Preprints
https://doi.org/10.5194/gmdd-6-5475-2013
https://doi.org/10.5194/gmdd-6-5475-2013
Submitted as: development and technical paper
 | 
04 Nov 2013
Submitted as: development and technical paper |  | 04 Nov 2013
Status: this preprint was under review for the journal GMD but the revision was not accepted.

Are vegetation-specific model parameters required for estimating gross primary production?

W. Yuan, S. Liu, W. Cai, W. Dong, J. Chen, A. Arain, P. D. Blanken, A. Cescatti, G. Wohlfahrt, T. Georgiadis, L. Genesio, D. Gianelle, A. Grelle, G. Kiely, A. Knohl, D. Liu, M. Marek, L. Merbold, L. Montagnani, O. Panferov, M. Peltoniemi, S. Rambal, A. Raschi, A. Varlagin, and J. Xia

Abstract. Models of gross primary production (GPP) are currently parameterized with vegetation-specific parameter sets and therefore require accurate information on the distribution of vegetation to drive them. Can this parameterization scheme be replaced with a vegetation-invariant set of parameter that can maintain or increase model applicability by reducing errors introduced from the uncertainty of land cover classification? Based on the measurements of ecosystem carbon fluxes from 150 globally distributed sites in a range of vegetation types, we examined the predictive capacity of seven light use efficiency (LUE) models. Two model experiments were conducted: (i) a constant set of parameters for various vegetation types and (ii) vegetation-specific parameters. The results showed no significant differences in model performances to simulate GPP while using both sets of parameters. These results indicate that a universal set of parameters, which is independent of vegetation cover type and characteristics can be adopted in prevalent LUE models. Availability of this well tested and universal set of parameters would help to improve the accuracy and applicability of LUE models in various biomes and geographic regions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
W. Yuan, S. Liu, W. Cai, W. Dong, J. Chen, A. Arain, P. D. Blanken, A. Cescatti, G. Wohlfahrt, T. Georgiadis, L. Genesio, D. Gianelle, A. Grelle, G. Kiely, A. Knohl, D. Liu, M. Marek, L. Merbold, L. Montagnani, O. Panferov, M. Peltoniemi, S. Rambal, A. Raschi, A. Varlagin, and J. Xia
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
W. Yuan, S. Liu, W. Cai, W. Dong, J. Chen, A. Arain, P. D. Blanken, A. Cescatti, G. Wohlfahrt, T. Georgiadis, L. Genesio, D. Gianelle, A. Grelle, G. Kiely, A. Knohl, D. Liu, M. Marek, L. Merbold, L. Montagnani, O. Panferov, M. Peltoniemi, S. Rambal, A. Raschi, A. Varlagin, and J. Xia
W. Yuan, S. Liu, W. Cai, W. Dong, J. Chen, A. Arain, P. D. Blanken, A. Cescatti, G. Wohlfahrt, T. Georgiadis, L. Genesio, D. Gianelle, A. Grelle, G. Kiely, A. Knohl, D. Liu, M. Marek, L. Merbold, L. Montagnani, O. Panferov, M. Peltoniemi, S. Rambal, A. Raschi, A. Varlagin, and J. Xia

Viewed

Total article views: 3,613 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,911 1,578 124 3,613 124 142
  • HTML: 1,911
  • PDF: 1,578
  • XML: 124
  • Total: 3,613
  • BibTeX: 124
  • EndNote: 142
Views and downloads (calculated since 04 Nov 2013)
Cumulative views and downloads (calculated since 04 Nov 2013)

Cited

Saved

Latest update: 13 Dec 2024
Download