we performed a sampling of grid cells stratified by regions 

(representing biomes) and by the statistical distribution of burned area. We first computed the maximum annual burned area 

for all grid cells in 1997-2011 to represent the spatial distribution of extreme fire years. Regions were defined based on land 365 

cover and climate zone (Kottek et al., 2006) (Figure A 2). For each region, we classified the annual maximum burned area of 

each 0.25° grid cell into 100 classes according to regional quantiles of the maximum annual burned area (e.g. class 1 covers 

quantile 0 (minimum) to quantile 0.01 and the last class covers quantile 0.99 to 1 (maximum) of regional annual maximum 

burned area). We then randomly sampled grid cells for each regional quantile class. In total, 3161 grid cells were sampled with 

most of the cells in savannahs and tropical croplands (n = 953, largest region) and fewest cells in boreal needle-leaved 370 

deciduous forests (n = 135, smallest region) (Figure A 2 b). Consequently, the sampled grid cells are representative for the 

global statistical distributions (Figure A 2 c-e) and for spatial patterns of fire activity (Figure A 2 f). 



12 

 

The sampled grid cells were further divided into a subset for optimization (60% of the sampled grid cells) and for evaluation 

(40% of the sampled grid cells). The time periods in both subsets was further divided according to years for which the monthly 

data was used for optimization (even years in 1998 to 2010) and for which the monthly data was used for evaluation (uneven 375 

years in 1997 to 2011). We used every second year for optimization or evaluation to avoid that potential temporal changes in 

the quality of multi-sensor satellite datasets (e.g. burned area, soil moisture, FAPAR, and VOD) affect the evaluation of model 

results. Based on this sampling scheme, 1817 grid cells (= 152.628 monthly observations in even years) were used for 

optimization and 1212 grid cells (= 116.352 monthly observations in uneven years) were used for evaluation. Note that fewer 

observations were used in the optimization and evaluation subsets for the comparison against the Fire CCI burned area dataset 380 

because this dataset starts only in 2005. 

We applied the best-performing SOFIA models to all global 0.25° grid cells to compare them globally with the GFED and 

CCI burned area datasets and with JSBACH-SPIFIRE. From these global results, we compared maps of mean annual burned 

area and regional statistical distributions and temporal dynamics of annual burned area for the period 2005 to 2011. Therefor 

we aggregated burned area from the datasets and from the best SOFIA models to the coarse spatial resolution of JSBACH 385 

(1.875*1.875°).  

3.4 Data-driven fire modelling with random forest  

We used the random forest machine learning approach to evaluate if the basic structure of SOFIA models is flexible enough 

to predict burned area or if a more flexible modelling approach can reach higher performances. Random forest is a regression 

approach that can consider non-linear, non-monotonic and abrupt, and non-additive relations between multiple predictor 390 

variables and a response variable (Breiman, 2001). Random forest is an ensemble of multiple regression trees that are trained 

based on the response variable. Each tree uses a randomly selected set of predictor variables and data points (Breiman, 2001). 

Random forest was already previously applied to identify controls on vegetation dynamics and on fire activity (Aldersley et 

al., 2011; Archibald et al., 2009). We used 500 trees per random forest. For the training of the random forest, we used the same 

data subset that was also used to optimize SOFIA models (Sect. 3.3.3). The analysis was performed using the randomForest 395 

package in R (Liaw and Wiener, 2002). 

We performed three different random forest model experiments. The model experiment RF1 used all predictor variables from 

Table 1 to explore the potential performance of the used datasets to predict burned area. The model experiment RF2 used all 

predictor variables except the variables from the soil moisture dataset in order to apply random forest globally and to compare 

the results with SOFIA independent of the spatial gaps of the soil moisture dataset. The model experiment RF.124421 uses the 400 

same predictor variables as the SOFIA model SF.124421 (i.e. CCI.LC.Tree/Shrub/HrbCrp, NLDI, CRU.WET.orig, 

Liu.VOD.annual, GIMMS.FAPAR.pre, CRU.DTR.orig) in order to compare the performance of the two model approaches 

based on the same predictor variables.  

3.5 Process-oriented fire modelling with JSBACH-SPITFIRE  

We simulated burned area with the SPITFIRE (spread and intensity of fire) fire module within the JSBACH (Jena Scheme for 405 

Biosphere-Atmosphere Coupling in Hamburg) land surface model in order to compare the performance of SOFIA models to 

a state-of-the art global vegetation-fire model. This comparison potentially allows us to provide suggestions for the further 

development of global vegetation-fire models.  

JSBACH is the land component of the MPI (Max Planck Institute for Meteorology) Earth system model (Raddatz et al., 2007). 

SPITFIRE is a physically based fire module that simulates fire ignitions (based on lightning and population density), fire 410 

spread, and fire effects depending on weather conditions, vegetation type and structure, fuel moisture, and fuel size (Thonicke 

et al., 2010). SPITFIRE was originally developed for the LPJ (Lund-Potsdam-Jena) dynamic global vegetation model 

(Thonicke et al., 2010). For the implementation of SPITFIRE in JSBACH, two parameters in SPITFIRE were adjusted, one 
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related to human ignitions and the other related to the drying of fuels (Lasslop et al., 2014). Additionally, the relation between 

wind speed and the rate of fire spread was modified (Lasslop et al., 2015) and a decrease of fire duration with increasing 415 

population density was implemented (Hantson et al., 2015a). 

JSBACH was applied on a spatial resolution of 1.875°*1.875°. JSBACH runs on a half-hourly time step, while the SPITFIRE 

module is called at daily time steps. A detailed description of the simulation setup is given in the FireMIP (fire model inter-

comparison project) protocol from which we use the JSBACH baseline simulation SF1 (Rabin et al., 2016). Following a spinup 

period to equilibrate carbon pools (continued until the slow carbon pool varied less than 1% between consecutive 50-year 420 

periods), a transient simulation was started in 1700. Data on land use (Hurtt et al., 2011) and population density (Goldewijk et 

al., 2010) were used starting in 1700 and interpolated to annual resolution. The CO2 concentration of the atmosphere was 

provided starting from 1750 at annual resolution (Le Quéré et al., 2014). CO2 concentration before 1750 was set to the value 

of 1750. Climate forcing is based on the CRUNCEPv5 dataset (1901-2013) (Wei et al., 2014). Climate data was recycled over 

the years 1901-1920 before 1901. 425 

 

 

Figure 2: Effect of complexity of SOFIA models on the performance. Model performance is expressed as the index of agreement 

between simulated and observed (GFED) monthly burned area time series in the optimization data subset. (a) Scatterplot of the 

index of agreement against AIC classified by the used land cover grouping scheme. (b and c) Effect of the number of variables (= 430 
number of controlling factors) and parameters on model performance, respectively. The star symbol in (b) indicates a significantly 

higher IoA of models with 4 variables than the other groups (Wilcoxon rank sum test, p ≤ 0.05). The four best SOFIA models (IoA 

≥ 0.395 and AIC ≤ 200) are highlighted by a red box in (a) and by coloured points in (b) and (c).  

4 Results  

4.1 Performance and complexity of SOFIA models 435 

The optimized candidate SOFIA models covered wide ranges of complexities and performances (Figure 2, Table 2). The best-

performing SOFIA models reasonably explained the monthly spatial-temporal patterns of fractional burned area (i.e. up to IoA 

= 0.45 for SF.230512, Table 2) but underestimated the observed variance (i.e. negative FV, best FV = -1.44 for SF.204422). 

Although the comparison of the GFED and Fire CCI burned area datasets showed only a moderate agreement (IoA = 0.85 and 

FV = 0.06), the performance of SOFIA models was similar for both datasets (Table 2). The performance of SOFIA models 440 

was very similar for the optimization and evaluation data subsets which shows that SOFIA models can be robustly applied to 

different spatial and temporal domains. The SOFIA model with the lowest AIC considered only three controlling factors and 

had 21 parameters (SF.124002, Table A 2). However, this model reached only a poor performance (IoA = 0.29 and FV = -1.68 

in the optimization subset). Consequently, this model is not suited to simulate global fire activity. Therefore we selected the 

best SOFIA models according to both performance (IoA ≥ 0.4) and AIC (AIC ≤ 200) (Figure 2 a). The four best SOFIA models 445 

had different combinations of predictor variables which demonstrates the equifinality in predicting global burned area. 



14 

 

However the results show that SOFIA models were robust enough to predict global monthly fractional burned area for different 

spatial and temporal domains and using different datasets.  

 

Table 2: Performance of the best SOFIA and of random forest models in predicting global distributed monthly burned area time 450 
series in the optimization and evaluation data subsets, respectively. Results for all SOFIA models are provided in Table A2. Please 

note that results for JSBACH-SPITFIRE are not included in this table because of its coarser spatial resolution. 

Name Model structure and included predictor variables 

GFED.BA as reference  
(1997-2011) 

CCI.BA as reference 
(2005-2011) 

Optimization subset 
 (1817 cells, even years) 

(data used for optimization) 

Evaluation 
subset (1212 
cells, uneven 

years) 

Optimization 
subset  

(even years) 

Evaluation 
subset (uneven 

years) 

SSE AIC IoA FV IoA FV IoA FV IoA FV 

GFED Comparison of GFED.BA with CCI.BA - - - - - - 0.78 -0.19 0.85 0.06 

Best SOFIA models           

SF.204422 
GrowthFormCrop, CRU.WET.orig, Liu.VOD.annual, 
GIMMS.FAPAR.pre, CRU.T.annual 

51.88 199.8 0.44 -1.44 0.39 -1.55 0.42 -1.53 0.41 -1.53 

SF.203512 
GrowthFormCrop, GPCC.P.orig, GIMMS.FAPAR.annual, 
Liu.VOD.pre, CRU.T.annual 

52.17 200.3 0.43 -1.45 0.42 -1.54 0.45 -1.49 0.45 -1.51 

SF.324202 
LeafType, NLDI, CRU.WET.orig, GPCC.P.annual, 
CRU.T.annual 

52.92 183.8 0.41 -1.49 0.37 -1.65 0.39 -1.59 0.35 -1.65 

SF.124421 
GrowthForm, NLDI, CRU.WET.orig, Liu.VOD.annual, 
GIMMS.FAPAR.pre, CRU.DTR.orig 

53.40 184.8 0.40 -1.51 0.39 -1.51 0.39 -1.59 0.41 -1.51 

Random forest models           

RF1 Random forest based on all variables as in Table 1 8.36 - 0.95 -0.59 0.58 -1.24 0.77 -0.76 0.58 -1.24 

RF2 Like RF1 but without CCI.SM variables 8.58 - 0.95 -0.60 0.58 -1.26 0.77 -0.77 0.58 -1.26 

RF.124421 
Random forest using the same variables as the SOFIA 
model SF.124421  

24.05 - 0.81 -1.23 0.41 -1.69 0.65 -1.35 0.40 -1.70 

 

We also tested if alternative cost functions in the optimization of SOFIA models would reduce the underestimation of the 

observed variance of burned area. The tested alternative cost functions explicitly accounted for variance, burned area 455 

anomalies, or were based on transformed burned area values (Table A 3). Although a cost function based on IoA and FV 

reached better performances in terms of IoA (best IoA = 0.45 against CCI.BA in the evaluation subset) and reproduced the 

observed variance of burned area (FV = 0 against GFED in the training subset), the resulting model overestimated mean 

fractional burned area which is reflected by a high SSE (Table A 3). Other alternative cost functions resulted in weaker 

performances than the default SSE cost function. Consequently, we used the SSE-based cost function for the optimization of 460 

all SOFIA models.  

The performance of SOFIA models varied with model complexity. SOFIA models that used a higher number of controlling 

factors (n = 4 or 5) had in average a better performance than models with only three factors (Figure 2b). However, very complex 

SOFIA models with a high number of parameters (n = 70-90) did not necessarily result in higher performances than models 

with an average number of parameters (n = 30-70, Figure 2c). Models with a low number of parameters (n < 30) had in average 465 

low performances but we also found some SOFIA models with few parameters that reached good performances (e.g. 

SF.124021 with only 30 parameters, Table A 2). The four best SOFIA models had between 30 and 50 parameters. The number 

of parameters in SOFIA models was mostly affected by the choice of a certain land cover grouping scheme to regionalize 

model parameters. Models that used the GrowthForm (3 groups), GrowthFormCrop or LeafType (both 4 groups) grouping 

schemes reached much lower AIC values than models that used the PFT grouping scheme (with 9 PFTs) (Figure 2a). These 470 

results demonstrate that SOFIA models with a higher number of predictor variables but a medium amount of model parameters 

reached the best performances in predicting global monthly spatial-temporal patterns of burned area.  

Random forest models reached slightly better performances than the best performing SOFIA models. The random forest model 

based on all variables reached very good performance in training (IoA = 0.95 for RF1) and moderate performances in the 

evaluation subset (IoA = 0.58 for RF1, Table 2). The random forest models with (RF1) and without soil moisture variables 475 

(RF2) reached similar performances. Similar as for the SOFIA models, the employed random forests underestimated the 

observed variance. However when using random forest with the same set of predictor variables as SOFIA (RF.124421 vs. 

SF.124421), random forest reached even weaker performances (IoA = 0.4, FV= -1.7 in evaluation against CCI burned area) 
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than the corresponding SOFIA model. Thus the highly flexible structure of the random forest machine learning approach did 

not necessarily result in a much better performance than the best-performing SOFIA models. Consequently, the SOFIA 480 

approach offers enough flexibility to assess different controlling factors and its functional relationships to predict burned area.  

 

 

Figure 3: Effect of controlling factors and associated predictor variables in SOFIA models on the performance in simulating global 

monthly burned area dynamics. Performance is expressed as the index of agreement between simulated and observed (GFED) 485 
monthly burned area for the training data subset. Boxplots show the distribution of IoA based on all SOFIA model experiments that 

include the respective variable. Star symbols indicate a significantly higher IoA of a variable in comparison to the “no” group of 

each controlling factor (Wilcoxon rank sum test, p ≤ 0.05). Distribution of IoA depending on the used (a) land cover grouping scheme; 

and variables to account for (b) human influence; (c) temperature effects; (d) direct wetness effects; (e) direct vegetation effects; and 

(f) long-term wetness or vegetation effects. The best models (IoA > 0.4 and AIC < 200) are highlighted with coloured dots. 490 

 

4.2 Required controlling factors and adequate predictor variables in SOFIA models 

The performance of SOFIA models depended on the controlling factor and associated predictor variables that were used in 

model structures (Figure 3). The choice of a certain land cover grouping scheme in SOFIA models to regionalize model 

parameters had only weak effects on model performance (Figure 3a). Although models based on the GrowthForm scheme had 495 

on average weaker performances than models based on land cover grouping schemes with croplands, the best SOFIA models 

were not related to a certain land cover grouping scheme.  

Including human influences as controlling factors in SOFIA models did not improve model performance (Figure 3b). The best 

models either did not consider human influences or considered human influences through NLDI as global controlling function. 

However, NLDI did in average not contribute to higher performances. SOFIA models that used population density had on 500 

average weaker performance than SOFIA models that used NLDI or that did not consider human influences. The weaker 

performance of population density as component in SOFIA models could be caused by the general model structure in which 
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potential burned area equals the total vegetated area: As highly populated areas are usually associated with low vegetation 

cover, potential burned area is low as well, and thus population density does not provide further information. Although two of 

the best SOFIA models did not contain any variable for human influences (SF.204422, SF.203512), they however considered 505 

the fractional coverage of croplands in the used land cover grouping scheme. Consequently, these two models considered 

human influence on fire indirectly through the coverage of croplands. These results suggest that human influences on fire 

activity can be relatively interchangeably described in SOFIA models by the coverage of croplands, NLDI, or population 

density. 

Considering temperature variables in SOFIA models caused on average better model performances than model structures 510 

without temperature variables (Figure 3c). However, we also found one model without a temperature control that reached good 

performance (SF.233210, Table A 2). All of the best performing models included diurnal temperature range or pre-fire annual 

mean temperature as controlling factors. These results show that temperature-related variables are important predictors in 

SOFIA.  

The consideration of direct wetness effects in SOFIA models had the largest positive impact on model performance (Figure 515 

3d). Models that did not consider direct wetness effects had lower performances than models that used soil moisture, 

precipitation, or the number of wet days. Especially models based on the number of wet days reached significant higher IoA 

than models without direct wetness effects (Wilcoxon rank sum test, p ≤ 0.05). Consequently, direct wetness effects on fire 

activity were a required component of SOFIA models to predict burned area.  

Whether or not including direct vegetation controls did not lead to a significant change in performance of the SOFIA models 520 

(Figure 3e). The best models either did not consider direct vegetation effects (SF.324202), used pre-fire FAPAR (SF.204422, 

SF.124421), or pre-fire VOD (SF.203512). This suggests that precedent FAPAR and VOD conditions did not provide 

additional information to predict burned area in SOFIA models. 

On the contrary, considering long-term wetness or vegetation effects in SOFIA models caused significantly higher model 

performances than not considering these effects (Figure 3f). Especially SOFIA models that used pre-fire annual precipitation 525 

or VOD reached significantly higher IoA. Models with long-term effects based on soil moisture, the number of wet days, or 

FAPAR had on average similar performances as models without long-term effects. However, we also found some good models 

that used long-term conditions of FAPAR (e.g. SF.203512). These results demonstrate that long-term conditions in vegetation 

productivity (reflected by annual precipitation) or vegetation structure (reflected by VOD or FAPAR) were required 

components of SOFIA models to predict burned area. 530 

Based on the performances of the different controlling factors and associated predictor variables, the ideal SOFIA model 

should include NLDI as human influence, one variable to account for temperature effects, the number of wet days as direct 

wetness effect, and pre-fire annual conditions of precipitation or VOD as long-term wetness/vegetation effects. This ideal 

model structure is realized in two of the best performing SOFIA models (SF.124421 and SF.324202, Figure 3). The choice of 

a certain land cover grouping scheme or of a direct vegetation effect are secondary components of SOFIA model structures. 535 

The distribution of model parameters in SF.124421 after optimization reflects that parameters for the functional relationships 

with NLDI, the number of wet days, and VOD were well constrained and thus were the most sensitive parameters within this 

model to estimate global monthly burned area dynamics. These parameter estimates and distributions could be potentially used 

as prior parameter estimates to further constrain SOFIA models.  

4.3 Global evaluation of burned area from different modelling approaches 540 

4.3.1 Global spatial patterns  

The best SOFIA models were applied globally to assess their performance in simulating global and regional spatial-temporal 

patterns of annual total burned area with respect to random forest models and JSBACH-SPITFIRE. All three model approaches 

reproduced well the global spatial pattern of mean annual burned area with large burned area in Africa, Australia, and Tropical 
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South America, and smaller amounts of burned area in the rest of the world (0.663 ≥ IoA ≤ 0.841, Figure 4). However models 545 

were often biased in comparison to the observational datasets. The global mean annual burned area was 341 Mha for the GFED 

dataset, 346 Mha for the CCI dataset, and is estimated much higher (464 Mha) based on assumptions about undetected small 

fires (Randerson et al., 2012). Although JSBACH-SPITFIRE overestimated global burned area (~32%) in comparison to the 

GFED and CCI datasets it was however tuned (by adjusting ignitions) to reproduce the burned area estimates including small 

fires. Results from the SOFIA and random forest models cannot be directly compared to these global burned values because 550 

they have gaps both in space and time depending on the missing values in the used predictor variables. Therefore, we masked 

the GFED and CCI datasets with the spatial-temporal distribution of gaps in all SOFIA and random forest models and 

recomputed the global mean annual burned area (Figure 4). All SOFIA models underestimated global mean annual burned 

area (-24 to -40 %, Figure 4). The random forest model RF2 overestimated (~60 %) and the random forest model RF.124421 

reached a realistic (3-5% overestimation) global mean annual burned area. Despite the fact that all models reproduced well the 555 

global spatial pattern of annual burned area, the maps indicate regional differences especially in extra-tropical regions.  

 

 

 

Figure 4: Mean annual fractional burned area in 2005-2011 from observational datasets and global fire models. Numbers in brackets 560 
are the global mean annual burned area. In case of * symbol, the computation of global total annual burned area considered the 

common spatial-temporal occurrence of missing values in all SOFIA and random forest models on the 0.25° grid cells. IoA is shown 

with respect to GFED (red) and CCI (blue), respectively. All maps were aggregated to the coarsest common spatial resolution (i.e. 

JSBACH, ~1.875*1.875°) for the computation of IoA and total burned area. 

 565 

4.3.2 Variability in tundra and boreal forests 

Regionally, we found varying performances of SOFIA models, random forest, and JSBACH-SPITFIRE in simulating spatial-

temporal and statistical distributions of annual total burned area (Figure 5). In northern regions (boreal forests and tundra), 

differences between all datasets and models were large: Whereas three SOFIA models produced almost no fire activity and 

thus had very poor performances, the model SF.124421 reached medium performances (IoA = 0.48 vs. CCI in boreal needleleaf 570 

deciduous forests, Figure 5 c). The main difference between these SOFIA models is that SF.124421 used diurnal temperature 

range and the other three SOFIA models used annual pre-fire temperature as temperature effects on fire activity. Thus the 

results suggest that mean annual temperature is not an appropriate predictor variable to represent boreal fire activity within a 

global fire model. Random forest models strongly overestimated mean annual burned area in northern regions.  
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In the tundra, all models had very low performances but SF.124421 reproduced at least the mean annual burned area from the 575 

GFED dataset. However, also the GFED and CCI datasets strongly disagree in the tundra (IoA = 0.17 and FV = -1.91 for CCI 

vs. GFED, Figure 5 a) while only moderately agreeing in boreal forests. We found that SOFIA and random forest models 

agreed slightly better with the CCI dataset than with the GFED dataset in northern regions although the GFED dataset was 

used for training. In boreal needle-leaved evergreen forests, SF.124421 reproduced mean annual burned area and reached the 

highest IoA of all models (Figure 5 b).  580 

In boreal needle-leaved deciduous forests, the random forest models reached the highest performance (IoA = 0.52 for RF2 

against CCI) but overestimated mean annual burned area. SF.124421 and JSBACH-SPITFIRE only slightly overestimated 

mean annual burned and reached medium performances (IoA = 0.47 for SF.124421 vs. CCI, IoA = 0.31 for JSBACH-

SPITFIRE vs. CCI) (Figure 5 c). In summary, although SF.124421 had only moderate performances in northern regions, it 

reached slightly better performances than random forest models and JSBACH-SPITFIRE. However, these results demonstrate 585 

the need to further investigate fire activity in tundra and boreal forests by improving the agreement of satellite datasets and by 

developing more appropriate empirical and process-oriented fire models. 

 

 

Figure 5: Regional distributions of annual total burned area per 1.875° grid cells from datasets and global fire models for the years 590 
2005-2011. Bars show the mean of the distribution. Horizontal bands at the top of each bar are error estimates for the mean value 
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(i.e. 95% highest density intervals). Violins show the distribution of values. Colours represent the index of agreement between a 

model and both (i.e. GFED and CCI) datasets. For GFED and CCI, the index of agreement was computed only with respect to the 

other observational burned area dataset. The extent of regions is shown in Figure A1 a.  

 595 

4.3.3 Variability in temperate regions and the Mediterranean 

In temperate regions, SOFIA models generally outperformed random forest models and JSBACH-SPITFIRE in reproducing 

the observed spatial-temporal and statistical distributions of annual total burned area (Figure 5d-f). The random forest models 

and JSBACH-SPITFIRE overestimated mean annual burned area in all temperate regions.  

In temperate forests and croplands, SF.124421 reached the best performance of all models (IoA = 0.43 and FV = -0.2 vs. 600 

GFED), whereas the other three SOFIA models had weaker performances (Figure 5 d). Random forest models reached medium 

IoA (up to 0.4 for RF.124421 vs. GFED) but overestimated mean annual burned area. JSBACH-SPITFIRE had medium IoA 

and overestimated mean annual burned area in comparison to GFED and CCI.  

In the Mediterranean, all SOFIA models had medium to good performances (0.28 ≤ IoA ≤ 0.75) and outperformed JSBACH-

SPITFIRE and random forest models (Figure 5 e). The performance was usually higher in comparison to the CCI dataset than 605 

in comparison to the GFED dataset because GFED contained much fewer very large burned areas and thus had also on average 

a smaller burned area than the CCI dataset. The models SF.204422 and SF.203512 (both using the GrowthFormCrop scheme 

and no human influence) had better performances than the models SF.324202 and SF.124421 (both using NLDI). This indicates 

that the better performance is related to how croplands and human influences are represented in these models.  

In the steppes, all SOFIA models reproduced the observed mean annual burned area and some reached medium performances 610 

(IoA = 0.48 for SF.324202 vs. CCI, Figure 5 f). These results for temperate regions and the Mediterranean demonstrate that 

SOFIA models can realistically reproduce observed fire activity.  

4.3.4 Variability in tropical regions 

In tropical regions, SOFIA models had good performances in reproducing the observed spatial-temporal and statistical 

distributions of annual total burned area and had comparable or better performances than the random forest models and 615 

JSBACH-SPITFIRE (Figure 5g-h). In savannahs and tropical croplands, all SOFIA and random forest models and JSBACH-

SPITFIRE had good performances in reproducing the spatial-temporal distribution of annual total burned area (0.63 ≤ IoA ≤ 

0.78) but underestimated the variance and extreme fire years (-1.2 ≤ FV ≤ -0.4). This underestimation of very large burned 

areas in savannahs is the main cause for the underestimation of the mean annual burned area in this region and of the global 

total burned area by SOFIA models. SF.324202 and SF.124421 had slighter better performances than the other two SOFIA 620 

models.  

In tropical forests, all SOFIA models had medium to good performances in reproducing the spatial-temporal distribution of 

annual total burned area (0.61 ≤ IoA ≤ 0.68) but also underestimated the variance and extreme fire years (-1.16 ≤ FV ≤ -0.36, 

Figure 5 h). However, the FV of all models was usually better in comparison to the CCI dataset than for the GFED dataset. 

The CCI dataset had less very large burned areas and thus a smaller variance than the GFED dataset in tropical forests (FV = 625 

-0.22 for CCI vs. GFED). Random forest models reached moderate but weaker performances than SOFIA models. JSBACH-

SPITFIRE had a low performance in reproducing the spatial-temporal variability (IoA = 0.33 vs. GFED) but reproduced mean 

annual burned area. These results demonstrate that SOFIA models better reproduce observed fire activity in tropical regions 

than random forests or JSBACH-SPITFIRE.  

In summary, we found that all modelling approaches (SOFIA, random forest, JSBACH-SPITFIRE) had relatively good 630 

performances in savannahs and tropical croplands. All SOFIA models had relatively good performances in tropical forests and 

the Mediterranean. Only some SOFIA models reached good performances in temperate forests and croplands (SF.124421) and 

in steppes (SF.324202). Random forest models and JSBACH-SPITFIRE had generally weaker performances than SOFIA 
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models. The model SF.124421 (Figure 1) had the best performance from all SOFIA models in the tundra, boreal forests, 

temperate forests and croplands; it had very good performance in savannahs and tropical forests; and it outperformed random 635 

forest and JSBACH-SPITFIRE in steppes and the Mediterranean. Consequently, we finally identified SF.124421 as the 

globally best performing SOFIA model from the tested set of model structures.  

4.4 Sensitivity of burned area to climate, vegetation, and human predictor variables 

The underlying functional relationships in SOFIA models allow to map the sensitivities of burned area to human, vegetation, 

and climate variables. To demonstrate such a potential application of a SOFIA model, we mapped mean responses from each 640 

functional relationships for the period 1997-2011 from the SOFIA model SF.124421 (Figure 6). Based on this model, human 

influences (i.e. NLDI) restricted burned area in most parts of Europe and southern Russia, east and south-east Asia, India, 

central and eastern North America, south-east South America, south Australia and New Zealand (Figure 6 a). These regions 

correspond to the most populated and developed regions of the world. This pattern was caused by the underlying functional 

relationship of SF.124421 where NLDI < 1 (i.e. developed regions) restricted and NLDI > 1 (i.e. unpopulated regions or natural 645 

ecosystems) allowed fire activity (Figure 1 b). These results indicate a predominant restricting effect of humans on fire activity.  

Temperature effects in SF.124421, expressed as diurnal temperature range, allowed fire activity mostly in the semi-deserts of 

western North America, in the Sahel, Australia, and had a moderate restriction effect in tropical forests and the tundra (Figure 

6 b). These spatial patterns were caused by the controlling function that had a strong sigmoidal increase of fire activity with 

diurnal temperature range in shrublands and allowed moderate fire activity in herbaceous vegetation and croplands (Figure 1 650 

c).  

Direct wetness effects, expressed as the number of wet days, generally allowed fire activity in all forest regions and moderately 

restricted fire activity in the rest of the world (Figure 6 c). The underlying controlling function in SF.124421 showed no 

sensitivity for forests, a weak positive relation in herbaceous vegetation and croplands, and a strong exponential decrease of 

fire activity with increasing number of wet days in shrublands (Figure 1 d).  655 

As direct vegetation effect, pre-fire FAPAR restricted fire activity in herbaceous vegetation and croplands of central North 

America, central Asia, in the northern Sahel, the Kalahari, central Australia, and in parts of South America (Figure 6 d). On 

the other hand, pre-fire FAPAR supported fire activity mostly in the southern Sahel and northern and eastern Australia. These 

patterns were caused by a general strong restriction of fire activity with pre-fire FAPAR in herbaceous vegetation and croplands 

and an exponential increase of fire activity with increasing pre-fire FAPAR in shrublands in SF.124421 (Figure 1 e).  660 

As long-term vegetation effect, 12-month precedent mean vegetation optical depth strongly supported fire activity in central 

North America, central Asia, the Tibetan plateau, the Sahel, parts of India, the Kalahari, in Australia (except interior), and in 

northern Patagonia (Figure 6 e). In all other regions, annual VOD had a moderate effect on fire activity in SF.124421. The 

underlying controlling function in SF.124421 showed an exponential increase of fire activity with annual VOD in shrublands, 

an exponential decrease with annual VOD in herbaceous vegetation and croplands and a strong restriction across all VOD 665 

ranges for trees (Figure 1 f). The diverging responses with annual VOD in shrublands and herbaceous vegetation indicate that 

fire activity increases with higher vegetation density or biomass in shrublands but decreases with increasing vegetation water 

content in herbaceous vegetation, respectively. Additionally, the general restriction of fire activity with VOD for trees indicates 

that fire activity is restricted by vegetation density or high vegetation water content in forests.  

We further combined the controlling functions of SF.124421 to investigate combined controls on fire activity. Therefore we 670 

created a red-green-blue composite map in which the red channel contains the NLDI functional relationship, the green channel 

contains the mean of the direct (precedent month FAPAR) and long-term vegetation (12 month precedent VOD) effect, and 

the blue channel contains the climate effects (mean response of functional relationships to number of wet days and diurnal 

temperature range) from SF.124421 (Figure 6f). Generally, bright colours in this map indicate a strong restriction of fire 

activity (small burned area) and dark colours indicate that fire activity is allowed (large burned area). Regionally, different 675 
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combinations of socioeconomic, vegetation and climate factors controlled fire activity. Socioeconomic development 

dominantly restricted fire activity in western North America, and in populated regions of boreal forests (red colours). 

Vegetation predominantly supressed fire activity in southern boreal and tropical forests (green colours). Primarily climate 

conditions and secondly socioeconomic development restricted fire activity in semi-deserts of the northern Sahel, central Asia, 

the Kalahari, and south-western Australia (purple colours). Socioeconomic development and climate equally supressed fire 680 

activity in the Mediterranean, India, eastern Asia, and east South America (pink colour). Both socioeconomic development 

and vegetation conditions supressed fire activity in most parts of Europe, central and eastern North America, and eastern China 

(yellow/orange colours). Both climate and vegetation conditions supressed fire activity in the tundra and in central Australia 

(cyan colours). All factors moderately supported fire activity in boreal forests and strongly support fire activity in large parts 

of the Sahel, southern Africa, northern Australia, and western North America (dark colours). We want to point out that these 685 

sensitivities might look different if SOFIA models with alternative but adequate model structures would be applied for such 

an analysis. However the results highlight that fire activity is controlled by regionally diverse and complex interactions of 

human, vegetation and climate factors.  

 

  690 

Figure 6: Example of combined climate, vegetation, and human controls on fire activity based on the SOFIA model SF.124421. The 

maps in (a-e) show the average response value for each functional relationship for the period 1997-2011. High values (1, red) indicate 

that this factor allows unlimited burning and low values (0, blue) indicate that this factor restricts burning. The map in (f) is a red-

green-blue composite of the human influence (map in (a), red channel), the combined direct and long-term vegetation effect (mean 

of (d) and (e), green channel), and the climate effect (mean of (b) and (c), blue channel). Bright and dark colours indicate a strong 695 
restriction and allowance of fire activity, respectively.  

5 Discussion and conclusions 

5.1 Performance and equifinality of SOFIA models  

We developed the SOFIA modelling approach as a framework to explore the importance and the functional relationships 

between different predictor variables and burned area while relying on relatively simple model structures. The best SOFIA 700 

models reached globally average performances but outperformed the state-of-the art process-oriented vegetation-fire model 
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JSBACH-SPITFIRE. We interpret the globally medium and regionally varying performances as current upper limits that can 

be reached with the used predictor datasets and variables because the more flexible and highly adaptive machine learning 

algorithm random forest did not achieve much higher performance in the evaluation data subset. These upper limits in model 

performance might be due to several reasons: 705 

1. Uncertainties in the observations for the predictor and response variables inhibit the development of models with high 

performance. For example, we found regionally partly large differences between the two burned area datasets, 

especially in northern regions. These uncertainties originate from differences in sensor characteristics and in the 

ability of the used algorithms to detect small fires.  

2. Other processes and variables are important for the spread of fires but cannot be resolved at the used spatial and 710 

temporal resolution. For example, on local to regional scales the spread of fire is controlled by landscape structure 

and topography whereas climatic controls are usually more important on larger scales (Archibald et al., 2009; Liu et 

al., 2013b; Parisien et al., 2010). Most of the regional controls can likely not be resolved at the used spatial resolution 

(0.25°) although this resolution is already higher than the resolution of most global vegetation-fire models. Also wind 

speed and direction is an important control on the spread of fires on short temporal scales but this effect cannot 715 

accurately be represented based on monthly data (Bistinas et al., 2014).  

3. There is a lack of global observations that directly represent fuel loads, fuel moisture, or modes of human fire usage. 

For example, all of the used predictor variables are only proxies for fuel loads (FAPAR or VOD) or fuel moisture 

(surface soil moisture) but do not directly represent such fuel conditions. Similarly, data on population density or 

socioeconomic development are used as proxies for human effects on fire but cannot represent the complex social, 720 

economic, and cultural practices and policies of human fire use and management.  

The four best SOFIA models reached similar performances in savannas and tropical croplands, and in tropical forests which 

demonstrates the equifinality in fire modelling. Equifinality, i.e. the presence of multiple adequate models and parameter sets 

that result in very similar responses, is a general problem in environmental modelling (Beven, 2006). General approaches to 

avoid equifinal models are the use of multiple datasets of the same variable to account for errors or uncertainties in model 725 

forcing or reference data, the testing of different cost functions to constrain certain parameters, the inclusion of prior parameter 

uncertainties in the cost function, or the application of models to new observational data or under different conditions (Beven, 

2006; Beven and Binley, 2014; Williams et al., 2009). In our analysis, we were able to rule out three of four initially equifinal 

SOFIA models based on the application of these models to the global data and by regional comparisons against two burned 

area datasets. The results from the optimized SOFIA models allow extracting parameter values and ranges for each functional 730 

relationship. To give an example, parameters that control the functional relationship to 1) socioeconomic development (NLDI), 

2) diurnal temperature range and to the number of wet days in shrublands, and 3) to VOD were well constrained in the SOFIA 

model SF.124421 (Figure A3). These parameters could be potentially used as prior parameter values in a more constrained 

analysis in the future. The presence of equifinality in SOFIA model structures suggests to include such prior parameter 

uncertainties for each functional relationship to better constrain individual SOFIA models. This technique can be applied in 735 

future generation of individual SOFIA models by using the current versions as prior parameter estimates and uncertainties. 

 

5.2 Importance of predictor variables and implications for global fire modelling 

The derived SOFIA models and the spatial patterns of sensitivities show a sharp decline of burned area with increasing 

socioeconomic development or population density and thus agree with previous studies that show a primarily negative effect 740 

of human activities, population density, or croplands on burned area (Andela et al., 2017; Archibald et al., 2013; Bistinas et 

al., 2014; Chuvieco and Justice, 2010; Knorr et al., 2014). Strikingly, our results suggest that human effects on global burned 

area can be expressed by either cropland area, NLDI, or population density but the combination of these factors did not improve 
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the performances of SOFIA models. These variables serve all as proxies for the negative relationship between humans and 

burned area but do not directly describe human activities of fire use or suppression. For example, regional studies have shown 745 

that various information on infrastructure, land use, and other relevant socioeconomic indicators are important to predict fire 

activity (Archibald et al., 2009; Arndt et al., 2013; Parisien et al., 2016). However such spatially- and temporally-resolved 

datasets and assessments are missing for the global scale. Certainly, our results do not imply that croplands are unimportant 

for the global variability of burned area. Agricultural fires account for around 10% of all global fires (Korontzi et al., 2006) 

and for around 5% of global burned area (Giglio et al., 2013) and are used to remove harvest residues or to fertilize soils. 750 

However croplands show more small fires than large fires (Hantson et al., 2015b). As we here used the GFED burned area 

datasets that was not corrected for small fires (Giglio et al., 2013), small agricultural fires are likely misrepresented in this 

dataset and thus cannot be accurately analysed within the SOFIA approach. The representation of agricultural fires in a global 

fire model needs to account for various land use patterns and practices that go far beyond natural climate-vegetation 

relationships (Le Page et al., 2015; Magi et al., 2012; Rabin et al., 2015). By taking into account this complexity, agricultural 755 

fires are often not represented in global vegetation-fire models because they do not directly affect natural vegetation and carbon 

cycle dynamics (Hantson et al., 2016), unless agricultural fires escape to nearby forests (Cano-Crespo et al., 2015). In summary, 

an improved representation of human effects on fire in global vegetation-fire models is currently lacking since globally 

consistent, temporally and spatial resolved, relevant information on infrastructure and socioeconomics is not available.  

Direct wetness effects, especially based on the number of wet days, were the component of SOFIA models that contributed 760 

most to model performance (Figure 3). These result are in agreement with previous results that identified the number of dry 

days (the inverse of the number of wet days) as an important variable to predict fire activity (Bistinas et al., 2014). Especially 

for shrublands, we identified strong exponential relations with the number of wet days and diurnal temperature range. 

Currently, shrubs are not considered in all ecosystem models (e.g. not in models of the LPJ family, Sitch et al. (2003)) which 

suggest the need to implement and parameterize shrub PFTs to improve simulations of fire activity. The number of wet days 765 

and diurnal temperature range are also used in process-oriented fire models like SPITFIRE to compute the Nesterov index (a 

fire weather index) and fuel moisture content (Thonicke et al., 2010). Here we confirm that the use of diurnal temperature 

range and the number of wet days are appropriate predictor variables to simulate fuel moisture conditions and thus fire activity. 

However, while the Nesterov index is used as fire weather index in many fire modules of global vegetation models (Lasslop 

et al., 2014; Prentice et al., 2011; Thonicke et al., 2010; Venevsky et al., 2002; Yue et al., 2014), studies on forest fire 770 

management rely more often on alternative fire weather indices such as from the Canadian Forest Fire Weather Index (FWI) 

(Bedia et al., 2012; Stocks et al., 1989). We also show that direct wetness effects can be represented by satellite-derived surface 

soil moisture. Additionally, several other indices have been derived from satellite data to estimate fuel moisture conditions 

(Yebra et al., 2013). Consequently, it is necessary to systematically compare the predictive power of fire weather indices, 

satellite-derived and reanalysis-based surface soil moisture data, and soil moisture schemes of ecosystem models to potentially 775 

improve the direct effect of wet conditions on fire activity in global vegetation-fire models. 

Long-term vegetation effects contributed strongly to the performance of SOFIA models and thus indicate an important role of 

vegetation dynamics on the spatial-temporal variability of fire activity. Consequently, global vegetation models require a good 

representation of vegetation distribution and dynamics to realistically simulate fire activity. Vegetation distribution can be 

improved either through the prescription of high quality land cover maps in land surface models, or by improving model 780 

structures and by constraining model parameters that affect vegetation dynamics in DGVMs. For both approaches, time-

variant, e.g. annually resolved, land cover maps would be very valuable to realistically reflect vegetation dynamics. However, 

it is currently unclear how realistic land cover dynamics are represented for example by the three epochs of the ESA CCI land 

cover maps or by annual or seasonal maps of the MODIS land cover product (Broxton et al., 2014). Hence intensified efforts 

are required to check the plausibility of land cover changes in current and upcoming time-variant land cover maps.  785 
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SOFIA models with a long-term effect of VOD had better performances than models without this effect. The good performance 

of SOFIA models with VOD as predictor variable likely reflects variability in fuel loads because VOD is sensitive to vegetation 

density and biomass (Andela et al., 2013; Liu et al., 2015). The importance of VOD suggests that processes such as carbon 

allocation, turnover and vegetation mortality which all control biomass dynamics need to be carefully assessed in global 

vegetation models in order to accurately simulate fuel loads and hence fire activity. The finding of a strong restriction of fire 790 

activity with VOD in forests corresponds to previous findings that show that woody vegetation tends to restrict burned area 

either because moist wood is more difficult to ignite than dry grass or litter, or because forests provide generally more moist 

conditions (Kelley and Harrison, 2014). Fire activity increases with biomass at low vegetation densities and strongly decreases 

with increasing biomass and very high vegetation densities but the actual fire activity is enhanced or restricted by moisture 

conditions (Krawchuk and Moritz, 2011; Murphy et al., 2011). Consequently, the SOFIA approach and the identified 795 

sensitivities of fire activity with direct wetness effects and with VOD confirm and implement previous conceptual models 

where fire activity follows a biomass gradient and is modulated by moisture conditions (Krawchuk and Moritz, 2011; Murphy 

et al., 2011).  

 

5.3 From satellite data to improved global vegetation-fire models 800 

The better performance of SOFIA models compared to JSBACH-SPITFIRE and the generally good performance especially in 

temperate and tropical regions demonstrate the potential of the SOFIA approach to improve global vegetation-fire models. The 

SOFIA approach can be potentially adapted to more complex global vegetation-fire models such as SPITFIRE. Thereby the 

functional relationships in SOFIA models should rely on forcing datasets (e.g. temperature, precipitation) and simulated state 

variables (e.g. litter and soil moisture, biomass compartments, litter stocks, vegetation structure) of the vegetation models. 805 

This allows also to represent feedbacks of changing vegetation conditions on fire activity. By applying the SOFIA approach 

to forcing and state variables of a process-oriented vegetation model, more adequate predictor variables could be potentially 

identified and finally model performance could be improved. 

In order to represent realistic vegetation/fire interactions, vegetation models need to satisfactorily reproduce observed patterns 

and dynamics of fuel moisture and vegetation state variables. Consequently, it is necessary to test and improve global 810 

vegetation-fire models against multiple observational datasets that cover various aspects of vegetation/fire interactions: For 

example, satellite datasets on land cover, FAPAR, VOD, biomass (Avitabile et al., 2016; Saatchi et al., 2011; Thurner et al., 

2014), and estimates of litter fuels (Pettinari and Chuvieco, 2016) may be useful to constrain vegetation dynamics, biomass 

allocation, and fuel loads; datasets on surface soil moisture, VOD, and evapotranspiration (Tramontana et al., 2016) may be 

useful to test hydrological schemes and to constrain fuel moisture; and datasets on burned area, fire size (Hantson et al., 2015b), 815 

fire radiative power, fuel consumption (Andela et al., 2016; van Leeuwen et al., 2014), or separations between natural and 

agricultural fires (Korontzi et al., 2006; Le Page et al., 2010; Magi et al., 2012) may be useful to constrain fire behaviour. Such 

datasets are currently under-exploited in the development of global vegetation-fire models because #1 they were still missing 

at the time of model development (Thonicke et al., 2001), #2 there is only little experience of applying formal model-data 

integration approaches within global fire modelling, or #3 no appropriate model components or observation operators exist 820 

that link for example modelled fuel moisture with satellite-derived surface soil moisture or modelled biomass compartments 

with VOD. For example, it is currently unclear which physiological processes, morphological plant components, and 

ecosystem structures contribute to a certain VOD signal (Vreugdenhil et al., 2016a). Consequently, it is necessary to better 

understand the plant and ecosystem controls on VOD to improve global vegetation-fire models. 

Previously developed global fire models commonly used observed data for model evaluation but did not undertake a formal 825 

model-data integration cycle from the definition of model structures, model parameter estimation, to model evaluation, and 

potentially back to a re-formulation of model structures by using observational data. In our study we firstly applied the full 
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model-data integration cycle to derive an optimal structure for an empirical global fire model to predict global burned area. 

However, in order to apply model-data integration for global process-oriented vegetation-fire models, multiple datasets on 

vegetation, hydrological, and fire-related variables should be used to realistically constrain vegetation/fire interactions. Hence 830 

there is a need to develop appropriate observation operators and to extent currently existing model-data integration frameworks 

of global vegetation models (Forkel et al., 2014; Kaminski et al., 2013; MacBean et al., 2016; Schürmann et al., 2016) to the 

corresponding fire modules in order to formally assess model structures and to constrain model parameters. In summary, 

model-data integration frameworks need to be developed that make use of multiple satellite datasets on vegetation and moisture 

proxies in order to improve the representation of fire in global vegetation models and thus to better understand interactions of 835 

fire with ecosystems and the atmosphere within the Earth system. 

Code availability 

The code for this study is organized in several R packages and is available from https://r-forge.r-project.org/R/?group_id=1612. 

Thereby the package SOfireA contains the basic SOFIA model structure and functions to optimize and plot SOFIA models, 

and the package ModelDataComp contains functions for model-data comparison such as model evaluation metrics and 840 

comparison plots. The R package randomForest was used for random forest fits (Liaw and Wiener, 2002).  

Data availability 

The used original data is available under the URLs, DOIs, or can be obtained from PIs as indicated in Table 1. The pre-

processed (spatially and temporally interpolated) data for the optimization and evaluation data subsets is included as example 

dataset ‘firedata’ in the SOfireA R package (https://r-forge.r-project.org/R/?group_id=1612).  845 

Appendix 

 

Table A 1: Land cover to plant functional type conversion table. The units are % coverage of each PFT per land cover class. The 

conversion factors are based on Poulter et al. (2015a) with some modifications that affect boreal and arctic regions, i.e. to avoid 

coverage of broadleaved evergreen PFTs in these regions and to reach a total tree cover that is comparable to the MODIS tree cover 850 
product (Hansen et al., 2003). 

  
Plant functional types 

ID Land cover class 

T
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e
.B

E
 

T
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e
.B

D
 

T
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e
.N

E
 

T
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e
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D
 

S
h
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E
 

S
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b
.B

D
 

S
h
ru

b
.N

E
 

H
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C
ro

p
 

B
a
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N
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0 No data  
          

100 

10 Cropland, rainfed  
        

100 
  

11 Cropland, rainfed, Herbaceous cover  
        

100 
  

12 Cropland, rainfed, Tree or shrub cover  
     

50 
  

50 
  

20 Cropland, irrigated or post-flooding  
        

100 
  

30 Mosaic cropland (>50%) / natural vegetation (tree, 
shrub, herbaceous cover) (<50%)  

5 5 
  

5 5 5 15 60 
  

40 Mosaic natural vegetation (tree, shrub, herbaceous 
cover) (>50%) / cropland (<50%)  

5 5 
  

5 10 5 30 40 
  

50 Tree cover, broadleaved, evergreen, closed to open 
(>15%)  

90 
   

5 5 
     

60 Tree cover, broadleaved, deciduous, closed to open 
(>15%)  

 
70 

   
10 

 
20 

   

61 Tree cover, broadleaved, deciduous, closed (>40%)  
 

80 
   

10 
 

10 
   

62 Tree cover, broadleaved, deciduous, open (15-40%)  
 

30 
   

20 
 

40 
 

10 
 

70 Tree cover, needleleaved, evergreen, closed to open 
(>15%)  

  
70 

 
0 5 5 20 

   

71 Tree cover, needleleaved, evergreen, closed (>40%)  
  

75 
 

0 5 5 15 
   

72 Tree cover, needleleaved, evergreen, open (15-40%)  
  

30 
  

5 5 30 
 

30 
 

80 Tree cover, needleleaved, deciduous, closed to open 
(>15%)  

   
50 0 15 5 25 

 
5 

 

81 Tree cover, needleleaved, deciduous, closed (>40%)  
   

70 0 10 5 15 
   

82 Tree cover, needleleaved, deciduous, open (15-40%)  
   

30 
 

10 5 35 
 

20 
 

https://r-forge.r-project.org/R/?group_id=1612
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90 Tree cover, mixed leaf type (broadleaved and 
needleleaved)  

 
35 25 0 0 10 10 15 

 
5 

 

100 Mosaic tree and shrub (>50%) / herbaceous cover 
(<50%)  

0 15 15 0 0 15 15 40 
   

110 Mosaic herbaceous cover (>50%) / tree and shrub 
(<50%)  

0 7.5 7.5 
 

0 10 10 60 
 

5 
 

120 Shrubland  
    

20 30 10 20 
 

20 
 

121 Shrubland, evergreen  
    

30 
 

30 20 
 

20 
 

122 Shrubland, deciduous  
     

60 
 

20 
 

20 
 

130 Grassland  
       

70 
 

30 
 

140 Lichens and mosses  
       

60 
 

40 
 

150 Sparse vegetation (tree, shrub, herbaceous cover) 
(<15%)  

0 2 2 
 

0 4 2 5 
 

85 
 

152 Sparse shrub (<15%)  
    

0 6 4 5 
 

85 
 

153 Sparse herbaceous cover (<15%)  
       

15 
 

85 
 

160 Tree cover, flooded, fresh or brakish water  30 30 
     

20 
  

20 

170 Tree cover, flooded, saline water  60 
   

20 
     

20 

180 Shrub or herbaceous cover, flooded, 
fresh/saline/brakish water  

 
5 5 

  
10 10 40 

  
30 

190 Urban areas  
 

2.5 2.5 
    

15 
 

75 5 

200 Bare areas  
         

100 
 

201 Bare areas, consolidated  
         

100 
 

202 Bare areas, unconsolidated  
         

100 
 

210 Water bodies  
          

100 

220 Permanent snow and ice  
          

100 

 

Table A 2: Structure and performance of all tested candidate SOFIA models. N denotes the number of model parameters. SSE, AIC, 

IoA and FV are based on monthly burned area time series in the optimization and evaluation data subsets from the GFED and CCI 

datasets, respectively. Model experiments are ordered by SSE. The best SOFIA models (IoA ≥ 0.4 and AIC ≤ 200.5) are highlighted 855 
in bold font. 

 Structure of SOFIA models: used control factors and associated variables  

 

Grouping scheme (groups) 
1 GrowthForm 
2 GrowthFormCrop 
3 LeafType 
4 PFT 

 
Human influence (human) 

0 no 
1 PD.med (global) 
2 NLDI (global) 
3 NLDI.g (per group) 

 
Direct wetness effect (wet.dir) 

0 no 
1 CCI.SM.orig 
2 (unused) 
3 GPCC.P.orig 
4 CRU.WET.orig 

Long-term wetness/productivity effect (wetveg.longterm) 
0 no 
1 CCI.SM.orig.filter13 
2 GPCC.P.orig.filter13 
3 CRU.WET.orig.filter13 
4 Liu.VOD.orig.filter13 
5 GIMMS.FAPAR.orig.filter13 

 
Direct vegetation effect (veg.dir) 

0 no 
1 Liu.VOD.orig.lagneg1 
2 GIMMS.FAPAR.orig.lagneg1 

 
Temperature effect (temp) 

0 no 
1 CRU.DTR.orig 
2 CRU.T.orig.filter13 

 

 
Example: SF.204422 = (2) GrowthFormCrop + (0) no human influence + (4) CRU.WET.orig + (4) Liu.VOD.orig.filter13 + (2) GIMMS.FAPAR.orig.lagneg1 + (2) 
CRU.T.orig.filter13 

Name Model structure and included variables Comparison against GFED.BA (1997-2011) 
Comparison against CCI.BA 

(2005-2011) 

        
Training (1817 cells, even years) 

Data used for parameter optimization 

Evaluation (1212 
cells, uneven 

years) 

Training (even 
years) 

Evaluation 
(uneven years) 

 N
 

G
ro

u
p

s
 

H
u

m
a

n
 

W
e

t.
d

ir
 

W
e

tv
e

g
.l
o

n
g

te
rm

 

V
e

g
.d

ir
 

te
m

p
 

SSE AIC IoA FV IoA FV IoA FV IoA FV 

SF.204422 48 2 0 4 4 2 2 51.88 199.8 0.44 -1.44 0.39 -1.55 0.42 -1.53 0.41 -1.53 

SF.203512 48 2 0 3 5 1 2 52.17 200.3 0.43 -1.45 0.42 -1.54 0.45 -1.49 0.45 -1.51 

SF.304522 48 3 0 4 5 2 2 52.92 201.8 0.41 -1.49 0.40 -1.58 0.40 -1.57 0.42 -1.59 

SF.324202 39 3 2 4 2 0 2 52.92 183.8 0.41 -1.49 0.37 -1.65 0.39 -1.59 0.35 -1.65 

SF.234422 60 2 3 4 4 2 2 52.99 226.0 0.41 -1.49 0.35 -1.63 0.40 -1.58 0.33 -1.64 

SF.233210 48 2 3 3 2 1 0 53.10 202.2 0.40 -1.50 0.34 -1.69 0.41 -1.57 0.32 -1.68 

SF.124421 39 1 2 4 4 2 1 53.40 184.8 0.40 -1.51 0.39 -1.51 0.39 -1.59 0.41 -1.51 

SF.124021 30 1 2 4 0 2 1 54.05 168.1 0.37 -1.56 0.36 -1.56 0.37 -1.64 0.37 -1.57 

SF.204501 36 2 0 4 5 0 1 54.09 180.2 0.37 -1.56 0.31 -1.76 0.36 -1.63 0.29 -1.76 

SF.314511 51 3 1 4 5 1 1 54.14 210.3 0.37 -1.55 0.34 -1.63 0.35 -1.63 0.34 -1.62 

SF.424102 84 4 2 4 1 0 2 54.37 276.7 0.37 -1.55 0.35 -1.63 0.36 -1.63 0.36 -1.63 

SF.234421 60 2 3 4 4 2 1 54.40 228.8 0.36 -1.56 0.33 -1.63 0.36 -1.64 0.34 -1.63 

SF.314420 39 3 1 4 4 2 0 54.55 187.1 0.36 -1.58 0.32 -1.68 0.33 -1.65 0.32 -1.68 

SF.333221 60 3 3 3 2 2 1 54.57 229.1 0.35 -1.57 0.32 -1.71 0.35 -1.64 0.30 -1.69 

SF.224211 51 2 2 4 2 1 1 54.59 211.2 0.35 -1.58 0.36 -1.55 0.36 -1.65 0.37 -1.56 
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SF.204202 36 2 0 4 2 0 2 54.62 181.2 0.35 -1.58 0.35 -1.52 0.35 -1.67 0.36 -1.54 

SF.424201 84 4 2 4 2 0 1 54.62 277.2 0.35 -1.58 0.34 -1.61 0.35 -1.66 0.34 -1.61 

SF.234102 48 2 3 4 1 0 2 54.64 205.3 0.35 -1.58 0.31 -1.74 0.35 -1.65 0.31 -1.76 

SF.321221 51 3 2 1 2 2 1 54.66 211.3 0.35 -1.58 0.32 -1.73 0.35 -1.64 0.29 -1.72 

SF.204502 36 2 0 4 5 0 2 54.66 181.3 0.35 -1.59 0.28 -1.80 0.34 -1.66 0.26 -1.80 

SF.314201 39 3 1 4 2 0 1 54.77 187.5 0.35 -1.58 0.32 -1.67 0.35 -1.65 0.31 -1.67 

SF.314211 51 3 1 4 2 1 1 54.85 211.7 0.35 -1.58 0.30 -1.75 0.34 -1.64 0.30 -1.75 

SF.304211 48 3 0 4 2 1 1 54.88 205.8 0.34 -1.61 0.30 -1.70 0.32 -1.68 0.30 -1.70 

SF.321021 39 3 2 1 0 2 1 55.12 188.2 0.34 -1.61 0.31 -1.70 0.32 -1.68 0.30 -1.70 

SF.214320 39 2 1 4 3 2 0 55.15 188.3 0.33 -1.62 0.32 -1.65 0.32 -1.68 0.33 -1.66 

SF.114401 30 1 1 4 4 0 1 55.31 170.6 0.33 -1.61 0.29 -1.69 0.33 -1.68 0.30 -1.68 

SF.410311 84 4 1 0 3 1 1 55.57 279.1 0.32 -1.64 0.31 -1.76 0.33 -1.68 0.34 -1.75 

SF.203321 48 2 0 3 3 2 1 55.81 207.6 0.31 -1.64 0.31 -1.69 0.32 -1.68 0.34 -1.68 

SF.133402 36 1 3 3 4 0 2 55.97 183.9 0.31 -1.64 0.29 -1.60 0.32 -1.70 0.29 -1.59 

SF.124002 21 1 2 4 0 0 2 56.35 154.7 0.29 -1.68 0.29 -1.72 0.27 -1.75 0.29 -1.73 

SF.424520 84 4 2 4 5 2 0 56.41 280.8 0.29 -1.66 0.22 -1.78 0.28 -1.71 0.20 -1.79 

SF.423220 84 4 2 3 2 2 0 56.48 281.0 0.29 -1.67 0.28 -1.71 0.30 -1.72 0.28 -1.72 

SF.200211 36 2 0 0 2 1 1 56.49 185.0 0.28 -1.68 0.25 -1.81 0.28 -1.71 0.23 -1.80 

SF.201021 36 2 0 1 0 2 1 56.60 185.2 0.28 -1.69 0.28 -1.74 0.28 -1.73 0.30 -1.73 

SF.110221 30 1 1 0 2 2 1 56.60 173.2 0.28 -1.69 0.28 -1.74 0.28 -1.73 0.30 -1.73 

SF.201412 48 2 0 1 4 1 2 56.65 209.3 0.27 -1.72 0.31 -1.66 0.25 -1.78 0.35 -1.66 

SF.303122 48 3 0 3 1 2 2 56.75 209.5 0.24 -1.79 0.23 -1.85 0.25 -1.82 0.24 -1.85 

SF.423502 84 4 2 3 5 0 2 56.84 281.7 0.27 -1.69 0.27 -1.73 0.27 -1.75 0.28 -1.73 

SF.124222 39 1 2 4 2 2 2 57.05 192.1 0.26 -1.70 0.23 -1.79 0.25 -1.76 0.21 -1.80 

SF.103402 27 1 0 3 4 0 2 57.31 168.6 0.25 -1.72 0.24 -1.74 0.26 -1.76 0.25 -1.73 

SF.404401 81 4 0 4 4 0 1 57.37 276.7 0.25 -1.73 0.19 -1.83 0.24 -1.78 0.18 -1.84 

SF.114102 30 1 1 4 1 0 2 57.37 174.7 0.25 -1.72 0.25 -1.76 0.25 -1.76 0.27 -1.76 

SF.103521 36 1 0 3 5 2 1 57.54 187.1 0.24 -1.73 0.25 -1.75 0.25 -1.77 0.26 -1.75 

SF.303511 48 3 0 3 5 1 1 57.60 211.2 0.23 -1.76 0.22 -1.82 0.23 -1.78 0.22 -1.82 

SF.401301 81 4 0 1 3 0 1 57.66 277.3 0.22 -1.77 0.18 -1.85 0.21 -1.80 0.17 -1.85 

SF.203420 36 2 0 3 4 2 0 57.68 187.4 0.24 -1.74 0.24 -1.76 0.24 -1.78 0.24 -1.76 

SF.311312 51 3 1 1 3 1 2 57.76 217.5 0.23 -1.76 0.22 -1.84 0.23 -1.78 0.25 -1.82 

SF.223520 39 2 2 3 5 2 0 57.77 193.5 0.21 -1.82 0.21 -1.83 0.21 -1.85 0.22 -1.83 

SF.224001 27 2 2 4 0 0 1 58.07 170.1 0.22 -1.76 0.22 -1.80 0.21 -1.81 0.24 -1.80 

SF.301421 48 3 0 1 4 2 1 58.13 212.3 0.21 -1.79 0.18 -1.86 0.21 -1.81 0.18 -1.85 

SF.303301 36 3 0 3 3 0 1 58.21 188.4 0.21 -1.78 0.20 -1.86 0.21 -1.81 0.20 -1.85 

SF.321421 51 3 2 1 4 2 1 58.29 218.6 0.22 -1.76 0.17 -1.83 0.22 -1.80 0.16 -1.83 

SF.220220 27 2 2 0 2 2 0 58.53 171.1 0.19 -1.81 0.19 -1.83 0.18 -1.85 0.19 -1.84 

SF.214112 51 2 1 4 1 1 2 58.62 219.2 0.20 -1.78 0.15 -1.85 0.20 -1.82 0.14 -1.84 

SF.211512 51 2 1 1 5 1 2 58.63 219.3 0.19 -1.80 0.20 -1.81 0.19 -1.83 0.20 -1.81 

SF.231220 48 2 3 1 2 2 0 58.71 213.4 0.19 -1.80 0.20 -1.76 0.18 -1.86 0.20 -1.77 

SF.131201 36 1 3 1 2 0 1 58.81 189.6 0.18 -1.81 0.21 -1.79 0.19 -1.84 0.23 -1.79 

SF.333021 48 3 3 3 0 2 1 58.87 213.7 0.18 -1.83 0.16 -1.88 0.18 -1.86 0.17 -1.88 

SF.301211 48 3 0 1 2 1 1 58.89 213.8 0.18 -1.82 0.15 -1.89 0.19 -1.84 0.15 -1.89 

SF.221512 51 2 2 1 5 1 2 58.92 219.8 0.16 -1.87 0.16 -1.88 0.16 -1.89 0.17 -1.88 

SF.130212 36 1 3 0 2 1 2 59.30 190.6 0.16 -1.84 0.17 -1.83 0.15 -1.87 0.18 -1.83 

SF.130512 36 1 3 0 5 1 2 59.32 190.6 0.16 -1.84 0.17 -1.84 0.16 -1.87 0.18 -1.85 

SF.131500 27 1 3 1 5 0 0 59.38 172.8 0.15 -1.85 0.13 -1.88 0.15 -1.88 0.13 -1.88 

SF.310212 39 3 1 0 2 1 2 59.42 196.8 0.15 -1.85 0.13 -1.91 0.14 -1.88 0.13 -1.91 

SF.221111 51 2 2 1 1 1 1 59.44 220.9 0.16 -1.84 0.17 -1.84 0.15 -1.87 0.18 -1.84 

SF.100322 27 1 0 0 3 2 2 59.47 172.9 0.15 -1.85 0.17 -1.85 0.14 -1.88 0.17 -1.86 

SF.311021 39 3 1 1 0 2 1 59.52 197.0 0.15 -1.85 0.14 -1.91 0.14 -1.88 0.14 -1.91 

SF.210102 27 2 1 0 1 0 2 59.54 173.1 0.15 -1.86 0.15 -1.90 0.13 -1.89 0.15 -1.90 

SF.301120 36 3 0 1 1 2 0 59.58 191.2 0.13 -1.88 0.10 -1.90 0.11 -1.89 0.09 -1.90 

SF.421502 84 4 2 1 5 0 2 59.59 287.2 0.15 -1.86 0.15 -1.90 0.14 -1.88 0.16 -1.90 

SF.414011 84 4 1 4 0 1 1 59.60 287.2 0.14 -1.86 0.14 -1.91 0.13 -1.88 0.15 -1.91 
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SF.323502 39 3 2 3 5 0 2 59.61 197.2 0.15 -1.84 0.17 -1.80 0.16 -1.87 0.18 -1.79 

SF.111510 30 1 1 1 5 1 0 59.64 179.3 0.13 -1.88 0.11 -1.91 0.12 -1.90 0.11 -1.91 

SF.211421 51 2 1 1 4 2 1 59.64 221.3 0.14 -1.86 0.11 -1.92 0.13 -1.88 0.09 -1.92 

SF.111502 30 1 1 1 5 0 2 59.68 179.4 0.14 -1.87 0.15 -1.88 0.13 -1.89 0.15 -1.88 

SF.133002 27 1 3 3 0 0 2 59.72 173.4 0.14 -1.86 0.15 -1.88 0.14 -1.88 0.16 -1.87 

SF.113001 21 1 1 3 0 0 1 59.77 161.5 0.15 -1.82 0.12 -1.88 0.17 -1.85 0.11 -1.88 

SF.120510 21 1 2 0 5 1 0 59.81 161.6 0.14 -1.88 0.13 -1.89 0.13 -1.90 0.14 -1.89 

SF.210322 39 2 1 0 3 2 2 59.84 197.7 0.13 -1.88 0.12 -1.91 0.12 -1.90 0.12 -1.91 

SF.130310 27 1 3 0 3 1 0 59.93 173.9 0.12 -1.89 0.13 -1.91 0.12 -1.91 0.13 -1.92 

SF.220510 27 2 2 0 5 1 0 59.94 173.9 0.13 -1.88 0.12 -1.90 0.12 -1.91 0.13 -1.90 

SF.220201 27 2 2 0 2 0 1 60.14 174.3 0.11 -1.91 0.12 -1.91 0.10 -1.93 0.12 -1.91 

SF.113201 30 1 1 3 2 0 1 60.17 180.3 0.12 -1.88 0.13 -1.93 0.12 -1.90 0.14 -1.93 

SF.123512 39 1 2 3 5 1 2 60.23 198.5 0.13 -1.88 0.10 -1.92 0.13 -1.90 0.10 -1.92 

SF.201420 36 2 0 1 4 2 0 60.24 192.5 0.10 -1.92 0.09 -1.93 0.09 -1.94 0.09 -1.94 

SF.201101 36 2 0 1 1 0 1 60.24 192.5 0.11 -1.90 0.09 -1.92 0.10 -1.91 0.08 -1.92 

SF.101320 27 1 0 1 3 2 0 60.33 174.7 0.11 -1.90 0.11 -1.92 0.10 -1.92 0.11 -1.92 

SF.300212 36 3 0 0 2 1 2 60.45 192.9 0.11 -1.91 0.14 -1.91 0.11 -1.92 0.16 -1.91 

SF.331502 48 3 3 1 5 0 2 60.51 217.0 0.10 -1.91 0.08 -1.94 0.08 -1.93 0.08 -1.94 

SF.110120 21 1 1 0 1 2 0 60.67 163.3 0.08 -1.94 0.09 -1.95 0.07 -1.95 0.09 -1.95 

SF.120120 21 1 2 0 1 2 0 60.69 163.4 0.08 -1.93 0.09 -1.94 0.08 -1.94 0.09 -1.94 

SF.111500 21 1 1 1 5 0 0 60.76 163.5 0.06 -1.96 0.06 -1.97 0.05 -1.97 0.06 -1.97 

SF.230101 36 2 3 0 1 0 1 60.91 193.8 0.07 -1.94 0.08 -1.95 0.07 -1.95 0.08 -1.95 

SF.333511 60 3 3 3 5 1 1 61.51 243.0 0.03 -1.98 0.02 -1.99 0.02 -1.98 0.02 -1.99 

SF.430021 81 4 3 0 0 2 1 61.56 285.1 0.04 -1.98 0.04 -1.98 0.04 -1.98 0.04 -1.98 

 

Table A 3: Performance of the SOFIA model SF.124421 depending on the type of cost function that is used in optimization. 

Name 
SOFIA model SF.124421  

with different cost functions in optimization: 

Comparison against GFED.BA (1997-2011) 
Comparison against CCI.BA 

(2005-2011) 

Training (1817 cells, even years in 
1998-2010) 

Data used for training of RF and for 
SF parameter optimization  

Evaluation (1212 
cells, uneven 
years in 1997-

2011) 

Training (even 
years in 2006-

2010) 

Evaluation 
(uneven years in 

2005-2011) 

SSE AIC IoA FV IoA FV IoA FV IoA FV 

SF.SSE 
(SF.124421 in Tab. 
S2) 

Default cost function, sum of squared error 

𝐶𝑜𝑠𝑡 = ∑(𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)
2

𝑖=𝑁

𝑖=1

 
53.40 184.8 0.40 -1.51 0.39 -1.51 0.39 -1.59 0.41 -1.51 

SF.KGE 

Kling-Gupta efficiency: Euclidean distance in a 3-
dimensional space defined by components for 
correlation, variance, and bias (Gupta et al., 2009) 

𝐶𝑜𝑠𝑡 = √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠

− 1)
2

+ (
𝑠𝑖𝑚̅̅ ̅̅ ̅

𝑜𝑏𝑠̅̅ ̅̅ ̅ − 1)
2

 

r is the Pearson correlation coefficient between sim and 
obs 

91.28 260.6 0.30 -0.25 0.31 -0.50 0.31 -0.48 0.33 -0.50 

SF.IoA-FV 

Analogously to KGE, the Euclidean distance in a 2-
dimensional space defined by IoA and FV 

𝐶𝑜𝑠𝑡 =  √(𝐼𝑜𝐴 − 1)2 + 𝐹𝑉2 

90.43 258.9 0.44 0.00 0.45 -0.25 0.45 -0.22 0.46 -0.29 

SF.SSE-sqrt 

Sum of squared error based on square root-transformed 
fractional burned area 

𝐶𝑜𝑠𝑡 = ∑(√𝑠𝑖𝑚𝑖 − √𝑜𝑏𝑠𝑖)
2

𝑖=𝑁

𝑖=1

 

58.15 194.3 0.15 -1.94 0.13 -1.96 0.15 -1.95 0.13 -1.96 

SF.SSE-anom 

Sum of squared error but with anomalies x’ included as 
additional component.  

𝐶𝑜𝑠𝑡 = 𝑆𝑆𝐸(𝑠𝑖𝑚, 𝑜𝑏𝑠) + 𝑆𝑆𝐸(𝑠𝑖𝑚′, 𝑜𝑏𝑠′) 
Anomalies defined as the difference to a rolling mean 
value with a window length of 121 months: 

𝑥′ = 𝑥 − 𝑟𝑜𝑙𝑙𝑀𝑒𝑎𝑛(𝑥) 

57.20 192.4 0.25 -1.73 0.20 -1.81 0.22 -1.78 0.19 -1.82 
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Figure A 1: Importance of several predictor variables to predict monthly burned area using random forest. Importance is expressed 

as the percentage increment in mean squared error if a certain variable is not included in random forest. Thus, the most important 

variables cause the largest increment in MSE. Variables that include “orig” or “anom” indicates original absolute values and 

anomalies (relative to the mean seasonal cycle), respectively. “filterX” indicates mean values over the X precedent months before 865 
the actual month for which burned area should be predicted. In total 132 variables were included in this analysis but variables below 

rank 53 are not shown in this figure). 
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Figure A 2: Representativeness of sampled 0.25° grid cells for global patterns of burned area (based on GFED burned data). (a) 

Spatial distribution of the grid cells of the optimization and evaluation data subsets and regions for regional analyses of results. 

Regions are TUND (tundra), BONE (boreal needle-leaved evergreen and mixed forests), BOND (boreal needle-leaved deciduous 

forests), TEFC (temperate forests and croplands), MEDI (Mediterranean regions), STEP (steppes), SAVC (savannahs and tropical 

croplands), and TRFO (tropical forests). (b) Distribution of mean annual burned area per region from the sampled grid cells. 875 
Numbers indicate the number of grid cells per regions. (c-f) Comparison of mean and maximum annual burned between all global 

grid cells and the sampled grid cells. (c) and (d) distribution of maximum and mean annual burned. (e) Quantiles of mean and 

maximum annual burned area. (f) Latitudinal gradients of annual burned area. Latitudinal gradients are smoothing splines fitted 

to the quantile 0.95 of mean and maximum annual burned area, respectively.  

 880 

 

Figure A 3: Uncertainty in parameters of the SOFIA model SF.124421 after genetic optimization. Shown are distributions (outlines), 

mean values (= 1), and confidence intervals (bars) for mean values for each parameter. Plotted are parameters from equally good-

performing parameter sets (i.e. > 0.8 * normalized likelihood NLL, NLL = LL / max(LL) with LL = exp(-SSE)). 
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