Articles | Volume 19, issue 2
https://doi.org/10.5194/gmd-19-627-2026
https://doi.org/10.5194/gmd-19-627-2026
Model description paper
 | 
22 Jan 2026
Model description paper |  | 22 Jan 2026

A modelling system for identification of maize ideotypes, optimal sowing dates and nitrogen fertilization under climate change – PREPCLIM-v1

Mihaela Caian, Catalin Lazar, Petru Neague, Antoanela Dobre, Vlad Amihaesei, Zenaida Chitu, Adrian Irasoc, Andreea Popescu, and George Cizmas

Cited articles

Adams, R. M., Hurd, B. H., Lenhart, S., and Leary, N.: Effects of global climate change on agriculture: an interpretative review, Climate Research, 11, 19–30, https://doi.org/10.3354/cr011019,1998. 
Angus, J. F., Mackenzie, D. H., Morton, R., and Schafer, C. A.: Phasic development in field crops II. Thermal and photoperiodic responses of spring wheat, Field Crops Research, 4, 269–283, https://doi.org/10.1016/0378-4290(81)90078-2, 1981. 
Arnell, N. W. and Freeman, A.: The effect of climate change on agro-climatic indicators in the UK, Climatic Change, 165, 40, https://doi.org/10.1007/s10584-021-03054-8, 2021. 
Baez-Gonzalez, A. D., Kiniry, J. R., Maas, S. J., Tiscareno, M., Macias, J., Mendoza, J. L., Richardson, C. W., Salinas, J., and Manjarrez, J. R.: Large-area maize yield forecasting using leaf area index based yield model, Agron. J., 97, 418–425, https://doi.org/10.2134/agronj2005.0418, 2005. 
Download
Short summary
We present the implementation of a new climate-phenology integrated system for adaptation to climate change, using high-resolution scenarios and the Decision Support System for Agrotechnology Transfer crop model, with new modules developed for optimal agromanagement and genotypes identification using a hybrid deterministic/machine learning Genetic-Algorithms method. The system is user-interactive in real time. It has been implemented for South Romania and is applicable and extendable for Europe.
Share