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Abstract. Climate change significantly threatens crop yields
levels and stability. The complex interplay of factors at the
local scale makes assessing these impacts difficult, requiring
coupled climate-phenology models, which integrate climate
data and crop information. Identifying suitable local man-
agement practices and crop varieties under future conditions
becomes essential for developing effective adaptation strate-
gies.

This study presents the implementation and application
of an integrated climate-phenology adaptation support mod-
elling system. This is based on regional CORDEX climate
models and the CERES Maize model from the DSSAT plat-
form. Novel modules for optimal management and genotype
identification under climate change have been developed
in the system, employing a hybrid approach that combines
deterministic modelling with machine learning (ML) tech-
niques and genetic algorithms. This system was run as a re-
gional pilot over Southern Romania, operating in real-time in
interaction with users, performing agro-climate projections
(combination of fertilization, sowing date, genotype) and
providing best crop management simulated under climate
change projections. Multi-model ensemble simulations were
conducted for two radiative forcing scenarios RCP4.5 and
RCP8.5 and twelve management scenarios, yielding novel
results for the region. Results indicate a projected decrease
in maize yields for the current genotype across all tested sce-
narios, primarily attributed to a shortened grain-filling period
and reduced fertilization efficiency under warmer conditions.
The analysis warns about a projected narrowing of the agro-

management options for maintaining a high yield level. How-
ever, we find an added value from the impact of genotype se-
lection in mitigating climate change impacts, even in extreme
years. Genotype optimisation across six crossed cultivar de-
pendent parameters revealed that while maximum yields de-
cline, specific genotype windows exhibit increased interme-
diate yields under future climates compared to current condi-
tions. Sensitivity analysis identified the thermal time require-
ments during juvenile and maturity stages as the most critical
factors influencing genotype performance under warmer cli-
mates.

This research demonstrates the added value of combining
deterministic and data-driven modelling approaches within a
coupled climate-crop system for developing effective adap-
tation strategies, including optimised fertilization pathways
that contribute to climate change mitigation.

1 Introduction

According to the [PCC (2022), climate change is unequivo-
cal, and its impacts appear more worrying and complex today
than decades ago. While research on the effects of climate
change on crop yields and agricultural harvests has advanced
(Arnell and Freeman, 2021; Hatfield et al., 2020; Rezaei et
al., 2023), translating these findings into actionable solutions
and scales remains a challenge. This is primarily due to the
high complexity of factors that intervene at the local scale
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of the crop (Eyring et al., 2021; Malhi et al., 2021) includ-
ing sensitivities of the exchanges to variations in climate
sub-components as atmosphere/soil/biosphere’s ecosystems
under climate change, natural causes and human activities
(Wheeler and Braun, 2013; Xie et al., 2023).

Given the projected global population increase estimated
in scientific reports to over 9 billion by 2050 (Godfray et
al., 2010), global food production would have to increase by
70 %—100 % to meet the growing demand (Smil, 2005; Sel-
varaju et al., 2011; World Bank, World Development Report,
2008). This challenge is further compounded by the agro-
climatic conditions expected to become vulnerable and grad-
ually decline due to climate change, particularly impacting
water availability (Stehr and Von Storch, 2009; Van Ittersum
etal., 2013; Villalobos et al., 2012). Another challenge of the
problem comes from the need that approaches, and sustain-
able solutions must not only address the needs of agricultural
producers but also align with climate change mitigation goals
for 2050, aiming for climate neutrality (Mitchell et al., 2021;
Semenov and Stratonovitch, 2015).

Early studies investigating the impact of climate change
on crop yields emphasized the necessity of high-resolution
modelling approaches. These models should accurately rep-
resent management practices and the local effects of climate
variables, such as temperature and precipitation (Adams et
al., 1998; McKee et al., 1993; Trnka et al., 2014). These
affect thermal and water stress and plant physiological pro-
cesses like stem water potential, stomatal opening, leaf tran-
spiration efficiency (Espadafor et al., 2017). At the regional
scale, the relationship between crop yield and water and ther-
mal availability may exhibit strong dependencies on the crop
type, geographical location, temporal scale, plant develop-
mental stage and management (Berti et al., 2019; Ceglar et
al., 2020; Marcinkowski and Piniewski, 2018; Webber et al.,
2018, 2020; Wu et al., 2021). For instance, simulations con-
ducted by Kothari et al. (2022) in regions with arid climates,
indicated for future climate change a significant ( ~ 30 %)
decrease without adaptation, but a potential increase (15 %)
in corn yields under irrigated or under radiation-based geno-
type efficient use. These findings underscore the critical need
for regional simulations that incorporate phenological char-
acteristics with accurate soil moisture estimates to evaluate
the effectiveness of various irrigation strategies under future
climate scenarios.

In addition to atmospheric conditions, soil properties sig-
nificantly influence plant growth. These influences occur
through physics-based interactions with climate and through
alterations in soil chemical composition. Rising air tempera-
tures have been shown to impact the soil carbon budget, with
a decline in soil carbon potentially affecting plant and root
processes, biochemical cycles, and species composition (Pa-
tra et al., 2022).

Crop modelling at local, regional and global scale has sig-
nificantly advanced, enhancing our understanding of crop
systems and enabling the simulation and projection of future
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yields. These simulations (Chen and Tao, 2022; Schauberger
et al., 2020; Tao et al., 2009; Tsvetsinskaya et al., 2001) con-
sistently project global mean harvest reductions with differ-
ences in the regional pattern of climate change impact on
crop and harvest (Asseng et al., 2015; Li et al., 2022). Not
only projected spatial but also temporal impact of changes
appears larger and accelerated, motivating intensified efforts
on seasonal and multi-annual predictions of plant develop-
ment and harvest (Baez-Gonzalez et al., 2005; Dainelli et
al., 2022; Jin et al., 2022). Analysis of these simulations em-
phasized also the need to include crop uncertainty in climate
scenarios assessments (Basso et al., 2019; Chapagain et al.,
2023; Meehl et al., 2007; Rosenzweig et al., 2013).

Meanwhile, model simulations emerged as useful tool in
plant breeding analysis (Banterng et al., 2004; Bernardo,
2020; Cooper and Messina, 2023; Mamassi et al., 2023), sup-
porting the development of superior genotypes and breed-
ing methods for maximizing crop performance. These sim-
ulations have proven effective in guiding cultivar selection
through techniques such as parental selection and breeding
by design (Peleman and Van der Voort, 2003; Qiao et al.,
2022).

In most recent years climate-crop modelling extended
from deterministic crop models (Boogaard et al., 2013;
Morell et al., 2016) to data-driven techniques approaches
for assessing crop response to weather and climate change
(Chang et al., 2023; Meroni et al., 2021; Morales and Villalo-
bos, 2023; Schwalbert et al., 2020; Zhuang et al., 2024). Sta-
tistical methods as well as machine learning (ML) used for
crop forecast and modelling were however shown to bring
for now, limited benefits (Paudel et al., 2023), pointing to
possibly hybrid techniques that include physical process in
the modelling as a key approach for this challenging issue.
On the other hand, breeding optimization techniques using
fully deterministic model simulations require a huge number
of simulations, analysis and inter-comparisons of predicted
crop performance (Pfeiffer and McClafferty, 2007; Wang et
al., 2023).

Here we present a novel hybrid approach developed in the
frame of the PREPCLIM (“Preparing for climate change”)
project in which we solve plant phenology using determinis-
tic modelling and merge this technique with an on-line ML-
genetic algorithms (GA) iteratively selecting along simula-
tions the multiple parameter range of crop cultivar parame-
ters, according to user-defined criteria for optimal target. The
GA simulates the evolution of a population by applying in
iterations, genetic operators (selection, crossover, mutation)
to a set of candidate solutions (chromosomes). The chromo-
somes represent potential solutions to the problem and are
encoded as strings of binary or symbolic values, with their
fitness assessed by a problem-specific evaluation function,
here user-required based. GAs have demonstrated success for
optimizing agricultural practices using models like DSSAT
(Hoogenboom et al., 2019) for irrigation and fertilizer appli-
cations (Bai et al., 2022; Wang et al., 2023).
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The hybrid approach implemented in this work, focused
on ideotype identification, presents the advantage of phys-
ically treating the crop complex process along optimizing
iterations, thus allowing specific inclusion and understand-
ing of physical causes of responses and of the optimal
paths in various climate and management scenarios. Further-
more, it enhances the ability of choosing optimum condi-
tions from continuous multi-dimensional intervals for gene
parameters, as opposed to discrete sets. The continuum val-
ues approach is an important feature mainly for isolated ex-
treme yield detection, or broader parameters’ range and high
non-linearity, both aspects of increasing relevance in the con-
text of climate change. Our findings suggest a narrowing
of agro-management adaptation opportunities under warmer
climates, further emphasizing the importance of this hybrid
genotype-agro-management approach to support finding so-
lutions for the future.

The developed system aims to provide efficient and oper-
ational support for farmers and stakeholders. It leverages the
state-of-the art DSSAT model, a widely used and extensively
validated platform for agricultural modelling across diverse
applications. The DSSAT model, incorporating complex pa-
rameterizations for soil processes, surface-atmosphere ex-
change, plant development stages, and their interactions with
climate and management practices, undergoes continuous re-
finement through ongoing research and regional calibrations.
For this study, the model was specifically adapted to the
unique soil characteristics of the pilot region, including pa-
rameters such as porosity, composition per soil layers, and
thermal properties.

Section 2 presents the developed system and its data flow.
Sections 3.1 and 3.2 present results obtained using the system
to simulate projected changes in plant phenology and crop
parameters for the target region, under various climate and
management scenarios, for the current control genotype. Sec-
tion 3.3 discusses results obtained using the system’s geno-
type optimization package along agro-management scenar-
ios. Finally, Sect. 4 presents perspectives and conclusions.

2 Data and methods
2.1 Study region

Recent observations indicate the Southern Romania as be-
ing one of the main hot-spots of climate warming in Eu-
rope in summer, with high and persistent extreme heat stress
and drought being observed (Copernicus report, 2024). Fur-
ther, projections of climate for the region show an amplifica-
tion of this response in climate scenarios, mainly in RCP8.5
(Fig. Sla in the Supplement). For this region, also total pre-
cipitation is projected to decrease, while there is an enhance-
ment of extreme precipitation occurrence and a time shift to-
wards late spring (Fig. S1b). These tendencies are increas-
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ingly threatening agro-climate conditions in the region, pro-
jecting a warmer and drier climate with enhancing extremes.

2.2 Scientific approach

Projected changes in agro-climatic parameters for Roma-
nia were assessed under two Representative Concentration
Pathways (RCPs): RCP4.5 and RCPS.5. These changes were
computed as anomalies relative to historical simulations
(Hist) using an ensemble of three CMIPS-CORDEX (Benes-
tad et al., 2021; Taylor et al., 2012) high resolution (11 km)
climate models, based on the CNRM, EC-EARTH, and MPI
global models coupled to the regional climate model RCA4.
Subsequently, the DSSAT crop model (Hoogenboom et al.,
2019; Jones et al., 2003) was employed to simulate projected
changes in phenological and harvest parameters. The DSSAT
model was driven by atmospheric conditions derived from
each model of the ensemble for the historical period and for
the two RCP emission scenarios.

A software package was developed for the DSSAT
model that performs identification of optimal model param-
eters based on user-defined: criteria for optimum, climate-
management scenario, region, and time horizon. Optimiza-
tion goals include maximizing harvest, ensuring stable yields
over time, and minimizing nitrogen leaching beyond the root
zone (reducing water pollution risk). Management scenarios
allow users to explore optimal cross-combinations of sowing
dates, fertilization amounts, and genotypes.

Five main cultivar-specific parameters (P1 to P5) char-
acterizing the maize genotype were analysed across wide
ranges of physically realistic values, considering both current
and extreme future climate projections for the target area. P1
represents the thermal time from seedling emergence to the
end of the juvenile phase, ranging in these simulations from
100 to 500 degree days above a base temperature of 8 °C.
It significantly influences crop flowering times (Liu et al.,
2020), water availability, and ultimately, yield. Studies have
shown that utilizing longer-season maize cultivars (depen-
dent also on P1) can lead to increased harvest in humid re-
gions but decreased harvest in semi-humid regions (Mi et al.,
2021).

Longer days increase the period of plant development only
up to a threshold value, here 12.5h. When the light period
of 24 h cycle exceeds the threshold of 12.5h the advance-
ment towards flowering may be delayed in a measure that it
is genetically controlled. P2 measures (in days) the delay in
plant growth for each hour of photoperiod above this thresh-
old, and here is ranging in simulations from 0.1 to 2.6d. P2
influences the flowering time (Langworthy et al., 2018) and
the rate of plant development, with long-day plants exhibit-
ing faster development under longer day lengths (Angus et
al., 1981). Some tropical maize cultivar need longer nights
to flower (short day plants). Related to these, studies have
demonstrated the significant role of P2 in mitigating the neg-
ative impacts of waterlogging in warmer climates (Liu et al.,
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2023). P3, the thermal time from silking to physiological ma-
turity, here tested for values from 500 to 1500 degree days
above a base temperature of 8 °C, significantly influences
maturity dates. It also has a main role in plant stress lev-
els (longer-maturity hybrids increase harvest but under wa-
ter stress it may provide lower yield (Grewer et al., 2024; Su
et al., 2021)) and grain moisture at maturity (Tsimba et al.,
2013). P4, the kernel filling rate parameter (ranging from 6
to 12mgd~"), influences grain filling duration, desiccation,
moisture at maturity and harvest (Chazarreta et al., 2021). PS5,
the phyllochron interval, the thermal time between succes-
sive leaves tip appearances (expressed in degree-days above
a base temperature of 8 °C, ranging in these simulations from
3 to 70 °C-days), is a critical parameter for estimating the
duration of vegetative development (Birch et al., 1998; Xu
et al., 2023). P4 and P5 are important parameters of optimal
pant adaptation to climate conditions, since they are drivers
of the phenological response and yield formation, in conjunc-
tion with the temperature, radiation, humidity, water stress.
These genotype (or cultivar specific) parameters are the pri-
mary ones considered in DSSAT model parameterizations for
plant development processes (Hoogenboom et al., 2019).

The parameter ranges were selected based on extensive
genetic database of the original model, and here extended
in order to allow investigation of the extreme changes in-
duced by climate scenarios. The control values for these
cultivar-specific parameters belong to hybrid PIO 3475:
P1=200, P2=0.7, P3 =800, P4=28.60, and P5=38.90.
All the simulations for combinations of parameters values
(cross-parameter simulations) were performed under Hist,
RCP4.5, and RCP8.5 emission scenarios. For each scenario,
crop projections simulations were conducted for twelve agro-
management scenarios (Table 1) consisting of sowing date
changes and fertilization treatments, at values characteristic
for the region after the year 2000 (Table 1a), for each model
of the ensemble. Then, for the genotype sensitivity simula-
tions (e.g. the optimal crop response to genotype) we have
chosen a lower fertilisation (Table 1b), already used in the
region before the year 2000 (when the number of subsistence
farms was high), value aimed for potential mitigation (Ursu,
2025), in synergy with genotype selection. It was shown that
Romania, with a fertiliser consumption of 46 kgha™!, had
an efficiency comparable to countries with much higher con-
sumption, indicating a significant regional potential for im-
provement without increasing environmental pressure (Ursu,
2025).

The twelve agro-management scenarios encompass four
sowing dates (spaced five days apart) and three fertilization
levels (zero, the regional reference value and its double, Ta-
ble 1). For each agro-management scenario, genotype opti-
mization (finding the optimal set of parameters values un-
der given climate -agro-management and optimum criteria)
was performed using two methods: (1) discretized parameter-
space runs with subsequent post-processing ordering, and
(2) continuum parameter-space search with iterative selec-
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tion during simulations, employing genetic algorithms (GA).
The optimization can be performed for each year, allowing
the optimal management and cultivars to evolve over time,
and also allowing further investigations of response e.g. dur-
ing critical years, or in clusters of climate conditions or time-
slices, or ensemble means.

The GA-based method employs an iterative approach. It
commences with an initial population of randomly gener-
ated solutions (chromosomes) and undergoes iterative cycles
(generations). In each generation, a selection process is per-
formed to choose the fittest chromosomes for reproduction,
based on their fitness scores. Subsequently, crossover (re-
combination) and mutation operators are applied to the se-
lected chromosomes, generating offspring that inherit traits
from their parents. The new offspring replace some of the
least fit individuals in the population, ensuring that the aver-
age fitness of the population improves over time. The con-
vergence of the GA toward an optimal or near-optimal so-
lution is achieved by balancing exploration (searching the
problem’s space for diverse solutions exploiting promising
regions) and exploitation (refining the best solutions found
so far).

2.3 The Software

Here GA has been newly applied to develop an innovative
crop selection algorithm, optimizing genotypes across vari-
ous agro-management scenarios. Steps along the workflow
of ML algorithms for optimal genotype identification are:

1. Start with 10 randomly chosen solutions within the
bounds of P1-P5;

2. Calculate the mean and standard deviation of harvest of
each solution for the time slice;

3. Calculate fitness = (mean of harvest) — (standard devi-
ation of harvest)/4;

4. Randomly choose 4 pairs of “parents”, with the proba-
bility being chosen weighted by the fitness;

5. For each pair of parents A and B, create identical chil-

dren “a” and “b” to the parents, then choose a random
number of P’s to be subjected to crossover, called x;

6. For each child, modify Px as follows:

Pxa=B x Pxa+ (1 — B) x Pxb;
Pxb=(1—B)x Pxa+ B x Pxb

where Pxa is the value of the x parameter of child “a”
(initially identical to that of parent A), and B is the
blending factor, set in this paper to 0.75. This technique
is called blending, and it generates offspring chromo-
somes that inherit real-valued traits from both parents
while exploring the search space between the parents’
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positions. The blending crossover promotes a smoother
and more gradual search for optimal solutions in con-
tinuous domains.

7. Then take each child, and with a probability of 0.5 per-
form a mutation on one of its chromosomes. This means
setting one of the P’s to a random value between its al-
lowed minimum and maximum.

8. At this point the children have been fully constructed.
Discard the 8 parents with the lowest fitness and substi-
tute them with the children.

9. Repeat from 2.

The system generates output data (agro-climate and optimal
paths of cultivars and agro-management) which is dissem-
inated on two platforms (Fig. 1). One is a platform (Info-
Platform, Fig. 1a) providing agro-climate information at lo-
cal scale (NUTS3 level, aligned with the European Union’s
Nomenclature of Territorial Units for Statistics, primarily
corresponding to county level in Romania) over the region.
It delivers pre-computed regional climate and agro-climate
indicators (e.g. drought, soil moisture, evapotranspiration,
aridity indices, storminess, model-based phenological dates,
yield) and indices of agro-climate extremes (e.g. extreme
precipitation frequency and intensity, extreme temperature,
scorching index, wind gust, number of freezing/icing days,
diurnal temperature range, biological effective degree days)
based on observations, re-analysis and climate scenarios for
future projections for the region. This platform is publicly ac-
cessible https://climatologis.shinyapps.io/PrepClim/ (last ac-
cess: 3 December 2025).

The second platform (User-Platform, Fig. 1b) is an oper-
ational, online, user-interactive (two-way) in real-time com-
ponent, where user requests are submitted, processed as input
to the modelling chain and results delivered back to the user
for a new, refined request. The access to this user-platform,
hosted on an internal server is granted at request.

The core of the modelling system integrates the DSSAT
crop model (running on Linux OS) with regional climate
models (Fig. 2), with a pre-processing pack developed for
coupling. This coupled system incorporates new features,
that include the ability of conducting parameter-varying
cross-simulations and advanced algorithms for identifying
optimal agro-management practices and genotype selections
along simulations.

The DSSAT code used in PREPCLIM project,
the PREPCLIM new software and a PREPCLIM
sample data set are available on ZENODO (DOI
https://doi.org/10.5281/zenodo.13145521 (Caian et al.,
2024a), DOI https://doi.org/10.5281/zenodo.13132587
(Caian et al., 2024b) and respective  DOI
https://doi.org/10.5281/zenodo.13133107 (Caian et al.,
2024c)).
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The system was implemented and validated over Southern
Romania, target agricultural area, for maize. Potential benefi-
ciaries include researchers, farmers, policymakers, and maize
breeders. The system can also assist maize breeders in adapt-
ing to climate change by enabling them to evaluate and select
genotypes more resistant to challenging climatic conditions.
Given the accelerating pace of climate change, such a system
may provide valuable support in numerous ways.

3 Results
3.1 Model validation

Model validation was conducted using Control simulations
(Ctrl) driven by ERAS reanalysis data (Bell et al., 2021) for
each treatment outlined in Table 1a. These simulations, span-
ning the Hist period 1976-2005, demonstrate the model’s
ability to capture inter-annual variability in harvest yields, in-
cluding both high and low yield years, when compared to the
measured available data for the region (Fig. 3). The amount
is more challenging for validation due to time-evolving con-
straints over the region. Some contributions were identi-
fied, as large variations in fertilization over 1990-2000 with
an abrupt decay after 1991, then followed by an increase
around 2000 (Popescu et al., 2021), variations in the avail-
able field machinery, pest and weeding, and lack of coun-
teracting methodology (Fig. S2). However, these are trace-
able in these simulations’ comparisons (that show lower skill
about 1995, for which it was reported a minimum of fertilizer
plant protection equipment (National Institute of Statistics,
https://insse.ro/cms/en, last access: 4 December 2025).

3.2 Phenology and Harvest Projections for the Control
Genotype

Projected changes in phenology for the control genotype (Pi-
oneer 3475) were simulated using the DSSAT model un-
der historical (Hist) and multi-model climate projections of
RCP4.5 and RCP8.5 scenarios. Further, multi-genotype sim-
ulations are discussed in Sect. 3.3.

3.2.1 Phenology dates — projected changes

Ensemble model simulations provide projected changes in
phenology, for the control genotype, under different fertiliza-
tion levels (0, 60, 120kg ha—!, Table la) and sowing dates,
averaged over 30-years, in scenarios (2021-2050, RCP4.5
and RCP8.5), versus Hist. Figure 4a, b illustrates the ensem-
ble model changes, demonstrating an earlier anthesis date by
up to ~ 6 d and an earlier maturity date by up to ~ 10 d across
all scenarios. These time-shifts result in a shortening of the
grain-filling period by up to 10 % across the ensemble, and
are a consistent response observed in each individual model.
Early sowing dates exhibit a more pronounced earlier shift

Geosci. Model Dev., 19, 627-645, 2026
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Figure 1. (a) Info-Platform: Provides local-regional scale information derived from high-resolution regional climate models (CORDEX), e.g.
climate, agro-climate data and indicators, indices of agro-climate extremes at the NUTS3 level. (b) User-Platform for adaptation support:
Processes in real time specific user requests, and simulates management scenarios, identifying optimal paths: Users input parameters (left, e.g:
region, period (present/future climate scenarios), management options (e.g. sowing date, fertilization/irrigation time and amount, genotype);
System Output (right, e.g.: harvest, projected phenology dates, precipitation/evapotranspiration, Nitrogen and Carbon balances, optimal
management paths (dates and management actions), optimal genotype) estimated from ensemble simulations.
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Figure 3. Simulated (colours) vs. measured (black) harvest in
southern Romania for 12 management scenarios (Table 1a). Right:
treatment defined by sowing date and fertilisation (Table 1a) and
Pearson correlation between simulated treatments and measured
Harvest (**p < 0.05, *p < 0.10; zero are missing values).

in anthesis under warming scenarios, a response even more
pronounced under RCPS.5.

Under warmer climates we note more frequent occur-
rences of critical situations with suboptimal grain filling and
potential crop failure, under fertilization. These were linked
in previous studies to non-linear interactions between fertil-
ization and temperature (Huang et al., 2024) with excessive
fertilization during reproductive stages under elevated tem-
peratures potentially inducing higher stress conditions.
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Figure 4. Simulated (a) anthesis dates ([dap], days after sowing)
and (b) maturity dates ([dap]), under historical conditions (black),
RCP4.5 (blue), and RCP8.5 (red) scenarios. Results are shown for
the four sowing dates and nitrogen fertilization level of 60 kg ha~!
(Table 1). The maximum and minimum value over the ensemble
members for each treatment and climate is shown (dots) and the
lines represent the ensemble mean for each treatment and climate
simulation.

In our study premature ending of simulated vegetation sea-
son occurred more frequently in treatments with higher ni-
trogen fertilization. This may favour leaves development, en-
hanced transpiration and earlier depletion of the soil moisture
leading later to water stress. However, this lead in average to
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Figure 6. Precipitation accumulated until maturity (mm) (legend as
in Fig. 5).

continuous-parameter Machine Learning-based Genetic Al-
gorithms for iterative genotype selection.

The deterministic method involves conducting multiple-
genotype crop model simulations, with optimization per-
formed as a post-processing step. Genotype parameters
are defined within pre-established limits and discretization.
Multi-model simulations are then performed, where each pa-
rameter is individually varied while the remaining parame-
ters are held constant. The total number of simulations in
this case is determined by the chosen discretization level. In
contrast, in the hybrid technique the parameters values are
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selected from a continuous range of values, identifying and
iteratively improving the best sub-domains.

3.3.1 Optimal genotype under climate change

(i) harvest as a function of the genotype H (G) in
scenarios versus current climate

We analyse the distribution of H obtained along multi-
genotype simulations, ordered from maximum to minimum
values and denote the genotypes corresponding to this or-
dering “H-ordered genotypes”, which is simulation (model,
scenario) dependent. Comparing these H distributions for
the two climate scenarios against Hist, indicates projected
changes in the ensemble-model PDF (probability density
function) of H under warmer climate.

A first outcome demonstrates in Fig. 7a, b that for the H-
ordered genotypes, a projected average decrease in Harvest
(H) occurs within the range of maximum H values (geno-
types in the top H-percentile interval (0%, 2.5 %) of the
H-ordered genotypes), under both scenarios, and mostly af-
fecting the earlier sowing dates (Fig. 7b). Across models of
the ensemble, we note a strong modulation of this behaviour
by precipitation (Fig. S4), particularly for unfertilized sce-
narios. Precipitation exhibits high inter-model variability and
significant regional-scale uncertainty, pointing to the need of
ensemble modelling for reducing it. Linked to this precipi-
tation response some individual models, in opposite to the
ensemble mean, may exhibit even increases, for genotype in-
tervals in the top percentile in Harvest, under climate sce-
narios (Fig. S5). In contrast, the warming trend is a consis-
tent feature across models in the region, contributing other
model-systematic responses such as earlier anthesis and ma-
turity dates and shortening of the grain filling season.

Geosci. Model Dev., 19, 627-645, 2026
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The second note regards a different response projected
in the intermediate H values (Fig. 7a, c). Genotypes corre-
sponding to the intermediate H values (genotypes of inter-
mediate H-percentile interval (25 %, 75 %) of the H-ordered
genotypes) show projected higher intermediate H values in
climate scenarios than in Hist (Fig. 7¢), affecting less the ear-
lier sowing (Fig. 7¢).

These together lead to a narrowing of the H-values range
of responses, in the top and intermediate H-percentile inter-
vals, to the same managements applied, in scenarios com-
pared to Hist. Same management spread would lead to closer
H -responses, with enhancing the probability for occurrence
of intermediate values and decreasing the probability for
highest H values (a third feature of projected changes).

Finally, we note that despite this narrowing, earlier sow-
ings appear systematically as better timing options, improv-
ing by up to 2% in scenarios (respectively to 4 % in Hist)
unfertilized case and up to 8 % in fertilised case in ensemble
time-mean scenarios (respectively to 12 % in Hist) (Fig. 7a),
with the lowest percentage for RCPS8.5. Earlier sowing was
reported in other recent studies as optimal for spring maize
harvest (Djaman et al., 2022).

(ii) options for adaptation and mitigation using genotype
analysis

These three features of cross genotype-agro-management
impact: — projected lower maxims of H in scenarios (mainly
for early sowing), projected higher intermediate H (mainly
mid-late sowing); — a narrowing of the range of H in
the top and intermediate H-percentile intervals with high-
er/lower probability of intermediate/high values occurrence,
have practical adaptation outcomes.

Finding mitigation solutions, while preserving yield, e.g.
finding appropriate changes in agro-management practice
that allows a lower, less pollutant fertilization, at a same Har-
vest percentile, appears indeed to be supported by genotype
selection. Figure 7 (mitigation window shown for RCP4.5)
indicates that for a Harvest given percentile, we get intervals
both in the intermediate and in top percentiles where chang-
ing the sowing date for a lower fertilization, brings even im-
proved solutions. These intervals are defined by intersection
points of H-curves defining parameter-zones of both miti-
gation and optimisation. Alternatively, for a given H val-
ues range and treatment, one may estimate the interval of
genotype-parameters to achieve that range, an information
useful to improve local crop usage.

Apart from any comparison with Hist, it is important for
long term adaptation, that one may find genetic combinations
with high yield in specific target percentile under a given cli-
mate (e.g. first 50 values, as in Fig. 7b).

At yearly level, the interest for some of these genotype
parameters combinations may increase, providing that dis-
tinct weather favourable patterns will be identified, once with

Geosci. Model Dev., 19, 627-645, 2026

progress achieved in seasonal and multi-annual weather fore-
casting (O’Reilly et al., 2025).

3.3.2 Optimal Genotype parameters under climate
change

(i) optimal genotype parameters

We further discriminate H response per genotype parameters
(P1-P5), to understand the source of the changes in Fig. 7
and the possible adaptation paths under climate and manage-
ment scenarios.

Parameters’ analysis (Fig. 8) shows that in all simulations,
higher top harvest is obtained under: shorter thermal time
from seedling to juvenile phase (lower P1, Fig. 8a), shorter
photoperiod-delay (lower P2, Fig. 8b), slightly shorter ther-
mal time between successive leaves appearance (phyl-
lochron, lower P5, Fig. 8e in the intermediate H-percentile
interval but longer in the top H %), also longer thermal time
to maturity (higher P3, Fig. 8c) and higher grain filling rate
(higher P4, Fig. 8d). These results are in coherence with find-
ings along recent works. Shorter P1 or lowering the seedling-
juvenile thermal time for increasing H (Fig. 8a) is in agree-
ment with Mi et al. (2021) for semi-humid areas, (the cur-
rent class of this region, with semi-arid trends projected,
Fig. S1a), and the same for P2, while slower maturity (higher
P3) and enhanced filling rate (higher P4) being linked to
higher kernel weight and harvest in agreement with recent
studies (Grewer et al., 2024).

(ii) changes in optimal genotype parameters in climate
scenarios

Comparing the genotype parameters in climate scenarios
against Hist, reveals the new plant strategies put in place
in the new climatic conditions, for maximizing the harvest.
The ensemble simulations (Fig. 8) shows that highest har-
vests are reached with genotypes that ensure a longer ther-
mal time from seedling to juvenile phase and longer thermal
time to maturity in scenarios compared to Hist. To a smaller
extent this is also achieved by a longer photoperiod delay P2,
higher grain filling rate P4 and longer phyllochron interval
PS5, in scenarios than in Hist, for a same percentile of the
Harvest. These show that under warmer climate it is essen-
tially important to avoid too fast growth on vegetative and
grain filling stages of the development. Indeed, slower devel-
opment phases occur in scenario simulations with higher H
for increased P1 and P3 and related to these, under longer
photoperiod (P2 increase). Other contributions come from
ensuring a slower rate of appearance of successive leaves (P4
increase), while a higher grain filling rate (P5 increase) ap-
pears to partly compensate mainly for intermediate-H, for
the negative effect of higher temperature that decreases the
seed-filling duration and seeds number and size and finally
the harvest.
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Figure 7. (a) Harvest multi-model time mean: percentiles of the H distribution ordered from maximum to minimum value (left to right on
x-axis, logarithmic scale). The simulations are for: Hist (left), RCP4.5 (middle) and RCP8.5 (right) for multi-parameter genotype changes
(for six parameters resulting 1890 simulations), see also the models H distribution in Fig. S5; (b) differences in projected harvest for RCP4.5
minus Hist (left) and RCP8.5 minus Hist (right), for the upper H 2.5 % percentile (the first 50 values) and for the intermediate H percentile
25 %—75 % in (c) (the 475-1400 H-ordered values). Plum rectangle in Fig. 7a (RCP4.5) shows in simulations, a window of potential actions
for mitigation through genotype- agro-management selection (text). Rectangles are defined by the two (extreme) intersections of H-curves

for different management scenarios, along x-axis.

In other studies, this compensation was shown to be mi-
nor compared to the loss of seed-filling duration in warmer
climate (Singh et al., 2013) that points to P1 and P3 as main
drivers for Harvest in climate scenarios. Percentages of the
parameters’ changes in scenarios versus Hist for a given per-
centile of harvest (Fig. S6) confirm this main driving.
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(iii) optimal genotype parameters in management and
climate scenarios

Agro-treatments choice may significantly modulate the H re-
sponse to genotype parameters. Delaying sowing, requires
first gradually decreasing parameters in order to maximize
H (Fig. 9, also in Fig. 8), for both Hist and climate scenar-
ios. For P1-P3 this decrease reflects the priority in avoiding
a too late end of the juvenile stage (and shift in climate con-
ditions) and a too late (autumn) maturity stage that is slowing
the grain filling and leading crop failure.

Geosci. Model Dev., 19, 627-645, 2026
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Figure 8. Parameters’ values corresponding to percentiles of the H distribution (ordered from maximum to minimum H value). On x axis
is the percent of parameter change (increase) relative to the maximal change tested for each, normalised to its control value. The figure
compares these percentiles for Hist (black), RCP4.5 (blue) and RCP8.5 (red), running mean values (full lines, 100 values window), ensemble
mean, time-mean; unsmoothed values are shown by dots only for Hist (grey shade) and RCPS8.5 (pink shade), the RCP4.5 values being
generally intermediate. Percentiles are from a number of 1890 genotype simulations. These are shown for two treatments (01.04_FxO0 at top
and 15.05_Fx2 at bottom). The plum rectangle indicates a critical parameter range for P1 and P3 (text) defined as +5 % H around threshold
values (the parameter value at the intersection between scenario and H curves). Thresholds are defined as the (neutral) value of the parameter
for which the same H -percentile is reached in scenario and Hist. Thresholds control the limit parameter values for which the scenario leads

better/worse H percentiles than in Hist.

However, Fig. 9 also shows that these parameter’s de-
creases cease or even reverse under extreme delay of sow-
ing. For highest delays the development stage is getting too
short under P1’s too strong decrease while daily temperatures
becoming higher, hampering the development. The same is
seen for the maturity, with P3’s too strong decrease favoring
a too quick grain filling. Hence the plant strategy for adap-
tation after a threshold of sowing-delay is similar to the one
already seen in its adaptation to warmer climate, in scenar-
ios. Higher harvest is then reached by gradually switching
to only moderate decrease or even increases of parameters
along with increasing delays in the sowing date.

This gradual change in the monotony for the parameters
leading to higher harvest, as a function of sowing delay ap-
pears quite systematic for all parameters.

This crop adaptation mechanism, converging towards the
one projected for climate scenarios, shows that gradually
under enhanced warming, the crucial priority in adaptation
transfers, from the key issue of ensuring climatological con-
ditions for the development to the key issue of avoiding a too
fast growth leading crop failure.

(iv) optimal genotype parameters in adaptation and
mitigation strategy

For each agro-management and climate scenario one can
identify threshold values of parameters (defined as the (neu-
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tral) value of the parameter for which the same H -percentile
is reached in scenario and Hist). Critical windows (shown in
Fig. 8 for P1 and P3) are defined at +5 H % of this threshold.
These values depend on the parameter, the sowing date and
the fertilization level. When reaching the threshold parame-
ter value, the genotypes lead to the same H -percentile in sce-
nario and Hist. So, the thresholds controls the limit values to
which a monothonical change in the parameter in scenario
leads better/worse H percentiles than in Hist. The critical
window (Fig. 8, for P1 and P3) indicates the limit and values
until which a quantifiable advantage is brought by changes in
P1 and P3 in scenarios compared to Hist, information useful
for adaptation under climate scenarios.

Second remark is on the probability of an outcome. Since
all the slopes of parameters, each as a function of H ordered-
values are lower than in Hist (Fig. S7), there is a narrower
parameter interval for all those parameters decreasing with
H (e.g. P1, Fig. 8a) and a broader one for those parameters
increasing with H (e.g. P3, Fig. 8c), in climate scenarios.
P3 increases are broadening the interval for H-highest per-
centile, potentially presenting, in this sense, higher probabil-
ity than P1, on highest H-values outcome.

The genotyping results were found both in simulations in-
volving deterministic and the hybrid deterministic-ML meth-
ods. The hybrid method involved the same cross-simulations,
but the selection of parameters values for H optimization and
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Figure 9. As in Fig. 8 but for all sowing dates, no fertilization Fx0 (top) and with fertilization Fx2 (bottom). Parameters are shown for the
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ordering was no more following a pre-defined discretisation
but instead a random picking up over a continuous interval of
values with successively retrieving the best generation. It ap-
plies for optimization, classic Genetic Algorithms methods
in which selection of pairs is based on the user-criteria (e.g.
maximum harvest, stable harvest, etc.). Our results show that
for the same physical intervals of the genotype parameters,
the ML hybrid technique only after 20 generations shows at
least 50 % chances to get a better result than the determinis-
tic model, while after 100 generations, it already increases at
80 % chances to get better results with also computational ef-
ficiency. CPU time is reduced in this case by more than 30 %
using the hybrid technique compared to the fully determinis-
tic model on a VM Linux platform. Hybrid method emerges
as a better solution since it can identify improved optimums
at lower computational prices.

4 Discussions

The results found are in line with other results in recent
studies, using different approaches and observational data,
and offer an extended (continuum-parameter) assessment to-
wards a more generalised frame, allowed by the implemented
system. For the plant response under management treatment,
delaying sowing limiting elongations of the development
phase, was also found in other studies (Huang et al., 2020)
to reduce the impact of high temperature increases on Har-
vest (Fig. 9) and, in some cases, of precipitation decrease
and water stress. This response was also found stronger under
enhanced fertilization and delayed sowing (Figs. 8, 9). Also
fertilization lowering P5 so enhancing leaf appearance rate
(Fig. 8e), assessed also in earlier studies mainly for warmer
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climates (Dos Santos et al., 2022; Sardans et al., 2017) was
recently put in relation to P2 decrease (Fig. 8b) mainly along
sensitive photoperiods (Hu et al., 2023) and to higher harvest
reached, through enhanced evapo-transpiration maximizing
the N uptake (Lu et al., 2024). In warmer climate scenar-
ios, limitations in the expansion of new leaves (increase of
P5, Fig. 8e, at highest H-percentiles, no-fertilised case) was
shown to be an adaptive tolerance mechanism to drought and
heat stress conditions (Fahad et al., 2017).

Further, for moderate sowing delay, fertilisation was
shown to require slower grain filling (P4, Fig. 9d) under re-
duced P1, P2 and P3, controlling the N stimulated growth,
for hydric stress conditions of current and projected climate
for non-irrigated crop (Yang et al., 2024). Under high delay
and warmer climate, a higher grain filling rate is required
(Fig. 9d). This increase for P4 under increased warming may
reflect an adaptive strategy of plants to accelerate develop-
ment under drought stress, allowing plants to end their life
cycle before impact of severe drought stress occurs (McKay
et al., 2003; Roeber at al., 2022).

Simulations here emphasize and compare adaptation paths
of gradual plant response to warming climate. These empha-
sise some reduction in the efficiency of adaptation through
crop management in warmer climates. Meanwhile, geno-
typing shows the possibility of identifying parameters still
able to enhance the efficiency of adaptation under climate
and agro-management scenarios. The ability of exploring
continuum-parameter space not only offers a general pic-
ture of adaptation cross-solutions but identifies critical values
of the parameters that for small perturbations may lead the
system response into different states (thresholds of sowing-
delays, or genotype parameter values). Without an integrated
modelling approach, estimating or emphasising these points
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meaningful for adaptation is hard, moreover since these are
climate-management scenario dependent.

5 Conclusions

The main outcome of this study is that an agroclimatic
real-time Interactive Service was implemented towards
adaptation support, that allows performing real-time, user-
requested, agro-management modelling scenarios for the re-
gion, under current and future climate. A novel feature of
the system is the ability for identifying optimal management
paths answering the user’s request, providing optimal cross-
culture parameters, such as sowing date, genotype parame-
ters, amount and date of fertilization.

The system provides solutions and estimates the associ-
ated uncertainty by using multi-model ensembles for each
agro-climate and management scenario. The crop optimiza-
tion criteria are user-defined and can relate to high harvest,
stable harvest, low pollution. The optimization module im-
plemented uses a hybrid deterministic — ML methodology.
It performs multi-model simulations using physical mod-
els of climate and plant penology and optimization is done
either through discretizing the parameters’ space and opti-
misation post-processing or using hybrid physical-ML Ge-
netic Algorithms methods. ML methods are spanning con-
tinuous parameter’s space iteratively selecting along the sim-
ulations the best fit parameters, allowing to identify unprece-
dented optimal configurations (H maximas), not reachable
under the discrete deterministic method. The overall system
output information is layered and accessed from two inter-
faces: one static, for information purpose (phenology, har-
vest, climate, extremes at high resolution NUTS3 level) and
a second is real-time interactive online, through which the
user places requests and receives the system-performed man-
agement simulations required (including uncertainty along
multi-models) and identified optimal paths for adaptation.
These platforms are operational for two emission scenar-
ios RCP4.5 and RCP8.5 and twelve management scenarios
(sowing dates and fertilization), for the time-horizon up to
2050, with open-source code (EERIS platform). The results
of these were discussed in this work for the pilot region South
Romania.

For the current genotype, in both emission scenarios it is
projected a mean decrease (14 % in ensemble mean, with
higher values per model) of the projected harvest, for all
the management scenarios (sowing-dates and fertilization)
tested. This was linked to a projected shortening of the grain
filling season (by up to 10 % with an earlier shift of both
anthesis (5 d) and maturity (10 d) phases), and to a mean de-
crease of the fertilisation efficiency under climate scenarios,
stronger in RCP8.5 emissions.

The impact of genotype perturbations on crop parameters
is analysed along six cross-genotype parameter simulations,
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for the agro-management-climate scenarios. The main ques-
tions were as follows:

i Can we identify optimal genotype parameters that lead
to maximal harvest?

it How do these differ under projected climate change
and/or under agro-management options and can these
enhance our understanding to guide our options?

iii Can be genotyping a (better) solution for adaptation un-
der climate change in the region?

These simulations showed that the maximal H values are
projected to decline for all agro-management and breeding
simulations performed, in emission scenarios compared to
Hist, with a higher decline for earlier sowing. H-values then
increase in the intermediate-percentile harvest in scenarios
versus Hist and there is enhanced probability in scenarios
to reach the historical values in this range through agro-
management and breeding. These indicate a narrowing of
the responses range to a same agro-management, with low-
er/higher probability of reaching values in the highest/inter-
mediate H-range in climate scenarios compared to Hist. In
practice, these express that we can identify the H-percentile
(genotype), where agro-management choices will optimize
the outcome compared to Hist, including finding solutions
with lower fertilisation, less pollutant.

For effective support in adaptation applications, individ-
ual genotype parameters were analysed in climate scenarios
versus Hist. This showed that the thermal times to juvenile
(P1) and maturity (P3) are key genotype parameters driv-
ing harvest changes in the region, requiring increased val-
ues in climate scenarios compared to Hist for a same high-
harvest percentile range. This range is identified through
critical values of the genotype parameters, determined for
each treatment and climate scenario. There is significant vari-
ability of these cultivar dependent parameters impact un-
der agro-management treatments. Moderate delayed sowing
and enhanced fertilisation may diminish the shifts in opti-
mal parameters in scenarios compared to Hist for a same H-
percentile, in contrast to extreme managements.

These results show that genotype approaches offer adapta-
tion strategy support in helping plants to resist drought stress
under warming climate, while a projected narrowing of the
agro-management options for maintaining a high yield level
is emphasised under warmer and drier climate. Moreover,
it was shown that the optimization is improved by using a
hybrid ML genetic algorithm method coupled to the deter-
ministic model-output, leading to detecting better solutions,
under a continuous-parameter space search. The system can
be further used for searching paths along extreme drought
years, along with irrigation options investigation. Coupled
with weather extended predictions (seasonal, year -decadal)
this could provide near real-time adaptation support.
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Code and data availability. The code is available from Zenodo
— DSSAT open-source code (Hoogenboom et al, 2019) — and
https://github.com/DSSAT/dssat-csm-os/releasesm  (last access:
12 December 2025), as used in the PREPCLIM. New software
developed in PREPCLIM for coupling and management scenarios
is available from https://doi.org/10.5281/zenodo.13145521
(Caian et al, 2024a), the ML-Genetic Algorithms opti-
mization software and pack developed in PREPCLIM is
available from https://doi.org/10.5281/zenodo.13132587
(Caian et al, 2024b) and https://github.com/pneague/
Genetic- Algorithm-for- Corn- Genotype-sowing-Date-Optimization,
and a sample data set for a full modeling experiment (input and
output) is available from https://doi.org/10.5281/zenodo.13133107
(Caian et al., 2024c).
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