Articles | Volume 9, issue 10
Geosci. Model Dev., 9, 3751–3777, 2016
https://doi.org/10.5194/gmd-9-3751-2016

Special issue: Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental...

Geosci. Model Dev., 9, 3751–3777, 2016
https://doi.org/10.5194/gmd-9-3751-2016

Model experiment description paper 25 Oct 2016

Model experiment description paper | 25 Oct 2016

The Decadal Climate Prediction Project (DCPP) contribution to CMIP6

George J. Boer et al.

Related authors

Terrestrial ecosystems response to future changes in climate and atmospheric CO2 concentration
V. K. Arora and G. J. Boer
Biogeosciences, 11, 4157–4171, https://doi.org/10.5194/bg-11-4157-2014,https://doi.org/10.5194/bg-11-4157-2014, 2014

Related subject area

Climate and Earth system modeling
Global evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)
Yan Sun, Daniel S. Goll, Jinfeng Chang, Philippe Ciais, Betrand Guenet, Julian Helfenstein, Yuanyuan Huang, Ronny Lauerwald, Fabienne Maignan, Victoria Naipal, Yilong Wang, Hui Yang, and Haicheng Zhang
Geosci. Model Dev., 14, 1987–2010, https://doi.org/10.5194/gmd-14-1987-2021,https://doi.org/10.5194/gmd-14-1987-2021, 2021
Short summary
Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1
Hui Wan, Shixuan Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, and Huiping Yan
Geosci. Model Dev., 14, 1921–1948, https://doi.org/10.5194/gmd-14-1921-2021,https://doi.org/10.5194/gmd-14-1921-2021, 2021
Short summary
A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021,https://doi.org/10.5194/gmd-14-1657-2021, 2021
Short summary
Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model
Yong Wang, Guang J. Zhang, Shaocheng Xie, Wuyin Lin, George C. Craig, Qi Tang, and Hsi-Yen Ma
Geosci. Model Dev., 14, 1575–1593, https://doi.org/10.5194/gmd-14-1575-2021,https://doi.org/10.5194/gmd-14-1575-2021, 2021
Short summary
Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols
Sonia Jerez, Laura Palacios-Peña, Claudia Gutiérrez, Pedro Jiménez-Guerrero, Jose María López-Romero, Enrique Pravia-Sarabia, and Juan Pedro Montávez
Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021,https://doi.org/10.5194/gmd-14-1533-2021, 2021
Short summary

Cited articles

Asrar, R. A. and Hurrell, J. W. (Eds.): Climate Science for Serving Society, Springer, Dordrecht, 484 pp., https://doi.org/10.1007/978-94-007-6692-1, 2013.
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Boer, G. J., Kharin, V. V., and Merryfield, W. J.: Decadal predictability and forecast skill, Clim. Dynam., 41, 1817, https://doi.org/10.1007/s00382-013-1705-0, 2013.
Caron, L.-P., Hermanson, L., and Doblas-Reyes, F. J.: Multi-annual forecasts of Atlantic U.S. tropical cyclone wind damage potential, Geophys. Res. Lett., 42, 2417–2425, https://doi.org/10.1002/2015GL063303, 2015.
Download
Short summary
The Decadal Climate Prediction Project (DCPP) investigates our ability to skilfully predict climate variations from a year to a decade ahead by means of a series of retrospective forecasts. Quasi-real-time forecasts are also produced for potential users. In addition, the DCPP investigates how perturbations such as volcanoes affect forecasts and, more broadly, what new information can be learned about the mechanisms governing climate variations by means of case studies of past climate behaviour.