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Abstract

Models of gross primary production (GPP) are currently parameterized with vegetation-
specific parameter sets and therefore require accurate information on the distribution
of vegetation to drive them. Can this parameterization scheme be replaced with
a vegetation-invariant set of parameter that can maintain or increase model applicability5

by reducing errors introduced from the uncertainty of land cover classification? Based
on the measurements of ecosystem carbon fluxes from 150 globally distributed sites
in a range of vegetation types, we examined the predictive capacity of seven light use
efficiency (LUE) models. Two model experiments were conducted: (i) a constant set
of parameters for various vegetation types and (ii) vegetation-specific parameters. The10

results showed no significant differences in model performances to simulate GPP while
using both sets of parameters. These results indicate that a universal set of parameters,
which is independent of vegetation cover type and characteristics can be adopted in
prevalent LUE models. Availability of this well tested and universal set of parameters
would help to improve the accuracy and applicability of LUE models in various biomes15

and geographic regions.

1 Introduction

In the past decades, a long series of terrestrial ecosystem models have been
developed to simulate and predict the vegetation primary productivity, which play
an important role in the global carbon cycle at various spatiotemporal scales20

(Cramer et al., 2001). However, modeling the carbon cycle using ecosystem
models at continental to global scale is subject to large uncertainties, primarily
due to uncertainties of model parameterizations (Knorr and Heimann, 2001). The
conventional parameterization schemes assume a constant parameter sets for each
vegetation types. Consequently, land cover products based on remote sensing25

technology are routinely used to characterize vegetation characteristics for model
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applications. However, classifying remote sensing images to obtain reliable and
accurate land cover type and associated vegetation characteristics over large areas
remains a major challenge because of the complexity of landscapes, availability and
suitability of remote sensing data, uncertainty of image processing and classification
methods, etc. (Hansen et al., 2003).5

Satellite-based light use efficiency (LUE) models have been widely used because
they rely on simple algorithms to estimate gross primary production (GPP). Most LUE
models are based on look-up tables to set the parameter values for given vegetation
types (Running et al., 2004). Yet a few LUE models (CASA and EC-LUE) use a set
of constant parameters regardless of vegetation type by arguing that photosynthesis10

is independent of species and vegetation but driven by biophysical conditions such
as mainly light, temperature and available water (Potter et al., 1993; Yuan et al.,
2007, 2010). Moreover, Aber and Federer (1992) argued that the amount of carbon
fixed through photosynthesis per light quantum intercepted is invariant of species. The
use of invariant parameter values across vegetation types would clearly simplify the15

parameterization of LUE models at broad spatial scales and the prediction of GPP
over large areas. However, the advantages of this approach have not yet been verified
against surface observations. In this study, we tested a series of popular LUE models by
using both vegetation invariant and vegetation dependent parameters across a range
of geographic regions and ecosystem types. Model predictions of GPP are finally20

validated using in situ observations from flux towers belonging to the global Fluxnet
network (Baldocchi et al., 2001).

2 Data and methods

The LUE models are in general built on two fundamental assumptions (Goetz and
Prince, 1999; Running et al., 2004): (1) ecosystem GPP is linearly related to absorbed25

photosynthetically active radiation (APAR) through LUE, where LUE is defined as the
amount of carbon fixed per unit of APAR, and (2) potential LUE may be reduced below
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its theoretical potential value (i.e., realized LUE) by environmental stresses such as
low temperature or water shortage (Landsberg and Sands, 2010). In this study, seven
LUE models were selected to conduct a global comparison of model performance
against GPP estimates from flux tower measurement: CASA (Potter et al., 1993),
CFix (Veroustraete et al., 2002), CFlux (Turner et al., 2006; King et al., 2011), EC-5

LUE (Yuan et al., 2007, 2010), MODIS-GPP (Running et al., 2004), VPM (Xiao et al.,
2004) and VPRM (Mahadevan et al., 2008). Detailed informations about these models
are reported in the supplementary online material.

The LaThuile FLUXNET dataset was used in this study (http://www.fluxdata.org).
A total of 150 eddy covariance (EC) towers from five major terrestrial biomes were10

analysed: deciduous broadleaf forest (DBF, 25 sites), evergreen broadleaf forest (EBF,
14 sites), evergreen needleleaf forest (ENF, 62 sites), grassland (GRA, 40 sites) and
mixed forest (MF, 9 sites) (Table S1; Fig. S1). Detailed information on data processing
and site information (i.e. vegetation, climate and soils) are available at the LaThuile
FLUXNET web portal (http://www.fluxdata.org). The methodology applied to derive15

GPP from the net ecosystem exchange is reported in Reichstein et al. (2005).
Two model experiments were conducted to evaluate the vegetation-invariant

parameters in LUE models. First, we calibrated the seven LUE models each with a set
of invariant model parameters that did not change across all vegetation types. Half of
the sites were randomly selected to calibrate model parameters, and the remaining20

half were used for model validation. The nonlinear regression procedure (Proc NLIN)
in the Statistical Analysis System (SAS, SAS Institute Inc., Cary, NC, USA) was used
to optimize the model parameters. Second, model parameters were calibrated for each
model and vegetation type. Same site selection criterion and calibration process were
applied within each vegetation type. Two metrics, the coefficient of determination (R2)25

and the root mean square error (RMSE), were used to evaluate the performance of the
LUE models.

The 8 day MODIS-NDVI/EVI data (MOD13) and MODIS-fPAR/LAI (MOD15) with
1 km spatial resolution were the basis for model verification at the EC sites. Quality
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control (QC) flags, which signal cloud contamination in each pixel, were examined
to screen and reject NDVI, EVI and fPAR data of insufficient quality. We temporally
filled the missing or unreliable values at each 1 km MODIS pixel based on their
corresponding quality assessment data fields as proposed by Zhao et al. (2005).

3 Results and discussion5

Calibrated parameters of several models across most vegetation types did not
show significant differences with those derived from individual vegetation types
(Table 1). In the CASA model, potential LUE value (ε0) calibrated at all sites
was 0.91±0.14 gCm−2 MJ−1, which only significantly differed from the calibrated
values at grassland (0.78±0.17 gCm−2 MJ−1). Similar results were found at the EC-10

LUE and VPM models, the calibrated ε0 value (1.73±0.12 gCm−2 MJ−1 and 2.08±
0.17 gCm−2 MJ−1) for all sites did not show the significant differences with those
of other vegetation types (Table 1). There were more than one parameter at other
models, and the results showed complex relationships among parameters (Table 1).
For example, in the VPRM model, the calibrated ε0 and PAR0 at all sites significantly15

differed from those of deciduous broadleaf forest, however, they showed larger and
lower inversed parameter values over all sites, respectively (Table 1).

Among the seven LUE models there were no significant differences in model
performance between the two different parameterization schemes according to mean
GPP, RMSE and coefficient of determination (R2) (Fig. 1). Especially, the slopes of20

regression lines between mean GPP estimations did not show significant differences,
indicating that these two different parameterizations rarely changed the magnitude of
GPP predictions (Fig. 1). These results indicate that the parameterization scheme
of the LUE models can potentially be simplified using a set of constant vegetation-
independent parameter values for each model, which will reduce the uncertainty25

generated from land cover misclassification, while simplifying their use.
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Our conclusion is supported by plant physiological evidences. Although different
photosynthesis pathway can occur in different species, some features are always the
same. Theoretically, plants can assimilate 1 mol CO2 using 8 mol absorbed radiation
(Hall and Rao, 1999). Another reason for the good performance of the vegetation-
invariant model parameters in the tested LUE models is the use of a satellite-5

derived vegetation index, which holistically captures the overall state of structural and
physiological vegetation characteristics (e.g. leaf area index, chlorophyll and nitrogen
content).

Most LUE models assume the potential LUE to occur at optimal temperature and
water condition. However, other environment variables, like leaf nitrogen content,10

have also been found to influence the photosynthetic potentials (Kergoat et al., 2008;
Peltoniemi et al., 2012). Remotely sensed vegetation index, however, is highly related
to leaf nitrogen content (Hansen and Schjoerring, 2003; Zhu et al., 2008; Yao et al.,
2010; Li et al., 2010). A strong correlation exists between leaf chlorophyll and leaf
nitrogen concentration (Ercoli et al., 1993), and the visible light reflectance is primarily15

determined by the chlorophyll of the leaf (Campbell, 2002; Alchanatis et al., 2005).
Therefore, NDVI is an effective index for relative plant nitrogen status. Previous studies
have shown that remotely sensed imagery can provide valuable information about in-
field nitrogen variability (Chang et al., 2003; Sripada et al., 2005).

Most current LUE models use look-up tables to define vegetation specific model20

parameters for regional and global applications. Therefore the availability of satellite
derived land cover products is a prerequisite for model parameterization. For example,
the MODIS land cover product (MOD-12) is used to run the MODIS-GPP product
(Running et al., 2004). However, a previous study showed the accuracy of the MODIS
land cover product is only about 75 % (Friedl et al., 2010). If such products were used25

for estimating GPP, additional errors would be introduced from the uncertainty in land
cover classification to the regional estimates of GPP.

Results from this study clearly show similar performance of the LUE models in
predicting GPP using either the vegetation-dependent or invariant model parameters.
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This result implies that such approach may significantly reduce the uncertainty of
GPP estimates at regional to global scales. This will also increase the feasibility
of quantifying and mapping GPP changes over time and land use change. This
is particularly the case since acquiring frequent high-quality land cover change
information over large areas has been a major challenge (Hansen et al., 2003).5

4 Summary and conclusions

Selecting adequate model parameter values is critical for estimating vegetation
production within various process models. Considering the variability and uniqueness
of various ecosystems in primary production, assigning a varying parameter set in
accordance with vegetation types has been a common parameterization strategy.10

However, this approach requires high-quality vegetation cover information. Current
vegetation cover datasets over large areas contain large uncertainties that propagate
into GPP simulations at regional and global scales. In this study, two model
experiments were conducted to examine the differences in GPP predictions by seven
LUE models using alternatively vegetation variant and invariant parameters. No15

significant differences were found between the two parameterization schemes. These
results indicate that the application of LUE models can potentially be simplified with
a constant parameterization scheme that is independent of land cover types and
associated vegetation characteristics.

Supplementary material related to this article is available online at20

http://www.geosci-model-dev-discuss.net/6/5475/2013/
gmdd-6-5475-2013-supplement.pdf.
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Table 1. Calibrated model parameter values for seven LUE models and two parameterization
schemes.

Parameter Vegetation Type

Alla (150)b DBFc (25) EBF (14) ENF (62) GRA (40) MF (9)

CASA ε0 0.91±0.14G 1.22±0.43 0.87±0.15 0.85±0.18 0.78±0.17 1.04±0.36

CFix εmax 1.87±0.18 1.92±0.18 1.85±0.35 1.94±0.19 1.86±0.33 1.79±0.27
εmin 1.16±0.08D,E 1.27±0.07 1.33±0.15 1.09±0.06 1.14±0.09 1.16±0.13

CFlux εmax 2.56±0.16D,E,EN 3.07±0.25 3.02±0.18 2.29±0.12 2.53±0.15 2.53±0.25
εcs 1.04±0.06D,E 1.17±0.07 1.12±0.10 0.95±0.05 1.08±0.08 1.05±0.13
Tmin −14.16±3.77D,G −4.35±2.13 −14.46±4.35 −14.20±2.40 −20.12±7.06 −14.26±4.17
Tmax 10.83±1.71E,EN,G 13.08±3.23 20.00±0.00 8.25±1.82 9.55±5.87 13.79±3.74
VPDmin 0.11±0.02 0.11±0.01 0.12±0.07 0.11±0.00 0.12±0.01 0.12±0.02
VPDmax 2.89±0.15G 2.99±0.32 2.56±0.32 2.79±0.13 3.23±0.47 2.44±0.32

EC-LUE ε0 1.73±0.12 1.71±0.19 1.70±0.11 1.85±0.20 1.59±0.41 1.72±0.31

MODIS ε0 1.52±0.09,D,EN 1.77±0.19 1.68±0.10 1.36±0.08 1.52±0.16 1.64±0.22
Tmin −14.16±4.01D,G −4.35±2.13 −14.46±4.35 −14.20±2.40 −20.12±7.06 −14.26±4.17
Tmax 10.83±2.08E,EN,G 13.08±3.23 20.00±0.00 8.25±1.82 9.55±5.87 13.79±3.74
VPDmin 0.11±0.01 0.11±0.01 0.12±0.07 0.11±0.02 0.12±0.01 0.12±0.02
VPDmax 2.89±0.36G 2.99±0.32 2.56±0.32 2.79±0.13 3.23±0.47 2.44±0.32

VPM ε0 2.08±0.17 2.11±0.11 2.17±0.16 2.17±0.10 1.92±0.12 2.03±0.24

VPRM ε0 11.31±2.03D,EN,G 8.63±1.14 10.88±2.17 14.89±2.10 7.87±1.08 10.16±3.04
PAR0 2.38±0.41D,EN,G 3.15±0.44 2.37±0.75 1.61±0.24 3.07±0.52 2.50±0.81

a All: parameter values calibrated through all sites, and detailed information about these parameters are reported in the supplementary online material.
b The numbers indicate the site number of each vegetation type.
c DBF, EBF, ENF, GRA, MF: calibrated parameter values within deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grassland,
mixed forest respectively. The capital letters, showed at the column “All”, indicate the significant differences with parameters calibrated within vegetation types
(D, E, EN, G, M represent DBF, EBF, ENF, GRA, MF). The lowercase letters at the other columns indicate significant differences among several of vegetation
types. Parameters information is provided in the Supplement. The unit of parameters: gCm−2 MJ−1 APAR for ε0/max/min/cs/; kPa for VPDmin/max; ◦ for Tmin/max;
MJm−2 for PAR0.
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Fig. 1. Model comparison of the two model parameterization schemes. LU indicate the
parameterization using look-up tables while UN indicate that model use a vegetation-invariant
parameter set.

5488

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/5475/2013/gmdd-6-5475-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/5475/2013/gmdd-6-5475-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

