Articles | Volume 18, issue 21
https://doi.org/10.5194/gmd-18-8379-2025
https://doi.org/10.5194/gmd-18-8379-2025
Development and technical paper
 | 
10 Nov 2025
Development and technical paper |  | 10 Nov 2025

Modeling wheat development under extreme weather with WOFOST-EW v1

Jinhui Zheng, Le Yu, Zhenrong Du, Liujun Xiao, and Xiaomeng Huang

Related authors

Annual global grided livestock mapping from 1961 to 2021
Zhenrong Du, Le Yu, Yue Zhao, Xinyue Li, Xiaoxuan Liu, Xiyu Li, Pengyu Hao, Zhongxin Chen, Zhe Guo, Liangzhi You, Xiaorui Ma, and Hongyu Wang
Earth Syst. Sci. Data, 17, 5543–5556, https://doi.org/10.5194/essd-17-5543-2025,https://doi.org/10.5194/essd-17-5543-2025, 2025
Short summary
MCSeg (v1.0): A Deep Learning Framework for Long-Term Large-Scale Mesoscale Convective Systems Identification and Precipitation Event Analysis
Peng Li, Zhanao Huang, Yongqiang Yu, Xi Wu, Xiaomeng Huang, and Xiaojie Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3622,https://doi.org/10.5194/egusphere-2025-3622, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
An annual cropland extent dataset for Africa at 30 m spatial resolution from 2000 to 2022
Zihang Lou, Dailiang Peng, Zhou Shi, Hongyan Wang, Ke Liu, Yaqiong Zhang, Xue Yan, Zhongxing Chen, Su Ye, Le Yu, Jinkang Hu, Yulong Lv, Hao Peng, Yizhou Zhang, and Bing Zhang
Earth Syst. Sci. Data, 17, 3777–3796, https://doi.org/10.5194/essd-17-3777-2025,https://doi.org/10.5194/essd-17-3777-2025, 2025
Short summary
Reconstructed global monthly burned area maps from 1901 to 2020
Zhixuan Guo, Wei Li, Philippe Ciais, Stephen Sitch, Guido R. van der Werf, Simon P. K. Bowring, Ana Bastos, Florent Mouillot, Jiaying He, Minxuan Sun, Lei Zhu, Xiaomeng Du, Nan Wang, and Xiaomeng Huang
Earth Syst. Sci. Data, 17, 3599–3618, https://doi.org/10.5194/essd-17-3599-2025,https://doi.org/10.5194/essd-17-3599-2025, 2025
Short summary
Precipitation Nowcasting Based on Convolutional LSTM with Spatio-Temporal Information Transformation Using Multi-Meteorological Factors
Dufu Liu, Feihu Huang, Peng Zheng, Xiaomeng Huang, Xi Wu, Xia Yuan, Jiafeng Zheng, Xiaojie Li, and Jing Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2714,https://doi.org/10.5194/egusphere-2025-2714, 2025
Preprint archived
Short summary

Cited articles

Ai, Z. and Hanasaki, N.: Simulation of crop yield using the global hydrological model H08 (crp.v1), Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, 2023. 
Ai, Z., Hanasaki, N., Heck, V., Hasegawa, T., and Fujimori, S.: Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1), Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020, 2020. 
Al Issawi, M., Rihan, H. Z., El Sarkassy, N., and Fuller, M. P.: Frost Hardiness Expression and Characterisation in Wheat at Ear Emergence, J. Agron. Crop Sci., 199, 66–74, 2013. 
Ali, T., Huang, J., Wang, J., and Xie, W.: Global Footprints of Water and Land Resources through China's Food Trade, Glob. Food Secur.-Agric. Policy, 12, 139–145, https://doi.org/10.1016/j.gfs.2016.11.003, 2017. 
Al-Sakkaf, A. S., Zhang, J., Yao, F., Hamed, M. M., Simbi, C. H., Ahmed, A., and Shahid, S.: Assessing Exposure to Climate Extremes Over the Arabian Peninsula Using Era5 Reanalysis Data: Spatial Distribution and Temporal Trends, Atmos. Res., 300, 107224, https://doi.org/10.1016/j.atmosres.2024.107224, 2024. 
Download
Short summary
This study integrates the extreme weather index and deep learning algorithms with the World Food Studies Simulation Model (WOFOST), proposing the WOFOST-EW v1. WOFOST-EW significantly improves the simulation of winter wheat growth under extreme weather conditions, providing more accurate predictions of phenology and yield. As extreme weather events become more frequent, WOFOST-EW provides a key tool for agricultural development.
Share