Articles | Volume 18, issue 21
https://doi.org/10.5194/gmd-18-8379-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8379-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling wheat development under extreme weather with WOFOST-EW v1
Jinhui Zheng
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
Ministry of Education Ecological Field Station for East Asian Migratory Birds, Beijing 100084, China
Institute of Carbon Neutrality, Tsinghua University, Beijing, 100084, China
Zhenrong Du
School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
Liujun Xiao
College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Xiaomeng Huang
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
Related authors
No articles found.
Zhenrong Du, Le Yu, Yue Zhao, Xinyue Li, Xiaoxuan Liu, Xiyu Li, Pengyu Hao, Zhongxin Chen, Zhe Guo, Liangzhi You, Xiaorui Ma, and Hongyu Wang
Earth Syst. Sci. Data, 17, 5543–5556, https://doi.org/10.5194/essd-17-5543-2025, https://doi.org/10.5194/essd-17-5543-2025, 2025
Short summary
Short summary
We created the first global maps showing where livestocks have been raised each year from 1961 to 2021. These maps help to see how livestock numbers and locations have changed over time. Using global statistics and satellite data, we built a model to estimate livestock density at a high resolution (5 km). This work supports better decisions in food security, disease control, and environmental protection around the world.
Peng Li, Zhanao Huang, Yongqiang Yu, Xi Wu, Xiaomeng Huang, and Xiaojie Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3622, https://doi.org/10.5194/egusphere-2025-3622, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Mesoscale convective systems (MCSs) are a major cause of severe weather events. Traditional MCS identification methods rely on threshold-based approaches, which are computationally inefficient. To address this limitation, we propose a novel deep learning model for automated MCS detection. Our model achieves comparable accuracy to threshold-based methods while delivering a 200× speedup in processing efficiency.
Zihang Lou, Dailiang Peng, Zhou Shi, Hongyan Wang, Ke Liu, Yaqiong Zhang, Xue Yan, Zhongxing Chen, Su Ye, Le Yu, Jinkang Hu, Yulong Lv, Hao Peng, Yizhou Zhang, and Bing Zhang
Earth Syst. Sci. Data, 17, 3777–3796, https://doi.org/10.5194/essd-17-3777-2025, https://doi.org/10.5194/essd-17-3777-2025, 2025
Short summary
Short summary
This study creates the first detailed annual maps of Africa's cropland extent from 2000 to 2022 in 30 m resolution to support global efforts against hunger and sustainable farming. Our findings show Africa's cropland grew by 8.5 % over 2 decades, while 11.5 % of cropland was abandoned by 2018, revealing hidden challenges in agricultural sustainability. These yearly field-sized maps help governments track where farming grows or shrinks, plan food supplies, and protect vital cropland.
Zhixuan Guo, Wei Li, Philippe Ciais, Stephen Sitch, Guido R. van der Werf, Simon P. K. Bowring, Ana Bastos, Florent Mouillot, Jiaying He, Minxuan Sun, Lei Zhu, Xiaomeng Du, Nan Wang, and Xiaomeng Huang
Earth Syst. Sci. Data, 17, 3599–3618, https://doi.org/10.5194/essd-17-3599-2025, https://doi.org/10.5194/essd-17-3599-2025, 2025
Short summary
Short summary
To address the limitations of short time spans in satellite data and spatiotemporal discontinuity in site records, we reconstructed global monthly burned area maps at a 0.5° resolution for 1901–2020 using machine learning models. The global burned area is predicted at 3.46 × 106–4.58 × 106 km² per year, showing a decline from 1901 to 1978, an increase from 1978 to 2008 and a sharper decrease from 2008 to 2020. This dataset provides a benchmark for studies on fire ecology and the carbon cycle.
Dufu Liu, Feihu Huang, Peng Zheng, Xiaomeng Huang, Xi Wu, Xia Yuan, Jiafeng Zheng, Xiaojie Li, and Jing Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2714, https://doi.org/10.5194/egusphere-2025-2714, 2025
Preprint archived
Short summary
Short summary
Because of the limitations of past data-based models and the high cost of NWP computing, accurate precipitation proximity forecasting remains challenging. A dual encoder-decoder framework is proposed to enhance short-term forecasting and reduce underestimation in extreme precipitation by using spatio-temporal information conversion equations and adaptive weighted gradient loss. Experiments on SEVIR datasets show greater accuracy than existing deep learning methods.
Dong Wang and Xiaomeng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3533, https://doi.org/10.5194/egusphere-2024-3533, 2025
Short summary
Short summary
This study presents a method to enhance data output efficiency in high-resolution climate models by redistributing workloads and allowing lighter tasks to temporarily store data. We use smaller communication groups and I/O aggregation for efficient data writing. A reinforcement learning agent optimizes the approach based on performance data from two models, suggesting a promising strategy to reduce data output overhead and improve model performance.
Xiyu Li, Le Yu, Zhenrong Du, and Xiaoxuan Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-233, https://doi.org/10.5194/essd-2024-233, 2024
Manuscript not accepted for further review
Short summary
Short summary
We developed a new method to update detailed maps showing where different crops are grown over time, focusing on Africa, China, and the USA. Using various data sources and machine learning, we produced accurate maps at a 10 km resolution covering up to 42 crop types from 1961 to 2022. Our work bridges statistical data and satellite imagery, helping researchers and policymakers to address global agricultural challenges in food security and environmental impacts.
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam., 15, 817–828, https://doi.org/10.5194/esd-15-817-2024, https://doi.org/10.5194/esd-15-817-2024, 2024
Short summary
Short summary
An increase of 28 % in cropland expansion since 10 000 BCE has led to a 1.2 % enhancement in the global cropping potential, with varying efficiencies across regions. The continuous expansion has altered the support for population growth and has had impacts on climate and biodiversity, highlighting the effects of climate change. It also points out the limitations of previous studies.
Ying Tu, Shengbiao Wu, Bin Chen, Qihao Weng, Yuqi Bai, Jun Yang, Le Yu, and Bing Xu
Earth Syst. Sci. Data, 16, 2297–2316, https://doi.org/10.5194/essd-16-2297-2024, https://doi.org/10.5194/essd-16-2297-2024, 2024
Short summary
Short summary
We developed the first 30 m annual cropland dataset of China (CACD) for 1986–2021. The overall accuracy of CACD reached up to 0.93±0.01 and was superior to other products. Our fine-resolution cropland maps offer valuable information for diverse applications and decision-making processes in the future.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Shijun Zheng, Dailiang Peng, Bing Zhang, Yuhao Pan, Le Yu, Yan Wang, Xuxiang Feng, and Changyong Dou
EGUsphere, https://doi.org/10.5194/egusphere-2022-1110, https://doi.org/10.5194/egusphere-2022-1110, 2022
Preprint archived
Short summary
Short summary
This study observed the marked interannual differences in the vegetation response to the trend towards a warmer and wetter climate in northwest China. And found that the influence of precipitation to vegetation has gradually become stronger from 1982 to 2019 in northwest China, whereas which of temperature has gradually become weaker.
Lei Lin, Hao Liu, Xiaomeng Huang, Qingjun Fu, and Xinyu Guo
Hydrol. Earth Syst. Sci., 26, 5207–5225, https://doi.org/10.5194/hess-26-5207-2022, https://doi.org/10.5194/hess-26-5207-2022, 2022
Short summary
Short summary
Earth system (climate) model is an important instrument for projecting the global water cycle and climate change, in which tides are commonly excluded due to the much small timescales compared to the climate. However, we found that tides significantly impact the river water transport pathways, transport timescales, and concentrations in shelf seas. Thus, the tidal effect should be carefully considered in earth system models to accurately project the global water and biogeochemical cycle.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021, https://doi.org/10.5194/gmd-14-4573-2021, 2021
Short summary
Short summary
In this study, we implemented the specific morphology, phenology and harvest process of oil palm in the global land surface model ORCHIDEE-MICT. The improved model generally reproduces the same leaf area index, biomass density and life cycle fruit yield as observations. This explicit representation of oil palm in a global land surface model offers a useful tool for understanding the ecological processes of oil palm growth and assessing the environmental impacts of oil palm plantations.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Bowen Cao, Le Yu, Victoria Naipal, Philippe Ciais, Wei Li, Yuanyuan Zhao, Wei Wei, Die Chen, Zhuang Liu, and Peng Gong
Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, https://doi.org/10.5194/essd-13-2437-2021, 2021
Short summary
Short summary
In this study, the first 30 m resolution terrace map of China was developed through supervised pixel-based classification using multisource, multi-temporal data based on the Google Earth Engine platform. The classification performed well with an overall accuracy of 94 %. The terrace mapping algorithm can be used to map large-scale terraces in other regions globally, and the terrace map will be valuable for studies on soil erosion, carbon cycle, and ecosystem service assessments.
Cited articles
Ai, Z. and Hanasaki, N.: Simulation of crop yield using the global hydrological model H08 (crp.v1), Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, 2023.
Ai, Z., Hanasaki, N., Heck, V., Hasegawa, T., and Fujimori, S.: Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1), Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020, 2020.
Al Issawi, M., Rihan, H. Z., El Sarkassy, N., and Fuller, M. P.: Frost Hardiness Expression and Characterisation in Wheat at Ear Emergence, J. Agron. Crop Sci., 199, 66–74, 2013.
Ali, T., Huang, J., Wang, J., and Xie, W.: Global Footprints of Water and Land Resources through China's Food Trade, Glob. Food Secur.-Agric. Policy, 12, 139–145, https://doi.org/10.1016/j.gfs.2016.11.003, 2017.
Al-Sakkaf, A. S., Zhang, J., Yao, F., Hamed, M. M., Simbi, C. H., Ahmed, A., and Shahid, S.: Assessing Exposure to Climate Extremes Over the Arabian Peninsula Using Era5 Reanalysis Data: Spatial Distribution and Temporal Trends, Atmos. Res., 300, 107224, https://doi.org/10.1016/j.atmosres.2024.107224, 2024.
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., and White, J. W.: Rising Temperatures Reduce Global Wheat Production, Nat. Clim. Chang., 5, 143–147, 2015.
Bai, H., Tang, J., Wang, B., Cao, J., and Feng, P.: Projecting Future Changes in Extreme Climate for Maize Production in the North China Plain and the Role of Adjusting the Sowing Date, Mitig. Adapt. Strateg. Glob. Chang., 27, 21, https://doi.org/10.1007/s11027-022-09995-4, 2022a.
Bai, H., Xiao, D., Wang, B., Liu, D. L., and Tang, J.: Simulation of Wheat Response to Future Climate Change Based on Coupled Model Inter-Comparison Project Phase 6 Multi-Model Ensemble Projections in the North China Plain, Front. Plant Sci., 13, 829580, https://doi.org/10.3389/fpls.2022.829580, 2022b.
Bai, H., Xiao, D., Tang, J., and Liu, D. L.: Evaluation of Wheat Yield in North China Plain Under Extreme Climate by Coupling Crop Model with Machine Learning, Comput. Electron. Agric., 217, 108651, https://doi.org/10.1016/j.compag.2024.108651, 2024.
Bai, S., Kang, Y., and Wan, S.: Drip Fertigation Regimes for Winter Wheat in the North China Plain, Agric. Water Manag., 228, 105885, https://doi.org/10.1016/j.agwat.2019.105885, 2020.
Baydaroğlu, Ö., Yeşilköy, S., and Demir, I.: A Causality Perspective on the Impact of Hydroclimatic Extremes on Crop Yields, EMS Annual Meeting 2024, Barcelona, Spain, 1–6 Sep 2024, EMS2024-291, https://doi.org/10.5194/ems2024-291, 2024.
Beyene, A. N., Zeng, H., Wu, B., Zhu, L., Gebremicael, T. G., Zhang, M., and Bezabh, T.: Coupling Remote Sensing and Crop Growth Model to Estimate National Wheat Yield in Ethiopia, Big Earth Data, 6, 18–35, https://doi.org/10.1080/20964471.2020.1837529, 2022.
Boori, M. S., Choudhary, K., Paringer, R., and Kupriyanov, A.: Machine Learning for Yield Prediction in Fergana Valley, Central Asia, Journal of the Saudi Society of Agricultural Sciences, 22, 107–120, https://doi.org/10.1016/j.jssas.2022.07.006, 2022.
Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Zhang, J., Han, J., and Xie, J.: Integrating Multi-Source Data for Rice Yield Prediction Across China Using Machine Learning and Deep Learning Approaches, Agric. For. Meteorol., 297, 108275, https://doi.org/10.1016/j.agrformet.2020.108275, 2021.
Chachar, M. H., Chachar, N. A., Chachar, Q., Mujtaba, S. M., Chachar, S., and Chachar, Z.: Physiological Characterization of Six Wheat Genotypes for Drought Tolerance, International Journal of Research – Granthaalayah, 4, 184–196, 2016.
Chen, J., Tian, Y., Zhang, X., Zheng, C., Song, Z., Deng, A., and Zhang, W.: Nighttime Warming Will Increase Winter Wheat Yield through Improving Plant Development and Grain Growth in North China, J. Plant Growth Regul., 33, 397–407, 2014.
Chen, Y., Zhang, Z., and Tao, F.: Improving Regional Winter Wheat Yield Estimation through Assimilation of Phenology and Leaf Area Index from Remote Sensing Data, Eur. J. Agron., 101, 163–173, https://doi.org/10.1016/j.eja.2018.09.006, 2018.
Chenu, K., Porter, J. R., Martre, P., Basso, B., Chapman, S. C., Ewert, F., Bindi, M., and Asseng, S.: Contribution of Crop Models to Adaptation in Wheat, Trends Plant Sci., 22, 472–490, https://doi.org/10.1016/j.tplants.2017.02.003, 2017.
Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., Javed, T., Raza, A., Shabbir, R., Sorour, S., Elsanafawy, N. E. M., Anwar, S., Alamri, S., Sabagh, A. E., and Islam, M. S.: Evaluation of Drought Tolerance of some Wheat (Triticum Aestivum L.) Genotypes through Phenology, Growth, and Physiological Indices, Agronomy, https://doi.org/10.3390/agronomy11091792, 2021.
De Wit, A.: PCSE: The Python Crop Simulation Environment, PCSE [code], https://pcse.readthedocs.io/en/stable/ (last access: 5 February 2024), 2018.
De Wit, A. and Boogaard, H.: A Gentle Introduction to WOFOST, Wageningen Environmental Research, November, https://www.wur.nl (last access: 5 February 2024), 2021.
De Wit, A., Boogaard, H. L., Supit, I., and van den Berg, M.: System Description of the WOFOST 7.2, Cropping Systems Model, Wageningen Environmental Research, https://research.wur.nl/en/publications/system-description-of-the-wofost-72-cropping-systems-model/ (last access: 5 February 2024), 2020.
de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, I., van der Wijngaart, R., and van Diepen, K.: 25 Years of the WOFOST Cropping Systems Model, Agric. Syst., 168, 154–167, https://doi.org/10.1016/j.agsy.2018.06.018, 2018.
Dickin, E. and Wright, D.: The Effects of Winter Waterlogging and Summer Drought on the Growth and Yield of Winter Wheat (Triticum Aestivum L.), Eur. J. Agron., 28, 234–244, https://doi.org/10.1016/j.eja.2007.07.010, 2008.
Dinh, T. L. A. and Aires, F.: Nested leave-two-out cross-validation for the optimal crop yield model selection, Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022, 2022.
Dong, X., Zhang, T., Yang, X., Li, T., and Li, X.: Rice Yield Benefits from Historical Climate Warming to be Negated by Extreme Heat in Northeast China, Int. J. Biometeorol., 67, 835–846, https://doi.org/10.1007/s00484-023-02458-8, 2023.
Ebrahimi-Mollabashi, E., Huth, N. I., Holzwoth, D. P., Ordóñez, R. A., Hatfield, J. L., Huber, I., Castellano, M. J., and Archontoulis, S. V.: Enhancing APSIM to Simulate Excessive Moisture Effects on Root Growth, Field Crops Res., 236, 58–67, 2019.
Ellis, R. H., Summerfield, R. J., Edmeades, G. O., and Roberts, E. H.: Photoperiod, Temperature, and the Interval from Sowing to Tassel Initiation in Diverse Cultivars of Maize, Crop Sci., 32, 1225–1232, https://doi.org/10.2135/cropsci1992.0011183X003200050033x, 1992.
Erenstein, O., Jaleta, M., Mottaleb, K. A., Sonder, K., Donovan, J., and Braun, H.: Global Trends in Wheat Production, Consumption and Trade, in: Wheat improvement: food security in a changing climate, Springer International Publishing Cham, 47–66, https://doi.org/10.1007/978-3-030-90673-3_4, 2022.
FAO: Food and Agriculture Organization of the United Nations, Roma: FAO, https://www.fao.org (last access: 5 February 2024), 2021.
Farooq, M., Bramley, H., Palta, J. A., and Siddique, K. H. M.: Heat Stress in Wheat During Reproductive and Grain-Filling Phases, Crit. Rev. Plant Sci., 30, 491–507, https://doi.org/10.1080/07352689.2011.615687, 2011.
Feng, P., Wang, B., Liu D. L., Waters, C., and Yu, Q.: Incorporating Machine Learning with Biophysical Model Can Improve the Evaluation of Climate Extremes Impacts on Wheat Yield in South-Eastern Australia, Agric. For. Meteorol., 275, 100–113, https://doi.org/10.1016/j.agrformet.2019.05.018, 2019a.
Feng, P., Wang, B., Li Liu, D., Waters, C., and Yu, Q.: Incorporating Machine Learning with Biophysical Model Can Improve the Evaluation of Climate Extremes Impacts on Wheat Yield in South-Eastern Australia, Agric. For. Meteorol., 275, 100–113, 2019b.
Fu, J., Jian, Y., Wang, X., Li, L., Ciais, P., Zscheischler, J., Wang, Y., Tang, Y., Müller, C., Webber, H., Yang, B., Wu, Y., Wang, Q., Cui, X., Huang, W., Liu, Y., Zhao, P., Piao, S., and Zhou, F.: Extreme Rainfall Reduces One-Twelfth of China'S Rice Yield Over the Last Two Decades, Nat. Food, 4, 416–426, https://doi.org/10.1038/s43016-023-00753-6, 2023.
Fuller, M. P., Fuller, A. M., Kaniouras, S., Christophers, J., and Fredericks, T.: The Freezing Characteristics of Wheat at Ear Emergence, Eur. J. Agron., 26, 435–441, 2007.
Gao, Y., Wallach, D., Liu, B., Dingkuhn, M., Boote, K. J., Singh, U., Asseng, S., Kahveci, T., He, J., and Zhang, R.: Comparison of Three Calibration Methods for Modeling Rice Phenology, Agric. For. Meteorol., 280, 107785, https://doi.org/10.1016/j.agrformet.2019.107785, 2020.
Gao, Y., Wallach, D., Hasegawa, T., Tang, L., Zhang, R., Asseng, S., Kahveci, T., Liu, L., He, J., and Hoogenboom, G.: Evaluation of Crop Model Prediction and Uncertainty Using Bayesian Parameter Estimation and Bayesian Model Averaging, Agric. For. Meteorol., 311, 108686, https://doi.org/10.1016/j.agrformet.2021.108686, 2021.
GSOD: Global Surface Summary of the Day, National Centers for Environmental Information [data set], https://www.ncei.noaa.gov (last access: 5 January 2024), 2023.
Gu, W., Ma, G., Wang, R., Scherer, L., He, P., Xia, L., Zhu, Y., Bi, J., and Liu, B.: Climate Adaptation through Crop Migration Requires a Nexus Perspective for Environmental Sustainability in the North China Plain, Nat. Food, 5, 569–580, 2024.
Guo, H., Hu, W., Yang, C., and Wan, F.: Moisture Sources and Atmospheric Circulation Patterns for Extreme Rainfall Event Over North China Plain from 29 July to 2 August 2023, Earth Space Sci., 11, e2024EA003956, https://doi.org/10.1029/2024ea003956, 2024.
Han, J., Zhang, Z., Cao, J., Luo, Y., Zhang, L., Li, Z., and Zhang, J.: Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China, Remote Sens., 12, 236, https://doi.org/10.3390/rs12020236, 2020.
Harrison, M. T.: Climate Change Benefits Negated by Extreme Heat, Nat. Food, 2, 855–856, https://doi.org/10.1038/s43016-021-00387-6, 2021.
Heinicke, S., Frieler, K. A., Jagermeyr, J., and Mengel, M.: Global Gridded Crop Models Underestimate Yield Responses to Droughts and Heatwaves, Environ. Res. Lett., 17, 44026, https://doi.org/10.1088/1748-9326/ac592e, 2022.
Herzog, M., Striker, G. G., Colmer, T. D., and Pedersen, O.: Mechanisms of Waterlogging Tolerance in Wheat – a Review of Root and Shoot Physiology, Plant Cell Environ., 39, 1068–1086, 2016.
Hong, Y. and Ying, S.: Characteristics of Extreme Temperature and Precipitation in China in 2017 Based on ETCCDI Indices, Adv. Clim. Chang. Res., 9, 218–226, https://doi.org/10.1016/j.accre.2019.01.001, 2018.
Hou, M., Li, Y., Biswas, A., Chen, X., Xie, L., Liu, D., Li, L., Feng, H., Wu, S., and Satoh, Y.: Concurrent Drought Threaten Wheat and Maize Production and Widen Crop Yield Gaps in the Future, Agric. Syst., 220, 104056, https://doi.org/10.1016/j.agsy.2024.104056, 2024.
Hu, S., Mo, X., and Lin, Z.: The Contribution of Climate Change to the Crop Phenology and Yield in Haihe River Basin, Geogr. Res., 33, 3–12, 2014.
Ihsan, M. Z., El-Nakhlawy, F. S., Ismail, S. M., Fahad, S., and Daur, I.: Wheat Phenological Development and Growth Studies as Affected by Drought and Late Season High Temperature Stress Under Arid Environment, Front. Plant Sci., 7, 795, https://doi.org/10.3389/fpls.2016.00795, 2016.
Iniyan, S., Akhil Varma, V., and Teja Naidu, C.: Crop Yield Prediction Using Machine Learning Techniques, Adv. Eng. Softw., 175, 103326, https://doi.org/10.1016/j.advengsoft.2022.103326, 2023.
Ji, H., Xiao, L., Xia, Y., Song, H., Liu, B., Tang, L., Cao, W., Zhu, Y., and Liu, L.: Effects of Jointing and Booting Low Temperature Stresses on Grain Yield and Yield Components in Wheat, Agric. For. Meteorol., 243, 33–42, https://doi.org/10.1016/j.agrformet.2017.04.016, 2017.
Ji, Z., Pan, Y., Zhu, X., Zhang, D., and Wang, J.: A Generalized Model to Predict Large-Scale Crop Yields Integrating Satellite-Based Vegetation Index Time Series and Phenology Metrics, Ecol. Indic., 137, 108759, https://doi.org/10.1016/j.ecolind.2022.108759, 2022.
Jitsuyama, Y.: Hypoxia-Responsive Root Hydraulic Conductivity Influences Soybean Cultivar-Specific Waterlogging Tolerance, American Journal of Plant Sciences, 8, 770, https://doi.org/10.4236/AJPS.2017.84054, 2017.
Kalchbrenner, N. E., Danihelka, I., and Graves, A. B.: Grid Long Short-Term Memory Neural Networks, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 2019.
Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., and Golden, B. R.: Impacts and Management Strategies for Crop Production in Waterlogged or Flooded Soils: A Review, Agron. J., 112, 1475–1501, 2020.
Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., and Shearer, S.: Integration of High Resolution Remotely Sensed Data and Machine Learning Techniques for Spatial Prediction of Soil Properties and Corn Yield, Comput. Electron. Agric., 153, 213–225, https://doi.org/10.1016/j.compag.2018.07.016, 2018.
Koehler, T., Wankmüller, F. J., Sadok, W., and Carminati, A.: Transpiration Response to Soil Drying Versus Increasing Vapor Pressure Deficit in Crops: Physical and Physiological Mechanisms and Key Plant Traits, J. Exp. Bot., 74, 4789–4807, 2023.
Kumar, R. and Mahapatra, R. P.: Severity of Natural Calamities and Crop Yield Prediction Using Hybrid Deep Learning Model in Uttar Pradesh, World Water Policy, 10, 244–279, 2024.
Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of Extreme Weather Disasters on Global Crop Production, Nature, 529, 84–87, https://doi.org/10.1038/nature16467, 2016.
Li, L., Zhang, Y., Wang, B., Feng, P., He, Q., Shi, Y., Liu, K., Harrison, M. T., De Li Liu, Yao, N., Li, Y., He, J., Feng, H., Siddique, K. H. M., and Yu, Q.: Integrating Machine Learning and Environmental Variables to Constrain Uncertainty in Crop Yield Change Projections Under Climate Change, Eur. J. Agron., 149, 126917, https://doi.org/10.1016/j.eja.2023.126917, 2023.
Li, N., Lin, H., Wang, T., Li, Y., Liu, Y., Chen, X., and Hu, X.: Impact of Climate Change on Cotton Growth and Yields in Xinjiang, China, Field Crops Res., 247, 107590, https://doi.org/10.1016/j.fcr.2019.107590, 2020a.
Li, Q., Zhou, X., Chen, Y., and Yu, S.: Water Consumption Characteristics of Winter Wheat Grown Using Different Planting Patterns and Deficit Irrigation Regime, Agric. Water Manag., 105, 8–12, 2012.
Li, X., Cai, J., Liu, F., Dai, T., Cao, W., and Jiang, D.: Spring Freeze Effect on Wheat Yield is Modulated by Winter Temperature Fluctuations: Evidence from Meta-Analysis and Simulating Experiment, J. Agron. Crop Sci., 201, 288–300, https://doi.org/10.1111/jac.12115, 2014a.
Li, X., Cai, J., Liu, F., Dai, T., Cao, W., and Jiang, D.: Cold Priming Drives the Sub-Cellular Antioxidant Systems to Protect Photosynthetic Electron Transport Against Subsequent Low Temperature Stress in Winter Wheat, Plant Physiol. Biochem., 82, 34–43, 2014b.
Li, X., Tan, J., Wang, X., Han, G., Qian, Z., Li, H., Wang, L., and Niu, G.: Responses of Spring Wheat Yield and Growth Period to Different Future Climate Change Models in the Yellow River Irrigation Area Based on CMIP6 and WOFOST Models, Agric. For. Meteorol., 353, 110071, https://doi.org/10.1016/j.agrformet.2024.110071, 2024.
Li, Y., Hou, R., and Tao, F.: Interactive Effects of Different Warming Levels and Tillage Managements on Winter Wheat Growth, Physiological Processes, Grain Yield and Quality in the North China Plain, Agric. Ecosyst. Environ., 295, 106923, https://doi.org/10.1016/j.agee.2020.106923, 2020b.
Li, Z., Qing-Quan, C., Yu-Lin, J., Fu, C., and Yong-Deng, L.: Impacts of Climate Change on Drought Risk of Winter Wheat in the North China Plain, J. Integr. Agric., 20, 2601–2612, https://doi.org/10.1016/s2095-3119(20)63273-7, 2021.
Liu, B., Liu, L., Tian, L., Cao, W., Zhu, Y., and Asseng, S.: Post-Heading Heat Stress and Yield Impact in Winter Wheat of China., Glob. Change Biol., 20, 372–381, https://doi.org/10.1111/gcb.12442, 2013.
Liu, K., Harrison, M. T., Shabala, S., Meinke, H., Ahmed, I., Zhang, Y., Tian, X., and Zhou, M.: The State of the Art in Modeling Waterlogging Impacts on Plants: What Do we Know and What Do we Need to Know, Earth Future, 8, https://doi.org/10.1029/2020ef001801, 2020.
Liu, L., Xu, H., Liu, S., and Liu, X.: China's Response to Extreme Weather Events Must be Long Term, Nat. Food, 4, 1022–1023, https://doi.org/10.1038/s43016-023-00892-w, 2023.
Liu, Y., Han, M., Zhou, X., Li, W., Du, C., Zhang, Y., Zhang, Y., Sun, Z., and Wang, Z.: Optimizing Nitrogen Fertilizer Application Under Reduced Irrigation Strategies for Winter Wheat of the North China Plain, Irrig. Sci., 1–11, https://doi.org/10.1007/s00271-021-00764-w, 2022.
Lobell, D. B. and Burke, M. B.: On the Use of Statistical Models to Predict Crop Yield Responses to Climate Change, Agric. For. Meteorol., 150, 1443–1452, https://doi.org/10.1016/j.agrformet.2010.07.008, 2010.
Lobell, D. B., Schlenker, W., and Costa-Roberts, J.: Climate Trends and Global Crop Production Since 1980, Science, 333, 616–620, 2011.
Lu, Y. and Yang, X.: Using the anomaly forcing Community Land Model (CLM 4.5) for crop yield projections, Geosci. Model Dev., 14, 1253–1265, https://doi.org/10.5194/gmd-14-1253-2021, 2021.
Lüttger, A. B. and Feike, T.: Development of Heat and Drought Related Extreme Weather Events and their Effect on Winter Wheat Yields in Germany, Theor. Appl. Climatol., 132, 15–29, https://doi.org/10.1007/s00704-017-2076-y, 2017.
Ma, Y., Zhang, Z., Kang, Y., and Ozdogan, M.: Corn Yield Prediction and Uncertainty Analysis Based on Remotely Sensed Variables Using a Bayesian Neural Network Approach, Remote Sens. Environ., 259, 112408, https://doi.org/10.1016/j.rse.2021.112408, 2021.
Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., and Fritschi, F. B.: Soybean Yield Prediction from UAV Using Multimodal Data Fusion and Deep Learning, Remote Sens. Environ., 237, 111599, https://doi.org/10.1016/j.rse.2019.111599, 2019.
McMaster, G. S. and Smika, D. E.: Estimation and Evaluation of Winter Wheat Phenology in the Central Great Plains, Agric. For. Meteorol., 43, 1–18, https://doi.org/10.1016/0168-1923(88)90002-0, 1988.
McMaster, G. S. and Wilhelm, W. W.: Phenological Responses of Wheat and Barley to Water and Temperature: Improving Simulation Models, The Journal of Agricultural Science, 141, 129–147, 2003.
Mo, X., Hu, S., Lin, Z., Liu, S., and Xia, J.: Impacts of Climate Change on Agricultural Water Resources and Adaptation on the North China Plain, Adv. Clim. Chang. Res., 8, 93–98, https://doi.org/10.1016/j.accre.2017.05.007, 2017.
Nesmith, D. S. and Ritchie, J. T.: Maize (Zea Mays L.) Response to a Severe Soil Water-Deficit During Grain-Filling, Field Crops Res., 29, 23–35, https://doi.org/10.1016/0378-4290(92)90073-i, 1992.
Nguyen, T., Son, S., Jordan, M. C., Levin, D. B., and Ayele, B. T.: Lignin Biosynthesis in Wheat (Triticum Aestivum L.): Its Response to Waterlogging and Association with Hormonal Levels, BMC Plant Biol., 16, 1–16, 2016.
Nóia Júnior, R. D. S., Asseng, S., García-Vila, M., Liu, K., Stocca, V., Dos Santos Vianna, M., Weber, T. K. D., Zhao, J., Palosuo, T., and Harrison, M. T.: A Call to Action for Global Research on the Implications of Waterlogging for Wheat Growth and Yield, Agric. Water Manag., 284, 108334, https://doi.org/10.1016/j.agwat.2023.108334, 2023.
Nyaupane, S., Poudel, M. R., Panthi, B., Dhakal, A., Paudel, H., and Bhandari, R.: Drought Stress Effect, Tolerance, and Management in Wheat – a Review, Cogent Food Agr., 10, 2296094, https://doi.org/10.1080/23311932.2023.2296094, 2024.
Osman, R., Zhu, Y., Ma, W., Zhang, D., Ding, Z., Liu, L., Tang, L., Liu, B., and Cao, W.: Comparison of Wheat Simulation Models for Impacts of Extreme Temperature Stress on Grain Quality, Agric. For. Meteorol., 288–289, 107995, https://doi.org/10.1016/j.agrformet.2020.107995, 2020.
Oubaha, A., Ongoma, V., Hssaine, B. A., Bouchaou, L., and Chehbouni, A.: Evaluation of the Performance of Meteorological Drought Indices in Morocco: A Case Study of Different Climatic Zones, Int. J. Climatol., 44, 4009–4031, 2024.
Panigrahy, S.: SMOTE-Based Deep LSTM System with GridSearchCV Optimization for Intelligent Diabetes Diagnosis, J. Electr. Syst., 20, 804–815, https://doi.org/10.52783/jes.3455, 2024.
Peethani, S., Pathakoti, M., Kheir, A. M., Singh, A., and Govind, A.: Variability of ENSO Teleconnections Indices, and its Impacts on Moroccan Agriculture, J. Atmos. Sol.-Terr. Phys., 265, 106386, https://doi.org/10.1016/j.jastp.2024.106386, 2024.
Pei, J., Zou, Y., Liu, Y., He, Y., Tan, S., Wang, T., and Huang, J.: Downscaling Administrative-Level Crop Yield Statistics to 1 Km Grids Using Multi-Source Remote Sensing Data and Ensemble Machine Learning, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., https://doi.org/10.1109/JSTARS.2024.3441252, 2024.
Pei, J., Tan, S., Zou, Y., Liao, C., He, Y., Wang, J., Huang, H., Wang, T., Tian, H., Fang, H., Wang, L., and Huang, J.: The Role of Phenology in Crop Yield Prediction: Comparison of Ground-Based Phenology and Remotely Sensed Phenology, Agric. For. Meteorol., 361, 110340, https://doi.org/10.1016/j.agrformet.2024.110340, 2025.
Pena-Gallardo, M., Vicente-Serrano, S. M., Quiring, S., Svoboda, M., Hannaford, J., Tomas-Burguera, M., Martin-Hernandez, N., Dominguez-Castro, F., and Kenawy, A. E.: Response of Crop Yield to Different Time-Scales of Drought in the United States: Spatio-Temporal Patterns and Climatic and Environmental Drivers, Agric. For. Meteorol., 264, 40–55, https://doi.org/10.1016/j.agrformet.2018.09.019, 2018.
Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, Soil, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Porter, J. R. and Gawith, M.: Temperatures and the Growth and Development of Wheat: A Review, Eur. J. Agron., 10, 23–36, https://doi.org/10.1016/s1161-0301(98)00047-1, 1999.
Potopova, V., Stepanek, P., Mozny, M., Tuerkott, L., and Soukup, J.: Performance of the Standardised Precipitation Evapotranspiration Index at Various Lags for Agricultural Drought Risk Assessment in the Czech Republic, Agric. For. Meteorol., 202, 26–38, https://doi.org/10.1016/j.agrformet.2014.11.022, 2015.
Powell, J. P. and Reinhard, S.: Measuring the Effects of Extreme Weather Events on Yields, Weather Clim. Extremes, 12, 69–79, https://doi.org/10.1016/j.wace.2016.02.003, 2016.
Ray, D. K., Gerber, J. S., Macdonald, G. K., and West, P. C.: Climate Variation Explains a Third of Global Crop Yield Variability, Nat. Commun., 6, 5989, https://doi.org/10.1038/ncomms6989, 2015.
Reynolds, M. P., Slafer, G. A., Foulkes, J. M., Griffiths, S., Murchie, E. H., Carmo-Silva, E., Asseng, S., Chapman, S. C., Sawkins, M., Gwyn, J., and Flavell, R. B.: Author Correction: A Wiring Diagram to Integrate Physiological Traits of Wheat Yield Potential, Nat. Food, 3, 665, https://doi.org/10.1038/s43016-022-00574-z, 2022.
Rezaei, E. E., Siebert, S., Manderscheid, R., Mueller, J., Mahrookashani, A., Ehrenpfordt, B., Haensch, J., Weigel, H., and Ewert, F.: Quantifying the Response of Wheat Yields to Heat Stress: The Role of the Experimental Setup, Field Crops Res., 217, 93–103, https://doi.org/10.1016/j.fcr.2017.12.015, 2018.
Ringeval, B., Müller, C., Pugh, T. A. M., Mueller, N. D., Ciais, P., Folberth, C., Liu, W., Debaeke, P., and Pellerin, S.: Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences, Geosci. Model Dev., 14, 1639–1656, https://doi.org/10.5194/gmd-14-1639-2021, 2021.
Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B., and Schlenker, W.: Comparing and Combining Process-Based Crop Models and Statistical Models with some Implications for Climate Change, Environ. Res. Lett., 12, 95010, https://doi.org/10.1088/1748-9326/aa7f33, 2017.
Ruan, G., Li, X., Yuan, F., Cammarano, D., Ata-Ui-Karim, S. T., Liu, X., Tian, Y., Zhu, Y., Cao, W., and Cao, Q.: Improving Wheat Yield Prediction Integrating Proximal Sensing and Weather Data with Machine Learning, Comput. Electron. Agric., 195, 106852, https://doi.org/10.1016/j.compag.2022.106852, 2022.
Sadras, V. O. and Monzon, J. P.: Modelled Wheat Phenology Captures Rising Temperature Trends: Shortened Time to Flowering and Maturity in Australia and Argentina, Field Crops Res., 99, 136–146, 2006.
Shahhosseini, M., Hu, G., Huber, I., and Archontoulis, S. V.: Coupling Machine Learning and Crop Modeling Improves Crop Yield Prediction in the US Corn Belt, Sci. Rep., 11, 1606, https://doi.org/10.1038/s41598-020-80820-1, 2021.
Shen, R., Dong, J., Yuan, W., Han, W., Ye, T., and Zhao, W.: A 30 M Resolution Distribution Map of Maize for China Based on Landsat and Sentinel Images, Journal of Remote Sensing, 2022, https://doi.org/10.34133/2022/9846712, 2022.
Shi, J., Wang, Z., Zhang, Z., Fei, Y., Li, Y., Zhang, F. E., Chen, J., and Qian, Y.: Assessment of Deep Groundwater Over-Exploitation in the North China Plain, Earth Science Frontiers, 2, 593–598, https://doi.org/10.1016/j.gsf.2011.07.002, 2011.
Shroyer, J. P., Mikesell, M. E., and Paulsen, G. M. (Eds.): Spring Freeze Injury to Kansas Wheat, Cooperative Extension Service, Kansas State University, https://bookstore.ksre.k-state.edu/item/spring-freeze-injury-to-kansas-wheat_C646 (last access: 10 February 2024), 1995.
Singh Boori, M., Choudhary, K., Paringer, R., and Kupriyanov, A.: Machine Learning for Yield Prediction in Fergana Valley, Central Asia, Journal of the Saudi Society of Agricultural Sciences, 22, 107–120, https://doi.org/10.1016/j.jssas.2022.07.006, 2023.
SM, S. I., Mount, J., and Demir, I.: Assessment of Drought Impacts on Crop Yields (Corn and Soybeans) Across Iowa During 2000–2022, Authorea, https://doi.org/10.22541/au.173890810.01900586/v1, 2025.
Song, Y., Linderholm, H. W., Wang, C., Tian, J., Huo, Z., Gao, P., Song, Y., and Guo, A.: The Influence of Excess Precipitation on Winter Wheat Under Climate Change in China from 1961 to 2017., Sci. Total Environ., 690, 189–196, https://doi.org/10.1016/j.scitotenv.2019.06.367, 2019.
Sun, J., Lai, Z., Di, L., Sun, Z., Tao, J., and Shen, Y.: Multilevel Deep Learning Network for County-Level Corn Yield Estimation in the Us Corn Belt, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 13, 5048–5060, https://doi.org/10.1109/JSTARS.2020.3019046, 2020.
Sun, Q., Kröbel, R., Müller, T., Römheld, V., Cui, Z., Zhang, F., and Chen, X.: Optimization of Yield and Water-Use of Different Cropping Systems for Sustainable Groundwater Use in North China Plain, Agric. Water Manag., 98, 808–814, 2011.
Supit, I., Hooijer, A. A., and Van Diepen, C. A.: System Description of the WOFOST 6.0 Crop Simulation Model Implemented in CGMS, Vol. 1: Theory and Algorithms, Joint Research Centre, Commission of the European Communities, EUR, 15956, 146 pp., https://op.europa.eu/en/publication-detail/-/publication/a99325a7-c776-11e6-a6db-01aa75ed71a1 (last access: 5 February 2024), 1994.
Tack, J., Barkley, A., and Nalley, L. L.: Effect of Warming Temperatures on US Wheat Yields, P. Natl. Acad. Sci. USA, 112, 6931–6936, https://doi.org/10.1073/pnas.1415181112, 2015.
Tang, R., Supit, I., Hutjes, R., Zhang, F., Wang, X., Chen, X., Zhang, F., and Chen, X.: Modelling Growth of Chili Pepper (Capsicum Annuum L.) With the WOFOST Model, Agric. Syst., 209, 103688, https://doi.org/10.1016/j.agsy.2023.103688, 2023.
Tao, F. and Zhang, Z.: Climate Change, Wheat Productivity and Water Use in the North China Plain: A New Super-Ensemble-Based Probabilistic Projection, Agric. For. Meteorol., 170, 146–165, 2013.
Tao, F., Zhang, Z., Zhang, S., Zhu, Z., and Shi, W.: Response of Crop Yields to Climate Trends Since 1980 in China, Clim. Res., 54, 233–247, https://doi.org/10.3354/cr01131, 2012.
Tao, F., Rötter, R. P., Palosuo, T., Díaz-Ambrona, C. G. H., Mínguez, M. I., Semenov, M. A., Kersebaum, K. C., Nendel, C., Cammarano, D., and Hoffmann, H.: Designing Future Barley Ideotypes Using a Crop Model Ensemble, Eur. J. Agron., 82, 144–162, 2017a.
Tao, F., Xiao, D., Zhang, S., Zhang, Z., and Rötter, R. P.: Wheat Yield Benefited from Increases in Minimum Temperature in the Huang-Huai-Hai Plain of China in the Past Three Decades, Agric. For. Meteorol., 239, 1–14, 2017b.
Tian, H., Wang, P., Tansey, K., Zhang, J., Zhang, S., and Li, H.: An LSTM Neural Network for Improving Wheat Yield Estimates by Integrating Remote Sensing Data and Meteorological Data in the Guanzhong Plain, PR China, Agric. For. Meteorol., 310, 108629, https://doi.org/10.1016/j.agrformet.2021.108629, 2021.
Tollenaar, M.: Effect of Temperature on Rate of Leaf Appearance and Flowering Date in Maize, Crop Sci., 19, https://doi.org/10.2135/cropsci1979.0011183X001900030022x, 1979.
Torsoni, G. B., de Oliveira Aparecido, L. E., Santos, G. M. D., Chiquitto, A. G., Moraes, J. R. D. S., and de Souza Rolim, G.: Correction to: Soybean Yield Prediction by Machine Learning and Climate, Theor. Appl. Climatol., 151, 1709–1725, https://doi.org/10.1007/s00704-023-04389-1, 2023.
Wang, B., Waters, C., Orgill, S., Cowie, A., Clark, A., De Li Liu, Simpson, M., Mcgowen, I., and Sides, T.: Estimating Soil Organic Carbon Stocks Using Different Modelling Techniques in the Semi-Arid Rangelands of Eastern Australia, Ecol. Indic., 88, 425–438, https://doi.org/10.1016/j.ecolind.2018.01.049, 2018.
Wang, J., Yang, Y., Huang, J., and Adhikari, B.: Adaptive Irrigation Measures in Response to Extreme Weather Events: Empirical Evidence from the North China Plain, Reg. Environ. Change, 19, 1009–1022, https://doi.org/10.1007/s10113-018-1442-3, 2019.
Wang, T., Li, N., Li, Y., Lin, H., Yao, N., Chen, X., De Li Liu, Yu, Q., and Feng, H.: Impact of Climate Variability on Grain Yields of Spring and Summer Maize, Comput. Electron. Agric., 199, 107101, https://doi.org/10.1016/j.compag.2022.107101, 2022.
Wang, X., Wang, S., Li, X., Chen, B., Wang, J., Huang, M., and Rahman, A.: Modelling Rice Yield with Temperature Optima of Rice Productivity Derived from Satellite NIRv in Tropical Monsoon Area, Agric. For. Meteorol., 294, 108135, https://doi.org/10.1016/j.agrformet.2020.108135, 2020.
Watts, W. R.: Role of Temperature in the Regulation of Leaf Extension in Zea Mays, Nature, 229, 46–47, 1971.
Wei, Z., Bian, D., Du, X., Gao, Z., Li, C., Liu, G., Yang, Q., Jiang, A., and Cui, Y.: An Increase in Solar Radiation in the Late Growth Period of Maize Alleviates the Adverse Effects of Climate Warming on the Growth and Development of Maize, Agronomy-Basel, 13, 1284, https://doi.org/10.3390/agronomy13051284, 2023.
Wu, H., Hubbard, K. G., and Wilhite, D. A.: An Agricultural Drought Risk-Assessment Model for Corn and Soybeans, Int. J. Climatol., 24, 723–741, https://doi.org/10.1002/joc.1028, 2004.
Wu, X., Tang, Y., Li, C., Wu, C., and Huang, G.: Chlorophyll Fluorescence and Yield Responses of Winter Wheat to Waterlogging at Different Growth Stages, Plant Prod. Sci., 18, 284–294, 2015.
Xiao, D., De Li Liu, Wang, B., Feng, P., Bai, H., and Tang, J.: Climate Change Impact on Yields and Water Use of Wheat and Maize in the North China Plain Under Future Climate Change Scenarios, Agric. Water Manag., 238, 106238, https://doi.org/10.1016/j.agwat.2020.106238, 2020.
Xiao, L., Liu, L., Asseng, S., Xia, Y., Tang, L., Liu, B., Cao, W., and Zhu, Y.: Estimating Spring Frost and its Impact on Yield Across Winter Wheat in China, Agric. For. Meteorol., 260, 154–164, https://doi.org/10.1016/j.agrformet.2018.06.006, 2018.
Xiao, L., Liu, B., Zhang, H., Gu, J., Fu, T., Asseng, S., Liu, L., Tang, L., Cao, W., and Zhu, Y.: Modeling the Response of Winter Wheat Phenology to Low Temperature Stress at Elongation and Booting Stages, Agric. For. Meteorol., 303, 108376, https://doi.org/10.1016/j.agrformet.2021.108376, 2021.
Xiao, L., Wang, G., Wang, E., Liu, S., Chang, J., Zhang, P., Zhou, H., Wei, Y., Zhang, H., Zhu, Y., Shi, Z., and Luo, Z.: Spatiotemporal Co-Optimization of Agricultural Management Practices Towards Climate-Smart Crop Production, Nat. Food, 5, 59–71, https://doi.org/10.1038/s43016-023-00891-x, 2024.
Xu, X., Gao, P., Zhu, X., Guo, W., Ding, J., and Li, C.: Estimating the Responses of Winter Wheat Yields to Moisture Variations in the Past 35 Years in Jiangsu Province of China, PLoS One, 13, e0191217, https://doi.org/10.1371/journal.pone.0191217, 2018.
Yan, H., Wang, S. Q., Wang, J. B., Lu, H. Q., Guo, A. H., Zhu, Z. C., Myneni, R. B., and Shugart, H. H.: Assessing Spatiotemporal Variation of Drought in China and its Impact on Agriculture During 1982–2011 by Using PDSI Indices and Agriculture Drought Survey Data, J. Geophys. Res.-Atmos., 121, 2283–2298, 2016.
Yang, H., Gao, X., Sun, M., Wang, A., Sang, Y., Wang, J., Zhao, X., Zhang, S., and Ariyasena, H.: Spatial and Temporal Patterns of Drought Based on RW-PDSI Index on Loess Plateau in the Past Three Decades, Ecol. Indic., 166, 112409, https://doi.org/10.1016/j.ecolind.2024.112409, 2024.
Yang, J., Wu, J., Liu, L., Zhou, H., Gong, A., Han, X., and Zhao, W.: Responses of Winter Wheat Yield to Drought in the North China Plain: Spatial–Temporal Patterns and Climatic Drivers, Water, 12, 3094, https://doi.org/10.3390/w12113094, 2020.
Yang, R., Dai, P., Wang, B., Jin, T., Liu, K., Fahad, S., Harrison, M. T., Man, J., Shang, J., Meinke, H., Liu, D., Wang, X., Zhang, Y., Zhou, M., Tian, Y., and Yan, H.: Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes, Agronomy-Basel, 12, 145, https://doi.org/10.3390/agronomy12010145, 2022.
Yin, Z., Wang, H., and Chen, H.: Understanding severe winter haze events in the North China Plain in 2014: roles of climate anomalies, Atmos. Chem. Phys., 17, 1641–1651, https://doi.org/10.5194/acp-17-1641-2017, 2017.
Yu, L., Du, Z., Li, X., Zheng, J., Zhao, Q., Wu, H., Weise, D., Yang, Y., Zhang, Q., Li, X., Ma, X., and Huang, X.: Enhancing Global Agricultural Monitoring System for Climate-Smart Agriculture, Climate Smart Agriculture, 2, 100037, https://doi.org/10.1016/j.csag.2024.100037, 2025.
Yu, X., Niu, L., Zhang, Y., Xu, Z., Zhang, J., Zhang, S., and Li, J.: Vapour Pressure Deficit Affects Crop Water Productivity, Yield, and Quality in Tomatoes, Agric. Water Manag., 299, 108879, https://doi.org/10.1016/j.agwat.2024.108879, 2024.
Zahra, N., Wahid, A., Hafeez, M. B., Ullah, A., Siddique, K. H. M., and Farooq, M.: Grain Development in Wheat Under Combined Heat and Drought Stress: Plant Responses and Management, Environ. Exp. Bot., 188, 104517, https://doi.org/10.1016/j.envexpbot.2021.104517, 2021.
Zhang, Q. and Miao, C.: A New High-Resolution Multi-Drought Indices Dataset for Mainland China; CHM_Drought, figshare [data set], https://doi.org/10.6084/m9.figshare.25656951.v2, 2024.
Zhang, Q., Miao, C., Su, J., Gou, J., Hu, J., Zhao, X., and Xu, Y.: A new high-resolution multi-drought-index dataset for mainland China, Earth Syst. Sci. Data, 17, 837–853, https://doi.org/10.5194/essd-17-837-2025, 2025.
Zhang, S. and Tao, F.: Improving Rice Development and Phenology Prediction Across Contrasting Climate Zones of China, Agric. For. Meteorol., 268, 224–233, https://doi.org/10.1016/j.agrformet.2019.01.019, 2019.
Zhang, S., Tao, F., and Zhang, Z.: Changes in Extreme Temperatures and their Impacts on Rice Yields in Southern China from 1981 to 2009, Field Crops Res., 189, 43, https://doi.org/10.1016/j.fcr.2016.02.008, 2016.
Zhang, S., Tao, F., and Zhang, Z.: Spatial and Temporal Changes in Vapor Pressure Deficit and their Impacts on Crop Yields in China During 1980–2008, J. Meteorol. Res., 31, 800–808, 2017a.
Zhang, S., Tao, F., and Zhang, Z.: Uncertainty from Model Structure is Larger than that from Model Parameters in Simulating Rice Phenology in China, Eur. J. Agron., 87, 30–39, https://doi.org/10.1016/j.eja.2017.04.004, 2017b.
Zhao, S.: Effects of Water Deficits on Yield and WUE in Winter Wheat, Irrig. Drain., 20, 56–69, 2001.
Zhao, Y., Xu, X., Li, J., Zhang, R., Kang, Y., Huang, W., Xia, Y., Liu, D., and Sun, X.: The Large-Scale Circulation Patterns Responsible for Extreme Precipitation Over the North China Plain in Midsummer, J. Geophys. Res.-Atmos., 124, 12794–12809, https://doi.org/10.1029/2019jd030583, 2019a.
Zhao, Y., Xu, X., Li, J., Zhang, R., Kang, Y., Huang, W., Xia, Y., Liu, D., and Sun, X.: The Large-Scale Circulation Patterns Responsible for Extreme Precipitation Over the North China Plain in Midsummer, J. Geophys. Res.-Atmos., 124, 12794–12809, 2019b.
Zhao, Y., Xiao, D., Bai, H., Tang, J., De Li Liu, Qi, Y., and Shen, Y.: The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms, Agriculture-Basel, 13, 99, https://doi.org/10.3390/agriculture13010099, 2022.
Zheng, J.: WOFOST-EW v1: Enhanced WOFOST for Extreme Weather, Zenodo [code], https://doi.org/10.5281/zenodo.15698320, 2025.
Zheng, J. and Zhang, S.: Improving Rice Phenology Simulations Based on the Bayesian Model Averaging Method, Eur. J. Agron., 142, 126646, https://doi.org/10.1016/j.eja.2022.126646, 2023.
Zheng, J. and Zhang, S.: Assessing the Impact of Climate Change on Winter Wheat Production in the North China Plain from 1980 to 2020, Agriculture-Basel, 15, 449, https://doi.org/10.3390/agriculture15050449, 2025a.
Zheng, J. and Zhang, S.: Decomposing the Total Uncertainty in Wheat Modeling: An Analysis of Model Structure, Parameters, Weather Data Inputs, and Squared Bias Contributions, Agric. Syst., 224, 104215, https://doi.org/10.1016/j.agsy.2024.104215, 2025b.
Zheng, J., Yu, Y., Zhang, X., and Hao, Z.: Variation of extreme drought and flood in North China revealed by document-based seasonal precipitation reconstruction for the past 300 years, Clim. Past, 14, 1135–1145, https://doi.org/10.5194/cp-14-1135-2018, 2018.
Zhuang, H., Zhang, Z., Cheng, F., Han, J., Luo, Y., Zhang, L., Cao, J., Zhang, J., He, B., Xu, J., and Tao, F.: Integrating Data Assimilation, Crop Model, and Machine Learning for Winter Wheat Yield Forecasting in the North China Plain, Agric. For. Meteorol., 347, 109909, https://doi.org/10.1016/j.agrformet.2024.109909, 2024.
Zipper, S. C., Qiu, J., and Kucharik, C. J.: Drought Effects on US Maize and Soybean Production: Spatiotemporal Patterns and Historical Changes, Environ. Res. Lett., 11, 94021, https://doi.org/10.1088/1748-9326/11/9/094021, 2016.
Short summary
This study integrates the extreme weather index and deep learning algorithms with the World Food Studies Simulation Model (WOFOST), proposing the WOFOST-EW v1. WOFOST-EW significantly improves the simulation of winter wheat growth under extreme weather conditions, providing more accurate predictions of phenology and yield. As extreme weather events become more frequent, WOFOST-EW provides a key tool for agricultural development.
This study integrates the extreme weather index and deep learning algorithms with the World Food...