Articles | Volume 10, issue 3
https://doi.org/10.5194/gmd-10-1261-2017
https://doi.org/10.5194/gmd-10-1261-2017
Model evaluation paper
 | 
27 Mar 2017
Model evaluation paper |  | 27 Mar 2017

Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0

Aki Tsuruta, Tuula Aalto, Leif Backman, Janne Hakkarainen, Ingrid T. van der Laan-Luijkx, Maarten C. Krol, Renato Spahni, Sander Houweling, Marko Laine, Ed Dlugokencky, Angel J. Gomez-Pelaez, Marcel van der Schoot, Ray Langenfelds, Raymond Ellul, Jgor Arduini, Francesco Apadula, Christoph Gerbig, Dietrich G. Feist, Rigel Kivi, Yukio Yoshida, and Wouter Peters

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Aki Tsuruta on behalf of the Authors (13 Dec 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (04 Jan 2017) by Andrea Stenke
RR by Anonymous Referee #1 (25 Jan 2017)
ED: Publish subject to minor revisions (Editor review) (09 Feb 2017) by Andrea Stenke
AR by Aki Tsuruta on behalf of the Authors (17 Feb 2017)  Author's response   Manuscript 
ED: Publish as is (21 Feb 2017) by Andrea Stenke
AR by Aki Tsuruta on behalf of the Authors (27 Feb 2017)
Download
Short summary
In this study, we found that the average global methane emission for 2000–2012, estimated by the CTE-CH4 model, was 516±51 Tg CH4 yr-1, and the estimates for 2007–2012 were 4 % larger than for 2000–2006. The model estimates are sensitive to inputs and setups, but according to sensitivity tests the study suggests that the increase in atmospheric methane concentrations during 21st century was due to an increase in emissions from the 35S-EQ latitudinal bands.