Articles | Volume 8, issue 2
Geosci. Model Dev., 8, 317–340, 2015
Geosci. Model Dev., 8, 317–340, 2015

Model description paper 18 Feb 2015

Model description paper | 18 Feb 2015

ASAM v2.7: a compressible atmospheric model with a Cartesian cut cell approach

M. Jähn et al.

Related authors

Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements
Fernando Chouza, Oliver Reitebuch, Michael Jähn, Stephan Rahm, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 4675–4692,,, 2016
Short summary
Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations
M. Jähn, D. Muñoz-Esparza, F. Chouza, O. Reitebuch, O. Knoth, M. Haarig, and A. Ansmann
Atmos. Chem. Phys., 16, 651–674,,, 2016
Short summary

Related subject area

Atmospheric sciences
Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central Himalaya
Jaydeep Singh, Narendra Singh, Narendra Ojha, Amit Sharma, Andrea Pozzer, Nadimpally Kiran Kumar, Kunjukrishnapillai Rajeev, Sachin S. Gunthe, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 1427–1443,,, 2021
Short summary
On the suitability of second-order accurate finite-volume solvers for the simulation of atmospheric boundary layer flow
Beatrice Giacomini and Marco G. Giometto
Geosci. Model Dev., 14, 1409–1426,,, 2021
Short summary
An urban large-eddy-simulation-based dispersion model for marginal grid resolutions: CAIRDIO v1.0
Michael Weger, Oswald Knoth, and Bernd Heinold
Geosci. Model Dev., 14, 1469–1492,,, 2021
Short summary
Applying a new integrated mass-flux adjustment filter in rapid update cycling of convective-scale data assimilation for the COSMO model (v5.07)
Yuefei Zeng, Alberto de Lozar, Tijana Janjic, and Axel Seifert
Geosci. Model Dev., 14, 1295–1307,,, 2021
Short summary
On the model uncertainties in Bayesian source reconstruction using an ensemble of weather predictions, the emission inverse modelling system FREAR v1.0, and the Lagrangian transport and dispersion model Flexpart v9.0.2
Pieter De Meutter, Ian Hoffman, and Kurt Ungar
Geosci. Model Dev., 14, 1237–1252,,, 2021
Short summary

Cited articles

Adcroft, A., Hill, C., and Marshall, J.: Representation of topography by shaved cells in a height coordinate ocean model, Mon. Weather Rev., 125, 2293–2315, 1997.
Berger, M. and Helzel, C.: A Simplified h-Box Method for Embedded Boundary Grids, Siam J. Sci. Comput., 34, A861–A888.
Bott, A.: Theoretical considerations on the mass and energy consistent treatment of precipitation in cloudy atmospheres, Atmos. Res., 89, 262–269, 2008.
Braun, F. J.: Mesoskalige Modellierung der Bodenhydrologie, Wiss. Berichte des Inst. f. Meteor. u. Klimat. d. Universität Karlsruhe, 30, 2002.
Bryan, G. H. and Fritsch, J. M.: A benchmark simulation for moist nonhydrostatic numerical models, Mon. Weather Rev., 130, 2917–2928, 2002.
Short summary
A detailed description of the All Scale Atmospheric Model (ASAM) is presented. To include obstacles or orographical structures within the Cartesian grid, the cut cell method is used. Discretization is realized by a mixture of finite differences and finite volumes together with a linear-implicit Rosenbrock time integration scheme. Results of idealized test cases are shown, which include conservation tests as well as convergence studies with respect to model accuracy.