Articles | Volume 9, issue 9
https://doi.org/10.5194/gmd-9-3363-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-9-3363-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0
Hiroshi Yamashita
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Volker Grewe
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Delft University of Technology, Aerospace Engineering, Section Aircraft Noise & Climate Effects, Delft,
the Netherlands
Patrick Jöckel
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik
der Atmosphäre, Oberpfaffenhofen, Germany
Florian Linke
Deutsches Zentrum für Luft- und Raumfahrt, Institut für
Lufttransportsysteme, Hamburg, Germany
Martin Schaefer
Deutsches Zentrum für
Luft- und Raumfahrt, Institut für Antriebstechnik, Cologne, Germany
present affiliation: Bundesministerium für Verkehr und digitale Infrastruktur (BMVI), Bonn, Germany
Daisuke Sasaki
Kanazawa Institute of Technology, Department of Aeronautics,
Hakusan, Japan
Viewed
Total article views: 4,710 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 28 Jan 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,093 | 1,430 | 187 | 4,710 | 727 | 175 | 176 |
- HTML: 3,093
- PDF: 1,430
- XML: 187
- Total: 4,710
- Supplement: 727
- BibTeX: 175
- EndNote: 176
Total article views: 4,225 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Sep 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,834 | 1,211 | 180 | 4,225 | 548 | 165 | 167 |
- HTML: 2,834
- PDF: 1,211
- XML: 180
- Total: 4,225
- Supplement: 548
- BibTeX: 165
- EndNote: 167
Total article views: 485 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 28 Jan 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
259 | 219 | 7 | 485 | 179 | 10 | 9 |
- HTML: 259
- PDF: 219
- XML: 7
- Total: 485
- Supplement: 179
- BibTeX: 10
- EndNote: 9
Cited
12 citations as recorded by crossref.
- Impact on flight trajectory characteristics when avoiding the formation of persistent contrails for transatlantic flights F. Yin et al. 10.1016/j.trd.2018.09.017
- Analysis of Aircraft Routing Strategies for North Atlantic Flights by Using AirTraf 2.0 H. Yamashita et al. 10.3390/aerospace8020033
- Concept of climate-charged airspaces: a potential policy instrument for internalizing aviation's climate impact of non-CO2 effects M. Niklaß et al. 10.1080/14693062.2021.1950602
- Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0 F. Castino et al. 10.5194/gmd-17-4031-2024
- A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories S. Matthes et al. 10.3390/aerospace4030042
- Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0 H. Yamashita et al. 10.5194/gmd-13-4869-2020
- Comparison of Actual and Time-Optimized Flight Trajectories in the Context of the In-Service Aircraft for a Global Observing System (IAGOS) Programme O. Boucher et al. 10.3390/aerospace10090744
- Mitigating the Climate Impact from Aviation: Achievements and Results of the DLR WeCare Project V. Grewe et al. 10.3390/aerospace4030034
- Algorithmic climate change functions for the use in eco-efficient flight planning J. van Manen & V. Grewe 10.1016/j.trd.2018.12.016
- A Comprehensive Survey on Climate Optimal Aircraft Trajectory Planning A. Simorgh et al. 10.3390/aerospace9030146
- Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53 F. Yin et al. 10.5194/gmd-16-3313-2023
- Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories P. Rao et al. 10.3390/aerospace9050231
12 citations as recorded by crossref.
- Impact on flight trajectory characteristics when avoiding the formation of persistent contrails for transatlantic flights F. Yin et al. 10.1016/j.trd.2018.09.017
- Analysis of Aircraft Routing Strategies for North Atlantic Flights by Using AirTraf 2.0 H. Yamashita et al. 10.3390/aerospace8020033
- Concept of climate-charged airspaces: a potential policy instrument for internalizing aviation's climate impact of non-CO2 effects M. Niklaß et al. 10.1080/14693062.2021.1950602
- Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0 F. Castino et al. 10.5194/gmd-17-4031-2024
- A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories S. Matthes et al. 10.3390/aerospace4030042
- Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0 H. Yamashita et al. 10.5194/gmd-13-4869-2020
- Comparison of Actual and Time-Optimized Flight Trajectories in the Context of the In-Service Aircraft for a Global Observing System (IAGOS) Programme O. Boucher et al. 10.3390/aerospace10090744
- Mitigating the Climate Impact from Aviation: Achievements and Results of the DLR WeCare Project V. Grewe et al. 10.3390/aerospace4030034
- Algorithmic climate change functions for the use in eco-efficient flight planning J. van Manen & V. Grewe 10.1016/j.trd.2018.12.016
- A Comprehensive Survey on Climate Optimal Aircraft Trajectory Planning A. Simorgh et al. 10.3390/aerospace9030146
- Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53 F. Yin et al. 10.5194/gmd-16-3313-2023
- Case Study for Testing the Validity of NOx-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories P. Rao et al. 10.3390/aerospace9050231
Saved (preprint)
Latest update: 01 Jan 2025
Short summary
This study introduces AirTraf v1.0 for climate impact evaluations, which performs global air traffic simulations in the ECHAM5/MESSy Atmospheric Chemistry model. AirTraf simulations were demonstrated with great circle and flight time routing options for a specific winter day, assuming an Airbus A330 aircraft. The results confirmed that AirTraf simulates the air traffic properly for the two options. Calculated flight time, fuel consumption and NOx emission index are comparable to reference data.
This study introduces AirTraf v1.0 for climate impact evaluations, which performs global air...