Articles | Volume 18, issue 23
https://doi.org/10.5194/gmd-18-9967-2025
https://doi.org/10.5194/gmd-18-9967-2025
Model description paper
 | 
11 Dec 2025
Model description paper |  | 11 Dec 2025

DRIVE v1.0: a data-driven framework to estimate road transport emissions and temporal profiles

Daniel Kühbacher, Jia Chen, Patrick Aigner, Mario Ilic, Ingrid Super, and Hugo Denier van der Gon

Model code and software

DRIVE v1.0 - A data-driven framework to estimate road transport emissions and temporal profiles Daniel Kühbacher et al. https://doi.org/10.5281/zenodo.14644298

Download
Short summary
We present DRIVE v1.0, a data-driven framework to estimate road transport emissions, their temporal profiles, and the associated uncertainties. The method was applied to the city of Munich, where we present bottom-up emission estimates for the years 2019 to 2022. The estimates are compared against official municipal reports as well as national and European downscaled inventories.
Share