Articles | Volume 18, issue 23
https://doi.org/10.5194/gmd-18-9687-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-9687-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
UpsFrac v1.0: an open-source software for integrating modelling and upscaling permeability for fractured porous rocks
College of Earth Science and Engineering, Shandong University of Science and Technology, No. 579 Qianwangang Road, Qingdao, 266590, China
Shandong Key Laboratory of Geothermal Clean Energy, 272000 Jining, China
Honghao Sheng
College of Earth Science and Engineering, Shandong University of Science and Technology, No. 579 Qianwangang Road, Qingdao, 266590, China
Shandong Key Laboratory of Geothermal Clean Energy, 272000 Jining, China
College of Earth Science and Engineering, Shandong University of Science and Technology, No. 579 Qianwangang Road, Qingdao, 266590, China
Shandong Key Laboratory of Geothermal Clean Energy, 272000 Jining, China
Fengxin Kang
College of Earth Science and Engineering, Shandong University of Science and Technology, No. 579 Qianwangang Road, Qingdao, 266590, China
Shandong Key Laboratory of Geothermal Clean Energy, 272000 Jining, China
Shandong Provincial Bureau of Geology & Mineral Resources (SPBGM), No. 74 Lishan Road, Jinan, 250013, China
Cited articles
Alghalandis, Y. F.: ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications, Comput. Geosci., 102, 1–11, https://doi.org/10.1016/j.cageo.2017.02.002, 2017.
Almajid, M. M. and Abu-Al-Saud, M. O.: Prediction of porous media fluid flow using physics informed neural networks, J. Petrol. Sci. Eng., 208, 109205, https://doi.org/10.1016/j.petrol.2021.109205, 2022.
Andrews, B. J., Roberts, J. J., Shipton, Z. K., Bigi, S., Tartarello, M. C., and Johnson, G.: How do we see fractures? Quantifying subjective bias in fracture data collection, Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019, 2019.
Berre, I., Doster, F., and Keilegavlen, E.: Flow in fractured porous media: a review of conceptual models and discretization approaches, Transp. Porous Media, 130, 215–236, https://doi.org/10.1007/s11242-018-1171-6, 2019.
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B.: Scaling of fracture systems in geological media, Rev. Geophys., 39, 347–383, https://doi.org/10.1029/1999RG000074, 2001.
Borghini, L., Striglio, G., Bacchiani, G., La Bruna, V., Balsamo, F., Bonini, L., and Bezerra, F. H. R.: Fracture analyser: a Python toolbox for the 2D analysis of fracture patterns, Ital. J. Geosci., 143, 314–328, https://doi.org/10.3301/ijg.2024.16, 2024.
Chen, T.: Open-source software for integrating modelling and upscaling permeability for fractured porous rocks: UpsFrac, Zenodo [code], https://doi.org/10.5281/zenodo.14674083, 2025.
Chen, T., Clauser, C., Marquart, G., Willbrand, K., and Büsing, H.: Modeling anisotropic flow and heat transport by using mimetic finite differences, Adv. Water Resour., 94, 441–456, https://doi.org/10.1016/j.advwatres.2016.06.006, 2016.
Chen, T., Clauser, C., Marquart, G., Willbrand, K., and Mottaghy, D.: A new upscaling method for fractured porous media, Adv. Water Resour., 80, 60–68, https://doi.org/10.1016/j.advwatres.2015.03.009, 2015.
Chen, T., Clauser, C., Marquart, G., Willbrand, K., and Hiller, T.: Upscaling permeability for three-dimensional fractured porous rocks with the multiple boundary method, Hydrogeol. J., 26, 1903–1916, https://doi.org/10.1007/s10040-018-1744-z, 2018.
Cheng, Y. and Wong, L. N. Y.: Microscopic characterization of tensile and shear fracturing in progressive failure in marble, J. Geophys. Res. Solid Earth, 123, 204–225, https://doi.org/10.1002/2017JB014581, 2018.
Cook, P. G., Love, A. J., Robinson, N. I., and Simmons, C. T.: Groundwater ages in fractured rock aquifers, J. Hydrol., 308, 284–301, https://doi.org/10.1016/j.jhydrol.2004.11.005, 2005.
Corral, Á. and González, Á.: Power law size distributions in geoscience revisited, Earth Space Sci., 6, 673–697, https://doi.org/10.1029/2018EA000479, 2019.
Ebigbo, A., Lang, P. S., Paluszny, A., and Zimmerman, R. W.: Inclusion-based effective medium models for the permeability of a 3D fractured rock mass, Transport Porous Med., 113, 137–158, https://doi.org/10.1007/s11242-016-0685-z, 2016.
Fiori, A., Bellin, A., Cvetkovic, V., De Barros, F. P. J., and Dagan, G.: Stochastic modeling of solute transport in aquifers: From heterogeneity characterization to risk analysis, Water Resour. Res., 51, 6622–6648, https://doi.org/10.1002/2015WR017388, 2015.
Ghassemi, A.: A review of some rock mechanics issues in geothermal reservoir development, Geotech. Geol. Eng., 30, 647–664, https://doi.org/10.1007/s10706-012-9508-3, 2012.
Gong, L., Wang, J., Gao, S., Fu, X., Liu, B., Miao, F., Zhou, X., and Meng, Q.: Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs, J. Petrol. Sci. Eng., 203, 108655, https://doi.org/10.1016/j.petrol.2021.108655, 2021.
Gottron, D. and Henk, A.: Upscaling of fractured rock mass properties – An example comparing Discrete Fracture Network (DFN) modeling and empirical relations based on engineering rock mass classifications, Eng. Geol., 294, 106382, https://doi.org/10.1016/j.enggeo.2021.106382, 2021.
Gu, X., Rempe, D. M., Dietrich, W. E., West, A. J., Lin, T.-C., Jin, L., and Brantley, S. L.: Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate, Geochim. Cosmochim. Ac., 269, 63–100, https://doi.org/10.1016/j.gca.2019.09.044, 2020.
Gudmundsson, A.: Rock fractures in geological processes, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511975684, 2011.
Hardebol, N. J. and Bertotti, G.: DigiFract: A software and data model implementation for flexible acquisition and processing of fracture data from outcrops, Comput. Geosci., 54, 326–336, https://doi.org/10.1016/j.cageo.2012.10.021, 2013.
Healy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J. C., Watkins, H., Timms, N. E., Gomez-Rivas, E., and Smith, M.: FracPaQ: A MATLAB toolbox for the quantification of fracture patterns, J. Struct. Geol., 95, 1–16, https://doi.org/10.1016/j.jsg.2016.12.003, 2017.
HosseiniMehr, M., Tomala, J. P., Vuik, C., Kobaisi, M. A., and Hajibeygi, H.: Projection-based embedded discrete fracture model (pEDFM) for flow and heat transfer in real-field geological formations with hexahedral corner-point grids, Adv. Water Resour., 159, 104091, https://doi.org/10.1016/j.advwatres.2021.104091, 2022.
Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., and Viswanathan, H. S.: dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport, Comput. Geosci., 84, 10–19, https://doi.org/10.1016/j.cageo.2015.08.001, 2015.
Hyman, J. D., Aldrich, G., Viswanathan, H., Makedonska, N., and Karra, S.: Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size, Water Resour. Res., 52, 6472–6489, https://doi.org/10.1002/2016wr018806, 2016.
Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., and Berre, I.: PorePy: an open-source software for simulation of multiphysics processes in fractured porous media, Comput. Geosci., 25, 243–265, https://doi.org/10.1007/s10596-020-10002-5, 2021.
Keller, J., Rath, V., Bruckmann, J., Mottaghy, D., Clauser, C., Wolf, A., Seidler, R., Bücker, H. M., and Klitzsch, N.: SHEMAT-Suite: An open-source code for simulating flow, heat and species transport in porous media, SoftwareX, 12, 100533, https://doi.org/10.1016/j.softx.2020.100533, 2020.
Klimczak, C., Schultz, R. A., Parashar, R., and Reeves, D. M.: Cubic law with aperture-length correlation: implications for network scale fluid flow, Hydrogeol. J., 18, 851–862, https://doi.org/10.1007/s10040-009-0572-6, 2010.
Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., Görke, U. J., Kalbacher, T., Kosakowski, G., McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H. B., Sun, F., Sun, Y. Y., Singh, A. K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., and Zehner, B.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media, Environ. Earth Sci., 67, 589–599, https://doi.org/10.1007/s12665-012-1546-x, 2012.
Lang, P. S., Paluszny, A., and Zimmerman, R. W.: Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions, J. Geophys. Res. Solid Earth., 119, 6288–6307, https://doi.org/10.1002/2014jb011027, 2014.
Li, Z., Sherman, C. S., Reagan, M. T., Moridis, G. J., and Morris, J. P.: Effects of heterogeneous fracture aperture on multiphase production from shale reservoirs, Transport Porous Med., 144, 797–823, https://doi.org/10.1007/s11242-022-01841-0, 2022.
Lie, K. A.: An introduction to reservoir simulation using MATLAB/GNU Octave: user guide for the MATLAB Reservoir Simulation Toolbox (MRST), Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781108591416, 2019.
Liu, Z. and Reynolds, A. C.: History matching an unconventional reservoir with a complex fracture network, SPE Reservoir Simulation Conference, Galveston, Texas, USA, April 2019, https://doi.org/10.2118/193921-MS, 2019.
MacQuarrie, K. T. B. and Mayer, K. U.: Reactive transport modeling in fractured rock: A state-of-the-science review, Earth-Sci. Rev., 72, 189–227, https://doi.org/10.1016/j.earscirev.2005.07.003, 2005.
Marinos, V. and Carter, T. G.: Maintaining geological reality in application of GSI for design of engineering structures in rock, Eng. Geol., 239, 282–297, https://doi.org/10.1016/j.enggeo.2018.03.022, 2018.
Massart, B., Paillet, M., Henrion, V., Sausse, J., Dezayes, C., Genter, A., and Bisset, A.: Fracture characterization and stochastic modeling of the granitic basement in the HDR Soultz Project (France), World Geothermal Congress 2010, Bali, Indonesia, April 2010, 7 pp., https://brgm.hal.science/hal-00496923v1 (last access: 28 November 2025), 2010.
McDermott, C. and Kolditz, O.: Geomechanical model for fracture deformation under hydraulic, mechanical and thermal loads, Hydrogeol. J., 14, 485–498, https://doi.org/10.1007/s10040-005-0455-4, 2006.
Mejia, C., Roehl, D., Rueda, J., and Quevedo, R.: A new approach for modeling three-dimensional fractured reservoirs with embedded complex fracture networks, Comput. Geotech., 130, 103928, https://doi.org/10.1016/j.compgeo.2020.103928, 2021.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of rock, and erosion, J. Geophys. Res. Earth Surf., 112, F03014, https://doi.org/10.1029/2005JF000433, 2007.
Myers, T.: Potential contaminant pathways from hydraulically fractured shale to aquifers, Groundwater, 50, 872–882, https://doi.org/10.1111/j.1745-6584.2012.00933.x, 2012.
Neuman, S. P.: Trends, prospects and challenges in quantifying flow and transport through fractured rocks, Hydrogeol. J., 13, 124–147, https://doi.org/10.1007/s10040-004-0397-2, 2005.
Oda, M.: Permeability tensor for discontinuous rock masses, Géotechnique, 35, 483–495, https://doi.org/10.1680/geot.1985.35.4.483, 1985.
Odling, N. E. and Roden, J. E.: Contaminant transport in fractured rocks with significant matrix permeability, using natural fracture geometries, J. Contam. Hydrol., 27, 263–283, https://doi.org/10.1016/S0169-7722(96)00096-4, 1997.
Olson, J. E.: Sublinear scaling of fracture aperture versus length: An exception or the rule?, J. Geophys. Res. Solid Earth., 108, 2413, https://doi.org/10.1029/2001JB000419, 2003.
Ovaskainen, N.: fractopo: A Python package for fracture network analysis, J. Open Source Softw., 8, 5300, https://doi.org/10.21105/joss.05300, 2023.
Palamakumbura, R., Krabbendam, M., Whitbread, K., and Arnhardt, C.: Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications, Solid Earth, 11, 1731–1746, https://doi.org/10.5194/se-11-1731-2020, 2020.
Rajeh, T., Ababou, R., Marcoux, M., and Cañamon, I.: Fast upscaling of the hydraulic conductivity of three-dimensional fractured porous rock for reservoir modeling, Math. Geosci., 51, 1037–1074, https://doi.org/10.1007/s11004-019-09785-w, 2019.
Renard, P. and Ababou, R.: Equivalent permeability tensor of heterogeneous media: upscaling methods and criteria (review and analyses), Geosciences, 12, 269, https://doi.org/10.3390/geosciences12070269, 2022.
Sandve, T. H., Berre, I., and Nordbotten, J. M.: An efficient multi-point flux approximation method for Discrete Fracture–Matrix simulations, J. Comput. Phys., 231, 3784–3800, https://doi.org/10.1016/j.jcp.2012.01.023, 2012.
Schultz, R. A. and Soliva, R.: Propagation energies inferred from deformation bands in sandstone, Int. J. Fract., 176, 135–149, https://doi.org/10.1007/s10704-012-9730-2, 2012.
Snow, D. T.: Anisotropie permeability of fractured media, Water Resour. Res., 5, 1273–1289, https://doi.org/10.1029/WR005i006p01273, 1969.
Srinivasan, G., Hyman, J. D., Osthus, D. A., Moore, B. A., O'Malley, D., Karra, S., Rougier, E., Hagberg, A. A., Hunter, A., and Viswanathan, H. S.: Quantifying topological uncertainty in fractured systems using graph theory and machine learning, Sci. Rep., 8, 11665, https://doi.org/10.1038/s41598-018-30117-1, 2018.
Vermilye, J. M. and Scholz, C. H.: Relation between vein length and aperture, J. Struct. Geol., 17, 423–434, https://doi.org/10.1016/0191-8141(94)00058-8, 1995.
Viswanathan, H. S., Ajo-Franklin, J., Birkholzer, J. T., Carey, J. W., Guglielmi, Y., Hyman, J. D., Karra, S., Pyrak-Nolte, L. J., Rajaram, H., Srinivasan, G., and Tartakovsky, D. M.: From fluid flow to coupled processes in fractured rock: recent advances and new frontiers, Rev. Geophys., 60, e2021RG000744, https://doi.org/10.1029/2021RG000744, 2022.
Wang, Q., Zhang, L., Yu, Q., and Li, H.: Existence analysis of hydraulic conductivity representative elementary volume in fractured rocks based on three-dimensional discrete fracture network method, Comput. Geotech., 164, 105829, https://doi.org/10.1016/j.compgeo.2023.105829, 2023.
Welch, M. J., Lüthje, M., and Oldfield, S. J.: DFN Generator v2.0: A new tool to model the growth of large-scale natural fracture networks using fundamental geomechanics, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2022-22, 2022.
Weismüller, C., Prabhakaran, R., Passchier, M., Urai, J. L., Bertotti, G., and Reicherter, K.: Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic, Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020, 2020.
Wong, D., Doster, F., and Geiger, S.: Embedded Discrete Fracture Models, in: Advanced Modeling with the MATLAB Reservoir Simulation Toolbox, edited by: Lie, K.-A. and Møyner, O., Cambridge University Press, Cambridge, 375–408, https://doi.org/10.1017/9781009019781.015, 2021.
Xu, C. and Dowd, P.: A new computer code for discrete fracture network modelling, Comput. Geosci., 36, 292–301, https://doi.org/10.1016/j.cageo.2009.05.012, 2010.
Xue, K., Zhang, Z., Zhong, C., Jiang, Y., and Geng, X.: A fast numerical method and optimization of 3D discrete fracture network considering fracture aperture heterogeneity, Adv. Water Resour., 162, 104164, https://doi.org/10.1016/j.advwatres.2022.104164, 2022.
Yan, M., Huang, C., Bienstman, P., Tino, P., Lin, W., and Sun, J.: Emerging opportunities and challenges for the future of reservoir computing, Nat. Commun., 15, 2056, https://doi.org/10.1038/s41467-024-45187-1, 2024a.
Yan, X., Lin, J., Wang, S., Zhang, Z., Liu, P., Sun, S., Yao, J., and Zhang, K.: Physics-informed neural network simulation of two-phase flow in heterogeneous and fractured porous media, Adv. Water Resour., 189, 104731, https://doi.org/10.1016/j.advwatres.2024.104731, 2024b.
Zijl, W. and Stam, J. M. T.: Modeling permeability in imperfectly layered porous media. I. Derivation of block-scale permeability tensor for thin grid-blocks, Math. Geol., 24, 865–883, https://doi.org/10.1007/BF00894656, 1992.
Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., and Wiprut, D. J.: Determination of stress orientation and magnitude in deep wells, Int. J. Rock Mech. Min., 40, 1049–1076, https://doi.org/10.1016/j.ijrmms.2003.07.001, 2003.
Short summary
Understanding fluid flow through fractured porous rocks is crucial for groundwater and geothermal energy management. Existing tools lack integrated workflows. We developed UpsFrac, an open-source software that integrates fracture modeling and permeability upscaling. It handles complex fracture patterns and rock properties. The software enables uncertainty quantification, helping scientists make accurate and efficient predictions for groundwater protection and renewable energy development.
Understanding fluid flow through fractured porous rocks is crucial for groundwater and...