Articles | Volume 8, issue 2
https://doi.org/10.5194/gmd-8-317-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-8-317-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
ASAM v2.7: a compressible atmospheric model with a Cartesian cut cell approach
M. Jähn
Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
U. Vogelsberg
Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
Related authors
No articles found.
Levin Rug, Willi Schimmel, Fabian Hoffmann, and Oswald Knoth
Geosci. Model Dev., 18, 9039–9059, https://doi.org/10.5194/gmd-18-9039-2025, https://doi.org/10.5194/gmd-18-9039-2025, 2025
Short summary
Short summary
We present the Chemical Mechanism Integrator (Cminor) v1.0, a tool to predict concentrations of chemical compounds undergoing arbitrary reactions. Cminor is an advanced, open-source solver to model either combustion chemistry, or atmospheric chemistry and its direct influence on condensation of cloud droplets and the subsequent processing of aerosol. It uses the superdroplet idea, making it particularly feasible for coupling with such models, which is part of future work.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Michael Weger, Oswald Knoth, and Bernd Heinold
Geosci. Model Dev., 14, 1469–1492, https://doi.org/10.5194/gmd-14-1469-2021, https://doi.org/10.5194/gmd-14-1469-2021, 2021
Short summary
Short summary
A new numerical air-quality transport model for cities is presented, in which buildings are described diffusively. The used diffusive-obstacles approach helps to reduce the computational costs for high-resolution simulations as the grid spacing can be more coarse than in traditional approaches. The research which led to this model development was primarily motivated by the need for a computationally feasible downscaling tool for urban wind and pollution fields from meteorological model output.
Cited articles
Adcroft, A., Hill, C., and Marshall, J.: Representation of topography by shaved cells in a height coordinate ocean model, Mon. Weather Rev., 125, 2293–2315, 1997.
Berger, M. and Helzel, C.: A Simplified h-Box Method for Embedded Boundary Grids, Siam J. Sci. Comput., 34, A861–A888.
Bott, A.: Theoretical considerations on the mass and energy consistent treatment of precipitation in cloudy atmospheres, Atmos. Res., 89, 262–269, 2008.
Braun, F. J.: Mesoskalige Modellierung der Bodenhydrologie, Wiss. Berichte des Inst. f. Meteor. u. Klimat. d. Universität Karlsruhe, 30, 2002.
Bryan, G. H. and Fritsch, J. M.: A benchmark simulation for moist nonhydrostatic numerical models, Mon. Weather Rev., 130, 2917–2928, 2002.
Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Cheng, Y. and Brutsaert, W.: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer, Bound.-Lay. Meteorol., 114, 519–53, 2005.
Deardorff, J. W.: Numerical investigation of neutral und unstable boundary layers, J. Atmos. Sci., 29, 91–115, 1972.
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vogel, G.: A Description of the Nonhydrostatic Regional COSMO Model, Deutscher Wetterdienst, 2011.
Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der Vorst, H. A.: Numerical Linear Algebra for High-Performance Computers, Society for Industrial and Applied Mathematics, 1998.
Doyle, J. D., Gaberšek, S., Jiang, Q., Bernardet, L., Brown, J. M., Dörnbrack, A., Filaus, E., Grubišić, V., Knoth, O., Koch, S., Schmidli, J., Stiperski, I., Vosper, S. and Zhong, S.: An Intercomparison of T-REX Mountain-Wave Simulations and Implications for Mesoscale Predictability, Mon. Weather Rev., 139, 2811–2831, 2011.
Eisenstat, S.: Efficient implementation of a class of CG methods, SIAM J. Sci. Stat. Comput., 2, 1–4, 1981.
Emanuel, K. A.: Atmospheric Convection, Oxford University Press, 1994.
Engelmann, R., Ansmann, A., Horn, S., Seifert, P., Althausen, D., Tesche, M., Esselborn, M., Fruntke, J., Lieke, K., Freudenthaler, V., and Gross, S.: Doppler lidar studies of heat island effects on vertical mixing of aerosols during SAMUM-2, Tellus B, 63, 448–458, 2011.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res., 101, 3747–3764, 1996.
Good, B., Gadian, A., Lock, S. J., and Ross, A.: Performance of the cut-cell method of representing orography in idealized simulations, Atmos. Sci. Lett., 15, 44–49, 2014.
Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations II, Springer, 1996.
Hicken, J., Ham, F., Militzer, J., and Koksal, M.: A shift transformation for fully conservative methods: turbulence simulation on complex, unstructured grids, J. Comput. Phys., 208, 704–714, 2005.
Hinneburg, D. and Knoth, O.: Non-dissipative cloud transport in Eulerian grid models by the volume-of-fluid (VOF) method, Atmos. Environ., 39, 4321–4330, 2005.
Horn, S.: ASAMgpu V1.0 – a moist fully compressible atmospheric model using graphics processing units (GPUs), Geosci. Model Dev., 5, 345–353, https://doi.org/10.5194/gmd-5-345-2012, 2012.
Hundsdorfer, W., Koren, B., Loon, M. V., and Verwer, J. G.: A positive finite-difference advection scheme, J. Comput. Phys., 117, 35–46, 1995.
Jebens, S., Knoth, O., and Weiner, R.: Partially implicit peer methods for the compressible Euler equations, J. Comput. Phys., 230, 4955–4974, 2011.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-Bustamante, E.: A revised scheme for the WRF surface layer formulation, Mon. Weather Rev., 140, 898–918, 2012.
John, V. and Rang, J.: Adaptive time step control for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 199, 514–524, 2010.
Klein, R., Bates, K. R., and Nikiforakis, N.,: Well Balanced Compressible Cut-Cell Simulation of Atmospheric Flow, Phil. Trans. R. Soc. B, 367, 4559–4575, 2009.
Kleissl, J., Kumar, V., Meneveau, C., and Parlange, M. B.: Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions, Water Resour. Res., 42, W06D10, https://doi.org/10.1029/2005WR004685, 2006.
König, M.: Large-eddy simulation modelling for urban Scale, Ph.D. thesis, University of Leipzig, 2013.
Knoth, O.: Compressible atmospheric modeling at all scales, in: Oberwolfach Reports 3, Workshop: Mathematical Theory and Modelling in Atmosphere-Ocean Science, 2374–2377, 2006.
Kong, L. C., Tunçel, L., and Xiu, N. H.: The Fischer–Burmeister complementarity function on Euclidean Jordan algebras, Pac. J. Optim., 6, 423–440, 2010.
Kunz, M. and Wassermann, S.: Sensitivity of flow dynamics and orographic precipitation to changing ambient conditions in idealised model simulations, Meteor. Z., 20, 199–215, https://doi.org/10.1127/0941-2948/2011/0221, 2011.
Lanser, D., Blom, J. G., and Verwer, J. G.: Time integration of the shallow water equations in spherical geometry, J. Comput. Phys., 171, 373–393, 2001.
Lilly, D. K.: On the numerical simulation of buoyant convection, Tellus, 14, 148–172, 1962.
Lilly, D. K.: The representation of small scale turbulence in numerical simulation experiments, IBM Scientific Computing Symposium on environmental sciences, 195–210, 1967.
Lock, S.-J., Bitzer, H.-W., Coals, A., Gadian, A., and Mobbs, S.: Demonstration of a cut-cell representation of 3D orography for studies of atmospheric flows over very steep hills, Mon. Weather Rev., 140, 411–424, 2012.
McCumber, M. D.: A numerical simulation of the influence of heat and moisture fluxes upon mesoscale circulation, Ph.D. thesis, Dept. of Environmental Science, University of Virginia, Charlottesville, VA, 1980.
Ng, Y.-T., Chen, H., Min, C., and Gibou, F.: Guidelines for Poisson Solvers on Irregular Domains with Dirichlet Boundary Conditions Using the Ghost Fluid Method, J. Sci. Comput., 41, 300–320, 2009.
Noilhan, J. and Planton, S.: A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536–549, 1989.
Pielke, R. A.: Mesoscale Meteorological Modeling, 2nd Edn., Academic Press, 1984.
Porté-Agel, F., Meneveau, C., and Parlange, M. B.: A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer, J. Fluid Mech., 415, 261–284, 2000.
Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., and Iga, S.: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, J. Comput. Phys., 227, 3486–3514, 2008.
Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., and Ringler, T. D.: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering, Mon. Weather Rev., 140, 3090–3105, 2012.
Schaer, C., Leuenberger, D., Fuhrer, O., Lüthi, D., and Girard, C.: A new terrain-following vertical coordinate formulation for atmospheric prediction models, Mon. Weather Rev., 130, 2459–2480, 2002.
Scotti, A., Meneveau, C., and Lilly, D. K.: Generalized Smagorinsky model for anisotropic grids, Phys. Fluids A-Fluid, 5, 2306–2308, 1993.
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics parameterization for mixed-phase clouds, Meteorol. Atmos. Phys., 92, 45–66, 2006.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, M., Duda, K. G., Huang, X. Y., Wang, W., and Powers, J. G.: A description of the Advanced Research WRF Version 3, Tech. rep., National Center for Atmospheric Research, 2008.
Smagorinsky, J.: General circulation experiments with the primitive equations, Mon. Weather Rev., 164, 91–99, 1963.
Steppeler, J., Bitzer, H.-W., Minotte, M., and Bonaventura, L.: Nonhydrostatic atmospheric modeling using a z-coordinate representation, Mon. Weather Rev., 130, 2143–2149, 2002.
Steppeler, J., Bitzer, H.-W., Janjic, Z., Schättler, U., Prohl, P., Gjertsen, U., Torrisi, L., Parfinievicz, J., Avgoustoglou, E ., and Damrath, U.: Prediction of Clouds and Rain Using a z-Coordinate Nonhydrostatic Model, Mon. Weather Rev., 134, 3625–3643, 2006.
Steppeler, J., Park, S.-H. and Dobler, A.: Forecasts covering one month using a cut-cell model, Geosci. Model Dev., 6, 875–882, 2013.
Straka, J. M., Wilhelmson, R. B., Wicker, L. J., Anderson, J. R., and Droegemeier, K. K.: Numerical solutions of a non-linear density current: a benchmark solution and comparisons, Int. J. Numer. Meth. Fl., 17, 1–22, 1993.
Sweby, P. K.: High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995–1011, 1984.
Tripoli, G. J. and Smith, E. A.: Introducing Variable-Step Topography (VST) coordinates within dynamically constrained Nonhydrostatic Modeling System (NMS). Part 1: VST formulation within NMS host model framework, Dynam. Atmos. Oceans, 66, 28–57, 2014a.
Tripoli, G. J. and Smith, E. A.: Introducing Variable-Step Topography (VST) coordinates within dynamically constrained Nonhydrostatic Modeling System (NMS). Part 2: VST performance on orthodox obstacle flows, Dynam. Atmos. Oceans, 66, 10–27, 2014b.
Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
Van Leer, B.: Upwind-difference methods for aerodynamic problems governed by the Euler equations, in: Lectures in Applied Mathematics, 327–336, 1994.
Walko, R. L. and Avissar, R.: The Ocean–Land–Atmosphere Model (OLAM). Part I: Shallow-water tests, Mon. Weather Rev., 136, 4033–4044, 2008a.
Walko, R. L. and Avissar, R.: The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and tests of the nonhydrostatic dynamic core, Mon. Weather Rev., 136, 4045–4062, 2008b.
Wicker, L. J. and Skamarock, W. C.: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing, Mon. Weather Rev., 126, 1992–1999, 1998.
Yamazaki, H. and Satomura, T.: Vertically combined shaved cell method in a z-coordinate nonhydrostatic atmospheric model, Atmos. Sci. Lett., 9, 171–175, 2008.
Yamazaki, H. and Satomura, T.: Nonhydrostatic Atmospheric Modeling Using a Combined Cartesian Grid, Mon. Weather Rev., 138, 3932–3945, 2010.
Yamazaki, H. and Satomura, T.: Non-hydrostatic atmospheric cut cell model on a block-structured mesh, Atmos. Sci. Lett., 13, 29–35, 2012.
Short summary
A detailed description of the All Scale Atmospheric Model (ASAM) is presented. To include obstacles or orographical structures within the Cartesian grid, the cut cell method is used. Discretization is realized by a mixture of finite differences and finite volumes together with a linear-implicit Rosenbrock time integration scheme. Results of idealized test cases are shown, which include conservation tests as well as convergence studies with respect to model accuracy.
A detailed description of the All Scale Atmospheric Model (ASAM) is presented. To include...