Articles | Volume 8, issue 8
Geosci. Model Dev., 8, 2587–2595, 2015
https://doi.org/10.5194/gmd-8-2587-2015
Geosci. Model Dev., 8, 2587–2595, 2015
https://doi.org/10.5194/gmd-8-2587-2015

Model description paper 14 Aug 2015

Model description paper | 14 Aug 2015

Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

M. J. Prather

Related authors

CO2 Surface Variability, from the Stratosphere or Not?
Michael J. Prather
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-98,https://doi.org/10.5194/esd-2021-98, 2021
Preprint under review for ESD
Short summary
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven Wofsy
Atmos. Chem. Phys., 21, 13729–13746, https://doi.org/10.5194/acp-21-13729-2021,https://doi.org/10.5194/acp-21-13729-2021, 2021
Short summary
From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere-troposphere exchange of ozone
Daniel J. Ruiz and Michael J. Prather
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-635,https://doi.org/10.5194/acp-2021-635, 2021
Revised manuscript accepted for ACP
Short summary
Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model
Qi Tang, Michael J. Prather, Juno Hsu, Daniel J. Ruiz, Philip J. Cameron-Smith, Shaocheng Xie, and Jean-Christophe Golaz
Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021,https://doi.org/10.5194/gmd-14-1219-2021, 2021
Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission
Samuel R. Hall, Kirk Ullmann, Michael J. Prather, Clare M. Flynn, Lee T. Murray, Arlene M. Fiore, Gustavo Correa, Sarah A. Strode, Stephen D. Steenrod, Jean-Francois Lamarque, Jonathan Guth, Béatrice Josse, Johannes Flemming, Vincent Huijnen, N. Luke Abraham, and Alex T. Archibald
Atmos. Chem. Phys., 18, 16809–16828, https://doi.org/10.5194/acp-18-16809-2018,https://doi.org/10.5194/acp-18-16809-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Analysis of the MODIS above-cloud aerosol retrieval algorithm using MCARS
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022,https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary
How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35)
Xueying Yu, Dylan B. Millet, and Daven K. Henze
Geosci. Model Dev., 14, 7775–7793, https://doi.org/10.5194/gmd-14-7775-2021,https://doi.org/10.5194/gmd-14-7775-2021, 2021
Short summary
Reduced-complexity air quality intervention modeling over China: the development of InMAPv1.6.1-China and a comparison with CMAQv5.2
Ruili Wu, Christopher W. Tessum, Yang Zhang, Chaopeng Hong, Yixuan Zheng, Xinyin Qin, Shigan Liu, and Qiang Zhang
Geosci. Model Dev., 14, 7621–7638, https://doi.org/10.5194/gmd-14-7621-2021,https://doi.org/10.5194/gmd-14-7621-2021, 2021
Short summary
High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global tropospheric atmospheric chemistry source–receptor model (GNAQPMS-SM)
Qian Ye, Jie Li, Xueshun Chen, Huansheng Chen, Wenyi Yang, Huiyun Du, Xiaole Pan, Xiao Tang, Wei Wang, Lili Zhu, Jianjun Li, Zhe Wang, and Zifa Wang
Geosci. Model Dev., 14, 7573–7604, https://doi.org/10.5194/gmd-14-7573-2021,https://doi.org/10.5194/gmd-14-7573-2021, 2021
Short summary
Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021,https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary

Cited articles

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species, Atmos. Chem. Phys., 8, 4141–4496, https://doi.org/10.5194/acp-8-4141-2008, 2008.
Bian, H. S. and Prather, M. J.: Fast-J2: accurate simulation of stratospheric photolysis in global chemical models, J. Atmos. Chem., 41, 281–296, 2002.
Blitz, M. A., Heard, D. E., and Pilling, M. J.: Study of acetone photodissociation over the wavelength range 248–330 nm: evidence of a mechanism involving both the singlet and triplet excited states, J. Phys. Chem. A, 110, 6742–6756, https://doi.org/10.1021/Jp056276g, 2006.
Briegleb, B. P.: Delta-Eddington Approximation for solar-radiation in the NCAR Community Climate Model, J. Geophys. Res., 97, 7603–7612, 1992.
Davis, A. B. and Marshak, A.: Solar radiation transport in the cloudy atmosphere: a 3-D perspective on observations and climate impacts, Rep. Prog. Phys., 73, 026801, https://doi.org/10.1088/0034-4885/73/2/026801, 2010.
Download
Short summary
A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J provides a practical and accurate method for modeling atmospheric chemistry, which can be extended to solar heating rates.