Articles | Volume 8, issue 9
https://doi.org/10.5194/gmd-8-2929-2015
https://doi.org/10.5194/gmd-8-2929-2015
Development and technical paper
 | 
23 Sep 2015
Development and technical paper |  | 23 Sep 2015

MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes

I. Kriest and A. Oschlies

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Iris Kriest on behalf of the Authors (27 Jul 2015)
ED: Publish as is (30 Aug 2015) by Andy Ridgwell
AR by Iris Kriest on behalf of the Authors (03 Sep 2015)
Download
Short summary
We use a global model of oceanic P, N, and O2 cycles to investigate consequences of uncertainties in description of organic matter sinking, remineralization, denitrification, and N2-Fixation. After all biogeochemical and physical processes have been spun-up into a dynamically consistent steady-state, particle sinking and oxidant affinities of aerobic and anaerobic remineralization determine the extent of oxygen minimum zones, global nitrogen fluxes, and the oceanic nitrogen inventory.