Articles | Volume 10, issue 6
Development and technical paper
16 Jun 2017
Development and technical paper |  | 16 Jun 2017

rpe v5: an emulator for reduced floating-point precision in large numerical simulations

Andrew Dawson and Peter D. Düben

Related authors

Representing model uncertainty for global atmospheric CO2 flux inversions using ECMWF-IFS-46R1
Joe R. McNorton, Nicolas Bousserez, Anna Agustí-Panareda, Gianpaolo Balsamo, Margarita Choulga, Andrew Dawson, Richard Engelen, Zak Kipling, and Simon Lang
Geosci. Model Dev., 13, 2297–2313,,, 2020
Short summary

Related subject area

Climate and Earth system modeling
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596,,, 2024
Short summary
Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4.8.0
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567,,, 2024
Short summary
A one-dimensional urban flow model with an eddy-diffusivity mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)
Jiachen Lu, Negin Nazarian, Melissa Anne Hart, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 17, 2525–2545,,, 2024
Short summary
DCMIP2016: the tropical cyclone test case
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507,,, 2024
Short summary
Interactions between atmospheric composition and climate change – progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417,,, 2024
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, in: Methods in Computational Physics: Advances in Research and Applications, edited by: Chang, J., Academic Press, New York, San Francisco, London, 17, 173–265, 1977.
Berger, S. A. and Stamatakis, A.: Accuracy and Performance of Single versus Double Precision Artihmetics for Maximum Liklihood Phylogeny Reconstruction, in: Parallel Processing and Applied Mathematics: 8th International Conference, PPAM 2009, Wroclaw, Poland, 13–16 September, 2009, 270–279, 2010.
Cooper, F. C. and Zanna, L.: Optimisation of an Idealised Ocean Model, Stochastic Parameterisation of Sub-Grid Eddies, Ocean Model., 88, 38–53,, 2015.
Dawson, A. and Düben, P. D.: aopp-pred/rpe: v5.0.0,, 2016.
Dawson, A. and Düben, P. D.: aopp-pred/rpe-examples: gmd-2016-247,, 2017.
Short summary
Weather and climate models must become more efficient if they continue growing in complexity. One option for reducing computational cost is to reduce numerical precision. We present a tool that allows users to study how models perform with reduced numerical precision. The tool is applied to a geophysical use case where precision is heavily reduced while maintaining suitable accuracy. The tool can be applied to other models to determine whether they can be made more computationally efficient.