Articles | Volume 10, issue 9
https://doi.org/10.5194/gmd-10-3189-2017
https://doi.org/10.5194/gmd-10-3189-2017
Model description paper
 | 
31 Aug 2017
Model description paper |  | 31 Aug 2017

eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Git, Docker, and HDF5

Stefan Metzger, David Durden, Cove Sturtevant, Hongyan Luo, Natchaya Pingintha-Durden, Torsten Sachs, Andrei Serafimovich, Jörg Hartmann, Jiahong Li, Ke Xu, and Ankur R. Desai

Model code and software

NEONScience/eddy4R: eddy4R-Docker 0.2.0 S. Metzger, D. Durden, C. Sturtevant, N. Pingintha-Durden, H. Luo, K. Xu, and A. Serafimovich https://w3id.org/smetzger/Metzger-et-al_2017_eddy4R-Docker/code/0.2.0

Download
Short summary
We apply the development and systems operations software development model to create the eddy4R–Docker open-source, flexible, and modular eddy-covariance data processing environment. Test applications to aircraft and tower data, as well as a software cross validation demonstrate its efficiency and consistency. Key improvements in accessibility, extensibility, and reproducibility build the foundation for deploying complex scientific algorithms in an effective and scalable manner.