Articles | Volume 10, issue 11
Geosci. Model Dev., 10, 4229–4244, 2017
https://doi.org/10.5194/gmd-10-4229-2017
Geosci. Model Dev., 10, 4229–4244, 2017
https://doi.org/10.5194/gmd-10-4229-2017
Model evaluation paper
23 Nov 2017
Model evaluation paper | 23 Nov 2017

Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data

Joseph C. Y. Lee and Julie K. Lundquist

Related authors

Behavior and mechanisms of Doppler wind lidar error in varying stability regimes
Rachel Robey and Julie K. Lundquist
Atmos. Meas. Tech., 15, 4585–4622, https://doi.org/10.5194/amt-15-4585-2022,https://doi.org/10.5194/amt-15-4585-2022, 2022
Short summary
Grand Challenges: Wind energy research needs for a global energy transition
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O’Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-66,https://doi.org/10.5194/wes-2022-66, 2022
Preprint under review for WES
Short summary
Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022,https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
Meso- to microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain
Adam S. Wise, James M. T. Neher, Robert S. Arthur, Jeffrey D. Mirocha, Julie K. Lundquist, and Fotini K. Chow
Wind Energ. Sci., 7, 367–386, https://doi.org/10.5194/wes-7-367-2022,https://doi.org/10.5194/wes-7-367-2022, 2022
Short summary
The Sensitivity of the Fitch Wind Farm Parameterization to a Three-Dimensional Planetary Boundary Layer Scheme
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-127,https://doi.org/10.5194/wes-2021-127, 2021
Preprint under review for WES
Short summary

Related subject area

Atmospheric sciences
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
Akshay Sridhar, Yassine Tissaoui, Simone Marras, Zhaoyi Shen, Charles Kawczynski, Simon Byrne, Kiran Pamnany, Maciej Waruszewski, Thomas H. Gibson, Jeremy E. Kozdon, Valentin Churavy, Lucas C. Wilcox, Francis X. Giraldo, and Tapio Schneider
Geosci. Model Dev., 15, 6259–6284, https://doi.org/10.5194/gmd-15-6259-2022,https://doi.org/10.5194/gmd-15-6259-2022, 2022
Short summary
Hybrid ensemble-variational data assimilation in ABC-DA within a tropical framework
Joshua Chun Kwang Lee, Javier Amezcua, and Ross Noel Bannister
Geosci. Model Dev., 15, 6197–6219, https://doi.org/10.5194/gmd-15-6197-2022,https://doi.org/10.5194/gmd-15-6197-2022, 2022
Short summary
OpenIFS/AC: atmospheric chemistry and aerosol in OpenIFS 43r3
Vincent Huijnen, Philippe Le Sager, Marcus O. Köhler, Glenn Carver, Samuel Rémy, Johannes Flemming, Simon Chabrillat, Quentin Errera, and Twan van Noije
Geosci. Model Dev., 15, 6221–6241, https://doi.org/10.5194/gmd-15-6221-2022,https://doi.org/10.5194/gmd-15-6221-2022, 2022
Short summary
Simulations of aerosol pH in China using WRF-Chem (v4.0): sensitivities of aerosol pH and its temporal variations during haze episodes
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022,https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
A daily highest air temperature estimation method and spatial–temporal changes analysis of high temperature in China from 1979 to 2018
Ping Wang, Kebiao Mao, Fei Meng, Zhihao Qin, Shu Fang, and Sayed M. Bateni
Geosci. Model Dev., 15, 6059–6083, https://doi.org/10.5194/gmd-15-6059-2022,https://doi.org/10.5194/gmd-15-6059-2022, 2022
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, Journal of Renewable and Sustainable Energy, 7, 13121, https://doi.org/10.1063/1.4907600, 2015a.
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 35104, https://doi.org/10.1063/1.4913695, 2015b.
Aitken, M. L., Kosović, B., Mirocha, J. D., and Lundquist, J. K.: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting model, Journal of Renewable and Sustainable Energy, 6, 33137, https://doi.org/10.1063/1.4885111, 2014.
Baidya Roy, S.: Simulating impacts of wind farms on local hydrometeorology, J. Wind Eng. Ind. Aerod., 99, 491–498, https://doi.org/10.1016/j.jweia.2010.12.013, 2011.
Barrie, D. B. and Kirk-Davidoff, D. B.: Weather response to a large wind turbine array, Atmos. Chem. Phys., 10, 769–775, https://doi.org/10.5194/acp-10-769-2010, 2010.
Download
Short summary
We evaluate the wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF) model, a powerful tool to simulate wind farms and their meteorological impacts numerically. In our case study, the WFP simulations with fine vertical grid resolution are skilful in matching the observed winds and the actual power productions. Moreover, the WFP tends to underestimate power in windy conditions. We also illustrate that the modeled wind speed is a critical determinant to improve the WFP.