Articles | Volume 18, issue 23
https://doi.org/10.5194/gmd-18-9855-2025
https://doi.org/10.5194/gmd-18-9855-2025
Development and technical paper
 | 
10 Dec 2025
Development and technical paper |  | 10 Dec 2025

rsofun v5.1: a model-data integration framework for simulating ecosystem processes

Josefa Arán Paredes, Fabian Bernhard, Koen Hufkens, Mayeul Marcadella, and Benjamin D. Stocker

Data sets

FluxDataKit v3.4.2: A comprehensive data set of ecosystem fluxes for land surface modelling K. Hufkens and B. Stocker https://doi.org/10.5281/zenodo.14808331

traitecoevo/leaf13C: v0.2.2 Will Cornwell https://doi.org/10.5281/zenodo.15239220

Global photosynthetic capacity is optimized to the environment Nicholas G. Smith et al. https://doi.org/10.1111/ele.13210

ETOPO1 1 Arc-Minute Global Relief Model NOAA National Geophysical Data Center https://doi.org/10.7289/V5C8276M

Atmospheric Monthly In Situ CO2 Data - Mauna Loa Observatory, Hawaii. In Scripps CO2 Program Data Keeling et al. https://doi.org/10.6075/J08W3BHW

Model code and software

geco-bern/rsofun: rsofun 5.1.0 Benjamin Stocker et al. https://doi.org/10.5281/zenodo.17313273

Interactive computing environment

geco-bern/rsofun_doc: v1.0.2 Fabian Bernhard and Benjamin Stocker https://doi.org/10.5281/zenodo.17204361

Short summary
Mechanistic vegetation models serve to estimate terrestrial carbon fluxes and climate impacts on ecosystems across diverse conditions. Here, we demonstrate and evaluate the rsofun R package, which provides a computationally efficient implementation of the P-model for site-scale simulations of ecosystem photosynthesis. Bayesian model fitting to observed fluxes and traits and evaluation on an independent test data set indicated robust calibration and unbiased prediction capabilities.
Share