Articles | Volume 10, issue 6
https://doi.org/10.5194/gmd-10-2221-2017
https://doi.org/10.5194/gmd-10-2221-2017
Development and technical paper
 | 
16 Jun 2017
Development and technical paper |  | 16 Jun 2017

rpe v5: an emulator for reduced floating-point precision in large numerical simulations

Andrew Dawson and Peter D. Düben

Related authors

Representing model uncertainty for global atmospheric CO2 flux inversions using ECMWF-IFS-46R1
Joe R. McNorton, Nicolas Bousserez, Anna Agustí-Panareda, Gianpaolo Balsamo, Margarita Choulga, Andrew Dawson, Richard Engelen, Zak Kipling, and Simon Lang
Geosci. Model Dev., 13, 2297–2313, https://doi.org/10.5194/gmd-13-2297-2020,https://doi.org/10.5194/gmd-13-2297-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024,https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024,https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024,https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024,https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024,https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, in: Methods in Computational Physics: Advances in Research and Applications, edited by: Chang, J., Academic Press, New York, San Francisco, London, 17, 173–265, 1977.
Berger, S. A. and Stamatakis, A.: Accuracy and Performance of Single versus Double Precision Artihmetics for Maximum Liklihood Phylogeny Reconstruction, in: Parallel Processing and Applied Mathematics: 8th International Conference, PPAM 2009, Wroclaw, Poland, 13–16 September, 2009, 270–279, 2010.
Cooper, F. C. and Zanna, L.: Optimisation of an Idealised Ocean Model, Stochastic Parameterisation of Sub-Grid Eddies, Ocean Model., 88, 38–53, https://doi.org/10.1016/j.ocemod.2014.12.014, 2015.
Dawson, A. and Düben, P. D.: aopp-pred/rpe: v5.0.0, https://doi.org/10.5281/zenodo.154483, 2016.
Dawson, A. and Düben, P. D.: aopp-pred/rpe-examples: gmd-2016-247, https://doi.org/10.5281/zenodo.803274, 2017.
Download
Short summary
Weather and climate models must become more efficient if they continue growing in complexity. One option for reducing computational cost is to reduce numerical precision. We present a tool that allows users to study how models perform with reduced numerical precision. The tool is applied to a geophysical use case where precision is heavily reduced while maintaining suitable accuracy. The tool can be applied to other models to determine whether they can be made more computationally efficient.