Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-9219-2025
https://doi.org/10.5194/gmd-18-9219-2025
Development and technical paper
 | 
28 Nov 2025
Development and technical paper |  | 28 Nov 2025

Exploiting physics-based machine learning to quantify geodynamic effects – insights from the Alpine region

Denise Degen, Ajay Kumar, Magdalena Scheck-Wenderoth, and Mauro Cacace

Related authors

About the trustworthiness of physics-based machine learning – considerations for geomechanical applications
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025,https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023,https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
How biased are our models? – a case study of the alpine region
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021,https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Effects of transient processes for thermal simulations of the Central European Basin
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021,https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary

Cited articles

Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum, A., Heister, T., Myhill, R., and Naliboff, J.: geodynamics/aspect: ASPECT 2.5.0 (v2.5.0), Zenodo [code], https://doi.org/10.5281/zenodo.8200213, 2023. a
Benner, P., Gugercin, S., and Willcox, K.: A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems, SIAM Rev., 57, 483–531, 2015. a, b
Brisson, S., Degen, D., Nathan, D., Wellmann, F., and von Hagke, C.: Combining 3‐D probabilistic kinematic modeling with thermal resetting measurements: An approach to reduce uncertainty in exhumation histories. Geochemistry, Geophysics, Geosystems, 26, e2024GC011815, https://doi.org/10.1029/2024GC011815, 2025. a
Chuang, P.-Y. and Barba, L. A.: Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration, arXiv [preprint], arXiv:2205.14249, https://doi.org/10.48550/arXiv.2205.14249, 2022. a, b
Download
Short summary
Geodynamical simulations cover a wide spatial and temporal range and are crucial to understand and assess the evolution of the Earth system. To enable computationally efficient modeling approaches that can account for potentially unknown subsurface properties, we present a surrogate modeling technique. This technique combines physics-based and machine-learning techniques to enable reliable predictions of geodynamical applications, as we illustrate for the case study of the Alpine Region.
Share