

1    **Supplemental Online Material**

2    **Model description**

3    **CASA model**

4            CASA is a classic light use efficiency model that utilises satellite measurements to  
5            estimate vegetation net primary production (Potter et al., 1993). It directly translates radiation into  
6            Net Primary Production (NPP) based on the notion of light use efficiency (LUE), which is a  
7            product of optimal efficiency and the regulatory functions of environmental factors (e.g.,  
8            temperature and water stress). The complete expression for NPP in the CASA is thus given by:

9            
$$NPP = PAR \times fPAR \times LUE_{max} \times T_{s1} \times T_{s2} \times W_s \quad (1)$$

10          where  $PAR$  is the incident photosynthetically active radiation per time period,  $fPAR$  is the fraction  
11          of  $PAR$  absorbed by the vegetation canopy,  $LUE_{max}$  is the potential  $LUE$  ( $\text{g C m}^{-2} \text{ MJ}^{-1}$  APAR)  
12          without environment stress,  $T_{s1}$  and  $T_{s2}$  are two downward-regulation scalars for the effects of  
13          temperature,  $W_s$  is the downward-regulation scalar for the effects of moisture on  $LUE$  of  
14          vegetation.

15           $fPAR$  is calculated as a linear function of the simple ratio ( $SR$ ) according to Sellers et al.  
16          (1993),

17          
$$fPAR = \min\{SR / (SR_{max} - SR_{min}) - SR_{min} / (SR_{max} - SR_{min}), 0.95\} \quad (2)$$

18          
$$SR = (1 + NDVI) / (1 - NDVI) \quad (3)$$

19          where  $SR_{min}$  represents  $SR$  for unvegetated land areas and is set to 1.08 for all grid cells.  $SR_{max}$   
20          approximates the value at which all downwelling solar radiation is intercepted and corrects for  
21          effects of canopy architecture and residual cloud contamination. NDVI is Normalized Difference  
22          Vegetation Index.

23  $T_{s1}$  serves to depress  $LUE_{max}$  at very high and very low temperatures ( $T_{s1}$ ) and to depress  
 24  $LUE_{max}$  when the temperature is above or below the optimum temperature ( $T_{opt}$ ), where  $T_{opt}$  is  
 25 defined as the air temperature in the month when the NDVI reaches its maximum for the year.  $T_{s2}$   
 26 reflects the concept that the efficiency to light utilization should be depressed when plants are  
 27 growing at temperatures displaced from their optimum, has an asymmetric bell shape that falls off  
 28 more quickly at high than at low temperature.  $W_s$  represents water stress on light use efficiency  
 29 using actual ecosystem evapotranspiration ( $ET$ ) and potential evapotranspiration ( $PET$ ).  $T_{s1}$ ,  $T_{s2}$   
 30 and  $W_s$  are calculated as the following equations.

$$31 \quad T_{s1} = 0.8 + 0.02 \times T_{opt} - 0.0005 \times T_{opt} \times T_{opt} \quad (4)$$

$$32 \quad T_{s2} = 1.1919 / \{1 + e^{[0.2(T_{opt} - 10 - T)]}\} / \{1 + e^{[0.3(-T_{opt} - 10 + T)]}\} \quad (5)$$

$$33 \quad W_s = 0.5 + 0.5 \times (ET / PET) \quad (6)$$

34 CASA model simulates directly NPP, and an approximate conversion of 0.5 between  
 35 NPP and GPP is used in this study.

36

37 **CFix model**

38 C-Fix is a light use efficiency type parametric model driven by temperature ( $T$ ), PAR  
 39 and fPAR (Veroustraete et al., 2002). The model uses the following equations to estimate  
 40 vegetation GPP on a daily basis:

$$41 \quad GPP = PAR \times fPAR \times LUE_{wl} \times \rho(T) \times CO_2fert \quad (7)$$

42 where  $LUE_{wl}$  is light use efficiency by considering the impact of water stress.  $\rho(T)$  is the  
 43 normalised temperature dependency factor, defined according to Veroustraete et al. (1994);  
 44  $CO_2fert$  is the normalised  $CO_2$  fertilisation factor, defined according to Veroustraete et al. (1994).

45 Verstraeten et al. (2006) integrated the impact of water limitation on light use efficiency  
 46 by considering two stomatal regulating factors from soil moisture deficit ( $F_s$ ) and atmospheric  
 47 changes ( $F_a$ ), which were simulated by soil moisture and evaporative fraction ( $EF$ ) respectively.  
 48 Due to the difficulties at regional simulations of soil moisture, we only consider the impacts of  
 49 atmospheric changes on  $LUE$  in this study, and simplified the regulation equation of water  
 50 limitation as following.

51 
$$LUE_{wl} = (LUE_{\min} + F_a \times (LUE_{\max} - LUE_{\min})) \quad (8)$$

52 where  $LUE_{wl}$  was delimited between a maximum ( $LUE_{\max}$ ) and minimum value ( $LUE_{\min}$ ) (g C  
 53  $\text{MJ}^{-1} \text{APAR}$ ).

54 CFix model uses a linear equation to describe the relationship between  $fPAR$  and NDVI,  
 55 and uses a set of empirical constants according to Myneni and Williams (1994):

56 
$$fPAR = 0.8624 \times NDVI - 0.0814 \quad (9)$$

57 The temperature dependency factor  $p(T)$  is described by Wang (1996).  $\text{CO}_2$  fertilisation  
 58 equation was defined by Veroustraete (1994) as the increase in carbon assimilation due to  $\text{CO}_2$   
 59 levels above the atmospheric background level (or reference level).

60 
$$\rho(T) = \frac{e^{(C_l - \frac{\Delta H_{a,P}}{R_g \times T})}}{1 + e^{(\frac{\Delta S \times T - \Delta H_{d,P}}{R_g \times T})}} \quad (10)$$

61 
$$CO_2fert = \frac{[CO_2] - \frac{[O_2]}{2s} \frac{K_m \times (1 + \frac{[O_2]}{K_0}) + [CO_2]^{ref}}}{[CO_2]^{ref} - \frac{[O_2]}{2s} \frac{K_m \times (1 + \frac{[O_2]}{K_0}) + [CO_2]}{}} \quad (11)$$

62 where  $C_l, \Delta S, \Delta H_{a,P}, \Delta H_{d,P}, R_g$  at the temperature response equation are  $21.77, 704.98 \text{ J K}^{-1} \text{ mol}^{-1}$ ,  
 63  $52750 \text{ J mol}^{-1}, 211000 \text{ J mol}^{-1}, 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$  according to Veroustraete et al. (2002); the  
 64 parameter values of  $s, K_m, K_o, [CO_2]^{ref}$  are 2550, 948, 30 and 281 ppm respectively. In this study,

65  $[O_2]$  was set to 209000 ppm, and  $[CO_2]$  was set to be annual mean global carbon dioxide  
66 concentration using measurements of weekly air samples from the Cooperative Global Air  
67 Sampling network (<http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html>)

68

69 **CFlux model**

70 The carbon flux model (CFlux) integrates data from multiple sources (Turner et al.,  
71 2006; King et al., 2011), and model inputs include daily meteorological data and satellite-derived  
72 information on land cover, stand age and MODIS-fPAR product. A unique feature for CFlux  
73 model is that GPP is influenced by stand age. The model can be represented as the following  
74 equations:

75 
$$GPP = PAR \times fPAR \times LUE_{eg} \quad (12)$$

76 
$$LUE_{eg} = LUE_{g\_base} \times T_s \times \min(W_s, S_{SWg}) \times S_{SAg} \quad (13)$$

77 
$$LUE_{base} = (LUE_{max} - LUE_{cs}) \times S_{CI} + LUE_{cs} \quad (14)$$

78 The scalars for minimum temperature ( $T_s$ ) and vapour pressure deficit ( $W_s$ ) are formulated as in  
79 MODIS-GPP product (i.e. equation (20, 21)) with a linear ramp (1 to 0) between a value when the  
80 influence is at a minimum and a value when it is at a maximum (i.e. when LUE is reduced to 0).  
81 The scalar for the influence of soil water ( $S_{SWg}$ ) is based on the ratio of current soil water content  
82 to soil water holding capacity (WHC). When the ratio is above a value of 0.5,  $S_{SWg}$  is set to 1.0 (no  
83 influence) and below a ratio of 0.5 there is a linear ramp from  $S_{SWg}$  of 1 to an  $S_{SWg}$  of 0 as the ratio  
84 hits 0. We simplified the simulations of soil moisture and used evaporative fraction (EF) to  
85 indicate  $S_{SWg}$ . In the case of forest cover types, a scalar for the effect of stand age on GPP ( $S_{SAg}$ ) is  
86 implemented to reflect observations of reduced vegetation production in older stands (Van Tuyl et

87 al., 2005).  $S_{CI}$  cloudiness index scalar that varies from 0 on clear days to 1 on fully overcast days  
 88 and is inferred from the ratio of PAR to potential PAR (Turner et al., 2006).  $LUE_{cs}$  is initial  $LUE$   
 89 for clear sky days.  $LUE_{max}$  is initial  $LUE$  for overcast days. The age scalar ( $S_{Sag}$ ) is equal to 1 for  
 90 non-forest vegetation types. Above a specified minimum age,  $S_{Sag}$  declines asymptotically to a  
 91 value of 0.66-0.82, depending on forest type (Turner et al., 2006).

92

### 93 EC-LUE model

94 Yuan et al. (2007, 2010) developed Eddy Covariance-Light Use efficiency (EC-LUE)  
 95 model to simulate daily vegetation GPP. The EC-LUE model is driven by only four variables:  
 96 normalised Difference Vegetation Index ( $NDVI$ ), Photosynthetically Active Radiation ( $PAR$ ), air  
 97 temperature ( $T$ ), and the Bowen ratio of sensible to latent heat flux.

$$98 \quad GPP = PAR \times fPAR \times LUE_{max} \times \text{Min}(T_s, W_s) \quad (15)$$

$$99 \quad fPAR = 1.24 \times NDVI - 0.168 \quad (16)$$

$$100 \quad T_s = \frac{(T - T_{min}) \times (T - T_{max})}{((T - T_{min}) \times (T - T_{max}) - (T - T_{opt})^2)} \quad (17)$$

$$101 \quad W_s = \frac{LE}{R_n} \quad (18)$$

102 where  $LUE_{max}$  is the potential light use efficiency without environmental stress ( $\text{g C m}^{-2} \text{ MJ}^{-1}$   
 103 APAR).  $\text{Min}$  denotes the minimum values of  $T_s$  and  $W_s$ , and we assumed that the impacts of  
 104 temperature and moisture on LUE follow Liebig's Law (i.e., LUE is only affected by the most  
 105 limiting factor at any given time).  $T_{min}$ ,  $T_{max}$  and  $T_{opt}$  are the minimum, maximum and optimum air  
 106 temperatures ( $^{\circ}\text{C}$ ) for photosynthetic activity, respectively. If air temperature falls below  $T_{min}$  or  
 107 increases beyond  $T_{max}$ ,  $T_s$  is set to zero. In this study,  $T_{min}$  and  $T_{max}$  were set to 0 and  $40^{\circ}\text{C}$ ,

108 respectively, while  $T_{opt}$  was determined using nonlinear optimisation as 21 °C (Yuan et al., 2007).

109  $LE$  is latent heat (MJ m<sup>-2</sup>), which is estimated by the revised RS-PM (Remote Sensing–Penman

110 Monteith) model (Yuan et al., 2010).  $R_n$  is net radiation (MJ m<sup>-2</sup>).

111

## 112 MODIS-GPP product

113 MODIS-GPP algorithms (Running et al., 2000) rely heavily on the LUE approach, with

114 inputs from MODIS LAI/fPAR (MOD15A2), land cover, and biome-specific climatologic data

115 sources from NASA's Data Assimilation Office. Light use efficiency is calculated based on two

116 factors: the biome-specific maximum conversion efficiency  $LUE_{max}$ , a multiplier that reduces the

117 conversion efficiency when cold temperatures limit plant function, and a second multiplier that

118 reduces the maximum conversion efficiency when vapour pressure deficit ( $VPD$ ) is high enough

119 to inhibit photosynthesis. It is assumed that soil water deficit covaries with  $VPD$  and that  $VPD$  will

120 account for drought stress.

$$121 GPP = PAR \times fPAR \times LUE_{max} \times T_s \times W_s \quad (19)$$

$$122 T_s = \begin{cases} 0 & TMIN < TMIN_{min} \\ \frac{TMIN - TMIN_{min}}{TMIN_{max} - TMIN_{min}} & TMIN_{min} < TMIN < TMIN_{max} \\ 1 & TMIN > TMIN_{max} \end{cases} \quad (20)$$

$$123 W_s = \begin{cases} 0 & VPD > VPD_{max} \\ \frac{VPD_{min} - VPD}{VPD_{max} - VPD_{min}} & VPD_{min} < VPD < VPD_{max} \\ 1 & VPD < VPD_{min} \end{cases} \quad (21)$$

124 where  $LUE_{max}$  is the potential light use efficiency without environmental stress (g C m<sup>-2</sup> MJ<sup>-1</sup>

125 APAR). Based on the at-launch landcover product (MOD12), a set of biome-specific radiation use

126 efficiency parameters are extracted from the Biome Properties Look-Up Table (BPLUT) for each

127 pixel. There are five parameters used to calculate GPP.

128

129 **VPM model**

130 In the Vegetation Production Model (VPM) (Xiao et al., 2004), the potential *LUE* is

131 affected by temperature, land surface moisture condition and leaf phenology. The following is a

132 brief description of the VPM model:

133 
$$GPP = PAR \times fPAR \times LUE_{\max} \times T_s \times W_s \times P_s \quad (22)$$

134 In the current version of the VPM model, *fPAR* is assumed to be a linear function of *EVI*, and the

135 coefficient is simply set to be 1.0 (Xiao et al., 2004).  $T_s$ ,  $W_s$  and  $P_s$  are the down-regulation scalars

136 for the effects of temperature, water and leaf phenology on the light use efficiency of vegetation,

137 respectively.  $T_s$  is estimated at each time step, using the equation developed for the Terrestrial

138 ecosystem Model (Raich et al., 1991) as shown at equation (17).

139 The VPM also utilizes the *LSWI* (Land Surface Water Index) (Xiao et al., 2004) to help

140 capture effects of water stress and phenology on plant photosynthesis:

141 
$$LSWI = \frac{\rho_{NIR} - \rho_{SWIR}}{\rho_{NIR} + \rho_{SWIR}} \quad (23)$$

142 where *NIR* refers to the 841–876 nm band, and *SWIR* refers to 1628–1652 nm. Water index was

143 presented as:

144 
$$W_s = \frac{1 + LSWI}{1 + LSWI_{\max}} \quad (24)$$

145 where  $LSWI_{\max}$  is the maximum *LSWI* within the plant growing season for individual pixels.  $P_{scalar}$

146 is included to account for the effect of leaf phenology (leaf age) on photosynthesis at the canopy

147 level. In this version of the VPM model, calculation of  $P_s$  was dependent upon the longevity of

148 leaves (deciduous, versus evergreen). For a canopy that was dominated by leaves with a life  
149 expectancy of 1 year (one growing season, e.g., deciduous trees),  $P_s$  was calculated at two  
150 different phases as a linear function of  $LSWI$  from bud burst to leaf full expansion (phase one) by

151 
$$P_s = \frac{1 + LSWI}{2} \quad (25)$$

152 After leaf full expansion (phase two),  $P_s$  was set to 1, and equation (26) was adopted  
153 again during senescence (phase three). The dates for the three phases of phenology (bud burst, full  
154 canopy, and senescence) were obtained using an EVI seasonal threshold similar to that of the  
155 MODIS phenology product MOD12Q2 (Friedl et al., 2003). Thus for large-scale application of the  
156 VPRM across North America, MOD12Q2 dates can be used directly.

157

158 **VPRM model**

159 Formulation of the VPRM starts from the Vegetation Photosynthesis Model (VPM) of  
160 Xiao et al. (2004), which estimates GPP using satellite-based vegetation indices and  
161 environmental data, adding a nonlinear function to account for the response of GPP to light. The  
162 VPRM can be presented by

163 
$$GPP = PAR \times fPAR \times \frac{1}{(1 + PAR / PAR_0)} \times LUE_{\max} \times T_s \times P_s \times W_s \quad (26)$$

164 where  $PAR_0$  is the half-saturation value. The other variables were calculated as the VPM models.

165

166 **References**

167 Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H.,  
168 Woodcock, C.E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., and Schaaf, C.:  
169 Global land cover mapping from MODIS: algorithms and early results, *Remote Sensing of*

170 Environment, 83, 287-302, 2002.

171 King, D. A., Turner, D. P., and Ritts, W. D.: Parameterization of a diagnostic carbon cycle model  
172 for continental scale application, Remote Sensing of Environment, 115, 1653-1664, 2011.

173 Myneni, R. B., and Williams, D. L.: On the relationship between FAPAR and NDVI, Remote  
174 Sensing of Environment, 49, 200-211, 1994.

175 Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and  
176 Klooster, S. A.: Terrestrial ecosystem production: a process model based on global satellite and  
177 surface data, Global Biogeochemical Cycles, 74, 811-841, 1993.

178 Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J.,  
179 Grace, A. L., Moore III, B., and Vorosmarty, C. J.: Potential net primary productivity in South  
180 America: application of a global model, Ecological Applications, 1, 399-429, 1991.

181 Running, S. W., Thornton, P. E., Nemani, R., and Glassy, J. M.: Global terrestrial gross and net  
182 primary productivity from the Earth Observing System, Methods in ecosystem science, 44-57,  
183 2000.

184 Turner, D. P., Ritts, W. D., Styles, J. M., Yang, Z., Cohen, W. B., Law, B. E., and Thornton, P. E.:  
185 A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation  
186 in climate on regional NEP, Tellus B, 585, 476-490, 2006.

187 Van Tuyl S., Law B. E., Turner D. P., and Gitelman A. I.: Variability in net primary production and  
188 carbon storage in biomass across Oregon forests-an assessment integrating data from forest  
189 inventories, intensive sites, and remote sensing, Forest Ecology and Management, 209, 273-291,  
190 2005.

191 Veroustraete, F.: On the use of a simple deciduous forest model for the interpretation of climate

192 change effects at the level of carbon dynamics, Ecological modeling, 75-76, 221-237, 1994.

193 Veroustraete, F., Sabbe, H., and Eerens, H.: Estimation of carbon mass fluxes over Europe using

194 the C-Fix model and Euroflux data, Remote Sensing of Environment, 833, 376-399, 2002.

195 Verstraeten, W. W., Veroustraete, F., and Feyen, J.: On temperature and water limitation of net

196 ecosystem productivity: Implementation in the C-Fix model, Ecological Modelling, 199, 4-22,

197 2006.

198 Xiao, X. M., Zhang, Q. Y., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore III, B., and

199 Ojima, D.: Modeling gross primary production of temperate deciduous broadleaf forest using

200 satellite images and climate data, Remote Sensing of Environment, 912, 256-270, 2004.

201 Yuan, W. P., Liu, S. G., Yu, G. R., Bonnefond, J. M., Chen, J. Q., Davis, K., Desai, A. R.,

202 Goldstein, A. H., Gianelle, D., Rossi, F., Suyker, A. E., and Verma, S. B.: Global estimates of

203 evapotranspiration and gross primary production based on MODIS and global meteorology data,

204 Remote Sensing of Environment, 1147, 1416-1431, 2010.

205 Yuan, W. P., Liu, S. G., Zhou, G. S., Zhou, G. Y., Tieszen, L. L., Baldocchi, D., Bernhofer, C.,

206 Gholz, H., Goldstein, A. H., Goulden, M. L., Hollinger, D. Y., Hu, Y., Lawn, B. E., Stoy, P. C.,

207 Vesala, T., and Wofsy, S. C.: Deriving a light use efficiency model from eddy covariance flux

208 data for predicting daily gross primary production across biomes, Agricultural and Forest

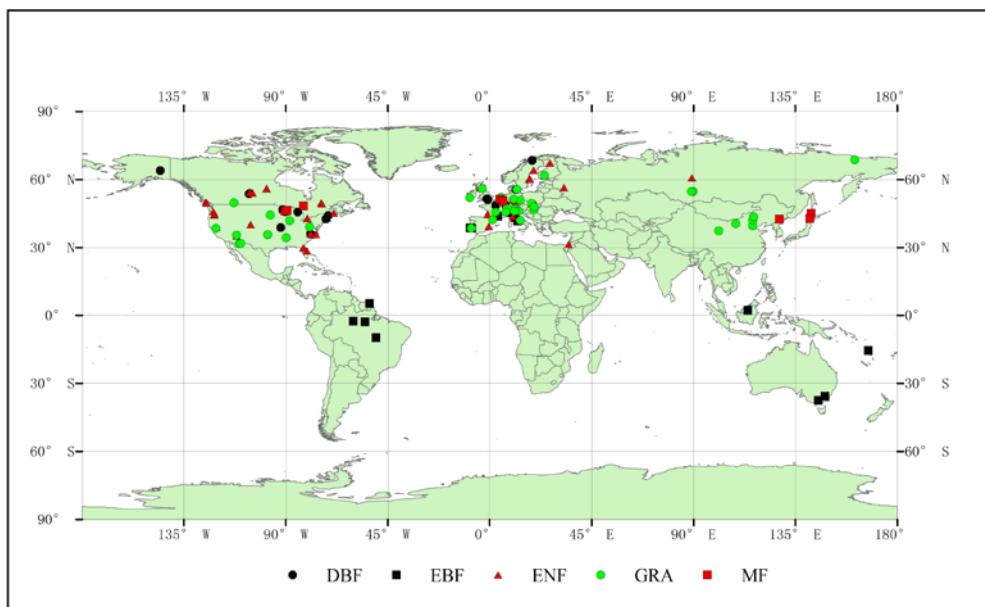
209 Meteorology, 1433, 189-207, 2007.

210

Table S1. Name, location, and other characteristics of the study sites used in this study.

| Vegetation Type | Site   | Latitude | Longitude |
|-----------------|--------|----------|-----------|
| DBF             | Ca-oas | 53.63° N | 106.20° W |
| DBF             | De-hai | 51.08° N | 10.45° E  |
| DBF             | Dk-sor | 55.49° N | 11.65° E  |
| DBF             | Fr-fon | 48.48° N | 2.78° E   |
| DBF             | Fr-hes | 48.67° N | 7.06° E   |
| DBF             | It-col | 41.85° N | 13.59° E  |
| DBF             | It-non | 44.69° N | 11.09° E  |
| DBF             | It-pt1 | 45.20° N | 9.06° E   |
| DBF             | It-ro1 | 42.41° N | 11.93° E  |
| DBF             | It-ro2 | 42.39° N | 11.92° E  |
| DBF             | It-vig | 45.32° N | 8.85° E   |
| DBF             | Se-abi | 68.36° N | 18.79° E  |
| DBF             | Uk-ham | 51.15° N | 0.86° W   |
| DBF             | Uk-pl3 | 51.45° N | 1.27° W   |
| DBF             | Us-bar | 44.06° N | 71.29° W  |
| DBF             | Us-bn2 | 63.92° N | 145.38° W |
| DBF             | Us-dk2 | 35.97° N | 79.10° W  |
| DBF             | Us-ha1 | 42.54° N | 72.17° W  |
| DBF             | Us-lph | 42.54° N | 72.18° W  |
| DBF             | Us-mms | 39.32° N | 86.41° W  |
| DBF             | Us-moz | 38.74° N | 92.20° W  |
| DBF             | Us-umb | 45.56° N | 84.71° W  |
| DBF             | Us-wcr | 45.81° N | 90.08° W  |
| DBF             | Us-wi1 | 46.73° N | 91.23° W  |
| DBF             | Us-wi8 | 46.72° N | 91.25° W  |
| EBF             | Au-tum | 35.66° S | 148.15° E |
| EBF             | Au-wac | 37.43° S | 145.19° E |
| EBF             | Br-ban | 9.82° S  | 50.16° W  |
| EBF             | Br-ma2 | 2.61° S  | 60.21° W  |
| EBF             | Br-sa1 | 2.86° S  | 54.96° W  |
| EBF             | Cn-bed | 39.53° N | 116.25° E |
| EBF             | Cn-ku1 | 40.54° N | 108.69° E |
| EBF             | Fr-pue | 43.74° N | 3.60° E   |
| EBF             | Gf-guy | 5.28° N  | 52.93° W  |
| EBF             | Id-pag | 2.35° N  | 114.04° E |
| EBF             | It-cpz | 41.71° N | 12.38° E  |
| EBF             | It-lec | 43.30° N | 11.27° E  |
| EBF             | Pt-mi1 | 38.54° N | 8.00° W   |
| EBF             | Vu-coc | 15.44° S | 167.19° E |
| ENF             | Ca-ca1 | 49.87° N | 125.33° W |

|     |        |          |           |
|-----|--------|----------|-----------|
| ENF | Ca-ca2 | 49.87° N | 125.29° W |
| ENF | Ca-ca3 | 49.53° N | 124.90° W |
| ENF | Ca-man | 55.88° N | 98.48° W  |
| ENF | Ca-ns1 | 55.88° N | 98.48° W  |
| ENF | Ca-ns2 | 55.91° N | 98.52° W  |
| ENF | Ca-ns3 | 55.91° N | 98.38° W  |
| ENF | Ca-ns4 | 55.91° N | 98.38° W  |
| ENF | Ca-ns5 | 55.86° N | 98.49° W  |
| ENF | Ca-obs | 53.99° N | 105.12° W |
| ENF | Ca-ojp | 53.92° N | 104.69° W |
| ENF | Ca-qcu | 49.27° N | 74.04° W  |
| ENF | Ca-qfo | 49.69° N | 74.34° W  |
| ENF | Ca-sf1 | 54.49° N | 105.82° W |
| ENF | Ca-sf2 | 54.25° N | 105.88° W |
| ENF | Ca-sj1 | 53.91° N | 104.66° W |
| ENF | Ca-sj2 | 53.94° N | 104.65° W |
| ENF | Ca-sj3 | 53.88° N | 104.64° W |
| ENF | Ca-tp1 | 42.66° N | 80.56° W  |
| ENF | Ca-tp2 | 42.77° N | 80.46° W  |
| ENF | Ca-tp3 | 42.71° N | 80.35° W  |
| ENF | Ca-tp4 | 42.71° N | 80.36° W  |
| ENF | Cz-bk1 | 49.50° N | 18.54° E  |
| ENF | De-har | 47.93° N | 7.60° E   |
| ENF | De-tha | 50.96° N | 13.57° E  |
| ENF | De-wet | 50.45° N | 11.46° E  |
| ENF | Es-es1 | 39.35° N | 0.32° W   |
| ENF | Fi-hyy | 61.85° N | 24.29° E  |
| ENF | Fi-sod | 67.36° N | 26.64° E  |
| ENF | Fr-lbr | 44.72° N | 0.77° W   |
| ENF | Il-yat | 31.34° N | 35.05° E  |
| ENF | It-lav | 45.96° N | 11.28° E  |
| ENF | It-ren | 46.59° N | 11.43° E  |
| ENF | It-sro | 43.73° N | 10.28° E  |
| ENF | Nl-loo | 52.17° N | 5.74° E   |
| ENF | Ru-fyo | 56.46° N | 32.92° E  |
| ENF | Ru-zot | 60.80° N | 89.35° E  |
| ENF | Se-fla | 64.11° N | 19.46° E  |
| ENF | Se-nor | 60.09° N | 17.48° E  |
| ENF | Se-sk1 | 60.13° N | 17.92° E  |
| ENF | Se-sk2 | 60.13° N | 17.84° E  |
| ENF | Sk-tat | 49.12° N | 20.16° E  |
| ENF | Uk-gri | 56.61° N | 3.80° W   |
| ENF | Us-blo | 38.90° N | 120.63° W |


|     |        |          |           |
|-----|--------|----------|-----------|
| ENF | Us-dk3 | 35.98° N | 79.09° W  |
| ENF | Us-fmf | 35.14° N | 111.73° W |
| ENF | Us-fuf | 35.09° N | 111.76° W |
| ENF | Us-ho1 | 45.20° N | 68.74° W  |
| ENF | Us-ks1 | 28.46° N | 80.67° W  |
| ENF | Us-me1 | 44.58° N | 121.50° W |
| ENF | Us-me2 | 44.45° N | 121.56° W |
| ENF | Us-me3 | 44.32° N | 121.61° W |
| ENF | Us-me4 | 44.50° N | 121.62° W |
| ENF | Us-nc2 | 35.80° N | 76.67° W  |
| ENF | Us-nr1 | 40.03° N | 105.55° W |
| ENF | Us-sp2 | 29.76° N | 82.24° W  |
| ENF | Us-sp3 | 29.75° N | 82.16° W  |
| ENF | Us-wi2 | 46.69° N | 91.15° W  |
| ENF | Us-wi4 | 46.74° N | 91.17° W  |
| ENF | Us-wi5 | 46.65° N | 91.09° W  |
| ENF | Us-wi9 | 46.62° N | 91.08° W  |
| ENF | Us-wrc | 45.82° N | 121.95° W |
| GRA | At-neu | 47.12° N | 11.32° E  |
| GRA | Ca-let | 49.71° N | 112.94° W |
| GRA | Ch-oe1 | 47.29° N | 7.73° E   |
| GRA | Cn-du2 | 42.05° N | 116.28° E |
| GRA | Cn-ham | 37.37° N | 101.18° E |
| GRA | Cn-xi1 | 43.55° N | 116.68° E |
| GRA | Cn-xi2 | 43.55° N | 116.67° E |
| GRA | Cz-bk2 | 49.50° N | 18.54° E  |
| GRA | De-gri | 50.95° N | 13.51° E  |
| GRA | De-meh | 51.28° N | 10.66° E  |
| GRA | Dk-lva | 55.68° N | 12.08° E  |
| GRA | Es-vda | 42.15° N | 1.45° E   |
| GRA | Fi-sii | 61.83° N | 24.19° E  |
| GRA | Fr-lq1 | 45.64° N | 2.74° E   |
| GRA | Fr-lq2 | 45.64° N | 2.74° E   |
| GRA | Hu-bug | 46.69° N | 19.60° E  |
| GRA | Hu-mat | 47.85° N | 19.73° E  |
| GRA | Ie-dri | 51.99° N | 8.75° W   |
| GRA | It-amp | 41.90° N | 13.61° E  |
| GRA | It-be2 | 46.00° N | 13.03° E  |
| GRA | It-mal | 46.12° N | 11.70° E  |
| GRA | It-mbo | 46.02° N | 11.05° E  |
| GRA | Nl-ca1 | 51.97° N | 4.93° E   |
| GRA | Nl-hor | 52.03° N | 5.07° E   |
| GRA | Pt-mi2 | 38.48° N | 8.02° W   |

|     |        |          |           |
|-----|--------|----------|-----------|
| GRA | Ru-ha2 | 54.77° N | 89.96° E  |
| GRA | Ru-ha3 | 54.70° N | 89.08° E  |
| GRA | Uk-ebu | 55.87° N | 3.21° W   |
| GRA | Us-arb | 35.55° N | 98.04° W  |
| GRA | Us-arc | 35.55° N | 98.04° W  |
| GRA | Us-aud | 31.59° N | 110.51° W |
| GRA | Us-bkg | 44.35° N | 96.84° W  |
| GRA | Us-cav | 39.06° N | 79.42° W  |
| GRA | Us-dk1 | 35.97° N | 79.09° W  |
| GRA | Us-fwf | 35.45° N | 111.77° W |
| GRA | Us-goo | 34.25° N | 89.87° W  |
| GRA | Us-ib2 | 41.84° N | 88.24° W  |
| GRA | Us-var | 38.41° N | 120.95° W |
| GRA | Us-wkg | 31.74° N | 109.94° W |
| GRA | Ru-che | 68.61° N | 161.34° E |
| MF  | Be-bra | 51.31° N | 4.52° E   |
| MF  | Be-jal | 50.56° N | 6.07° E   |
| MF  | Be-vie | 50.31° N | 6.00° E   |
| MF  | Ca-gro | 48.22° N | 82.16° W  |
| MF  | Cn-cha | 42.40° N | 128.10° E |
| MF  | Jp-tef | 45.06° N | 142.11° E |
| MF  | Jp-tom | 42.74° N | 141.51° E |
| MF  | Us-pfa | 45.95° N | 90.27° W  |
| MF  | Us-syv | 46.24° N | 89.35° W  |

212 DBF: deciduous broadleaf forest; EBF: evergreen broadleaf forest; ENF: evergreen needleleaf

213 forest; GRA: grassland; MF: mixed forest.

214



215

216 Figure S1. The location of sites in this study. DBF: deciduous broadleaf forest; EBF:  
217 evergreen broadleaf forest; ENF: evergreen needleleaf forest; GRA: Grassland; MF: Mixed forest.