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Abstract. Extreme weather events pose significant chal-
lenges to crop production, making their assessment essen-
tial for developing effective climate adaptation strategies.
Process-based crop models are valuable for evaluating cli-
mate change impacts on crop yields but often struggle to
simulate the effects of extreme weather accurately. To fill
this knowledge gap, this study introduces WOFOST-EW vl1,
an enhanced version of the World Food Studies Simulation
Model (WOFOST), which integrates extreme weather in-
dices and deep learning algorithm to improve simulations of
winter wheat growth under extreme conditions. Deep learn-
ing offers powerful nonlinear fitting capabilities, enabling it
to capture subtle and intricate interactions between extreme
weather events and crop development, thereby significantly
improving simulation accuracy under extreme scenarios. We
validate WOFOST-EW using phenological, yield, and ex-
treme weather data from agricultural meteorological stations
in the North China Plain. The results show that WOFOST-
EW improves simulation accuracy. The RRMSE for head-
ing and maturity decreases from 4.61 % to 3.73 % and from
4.74 % to 3.98 %, respectively (with RMSE reductions of
10.64 % and 12.86 %). The R? value for yield simulations in-
creases from 0.67 to 0.76. In addition, we further validate the
WOFOST-EW model in years affected by extreme weather
and find that, compared to the original WOFOST model (R>
ranging from 0.61 to 0.71), WOFOST-EW achieves more
accurate results (R? ranging from 0.80 to 0.86). WOFOST-
EW effectively captures the impacts of extreme weather, of-

fering a reliable tool for agricultural planning and climate
adaptation. As extreme weather events become increasingly
frequent, WOFOST-EW can assist decision-makers in more
accurately evaluating crop yields, providing technical sup-
port for agricultural systems in the context of global climate
change.

1 Introduction

Climate change is one of the most important determinants
of crop yield, explaining 30 %—50 % of global yield variabil-
ity (Ray et al., 2015; Rezaei et al., 2018). Extreme weather
events driven by climate change are increasingly frequent
and have become a major factor causing fluctuations in crop
yields and declines in agricultural income (Lesk et al., 2016;
Lobell et al., 2011; Powell and Reinhard, 2016; Shen et
al., 2022). In the future, the frequency and intensity of ex-
treme weather events such as droughts, floods, and heatwaves
are expected to rise, further stressing agricultural production
(Bai et al., 2022a).

China is a major producer of wheat globally, with a
wheat production of 137 million tons in 2021, accounting for
17.8 % of the world’s total production (FAO, 2021). Wheat
plays a crucial role globally in food security, economy, agri-
culture, and culture (Beyene et al., 2022; Erenstein et al.,
2022; Reynolds et al., 2022). The North China Plain is the
primary wheat-producing region in China, contributing to
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more than 50 % of the national output (Xiao et al., 2020).
This region is highly vulnerable to climate change impacts
(Hu et al., 2014), with the frequency of climate anomalies
increasing since 1980 (Mo et al., 2017). Extreme weather
events significantly affect wheat production in the North
China Plain. Winter wheat, typically sown in October or
November and harvested in May or June, is particularly vul-
nerable to drought during its growing season (Chen et al.,
2018; Li et al., 2021). During winter, wheat grows slowly or
remains dormant, making it less sensitive to climate change.
However, in spring, it grows rapidly and becomes more sen-
sitive to extreme weather such as drought or low tempera-
tures (Ali et al., 2017; Shi et al., 2011). Moreover, wheat
is highly susceptible to frost during the jointing and boot-
ing stages (Li et al., 2014a), with each additional day of
frost causing a 4.3 %-6.7 % reduction in grain yield (Ji et
al., 2017). Excessive rainfall and insufficient sunlight in May
and June, often linked to flooding, diseases, and pests, fur-
ther reduce both the yield and quality of wheat (Song et al.,
2019).

Currently, scholars worldwide have proposed various
methods to estimate crop yields. Many studies use statis-
tical regression models to investigate the relationship be-
tween climate change and crop yields (Ai et al., 2020; Ai
and Hanasaki, 2023; Dinh and Aires, 2022; Li et al., 2020a;
Lu and Yang, 2021; Ringeval et al., 2021; Tao et al., 2012;
Wang et al., 2022; Wei et al., 2023; Zhang et al., 2017a;
Zheng and Zhang, 2025a). The main advantage of statisti-
cal models is their relatively low dependence on field cali-
bration data, and their ability to transparently assess model
uncertainty through higher coefficients of determination and
narrower confidence intervals (Lobell and Burke, 2010). Cur-
rent research primarily focuses on combining climate vari-
ables with yield data to develop linear regression models, in
order to quantify the role of climate variables in yield vari-
ations (Li et al., 2020a; Tao et al., 2012; Wang et al., 2022;
Wei et al., 2023; Zhang et al., 2017a). However, only a few
studies have considered the multicollinearity characteristics
of climate variables (Li et al., 2020a; Wang et al., 2022).
Given the complexity of climate change impacts on crop
growth, it is necessary to consider their nonlinear characteris-
tics. Compared to linear regression models, machine learning
algorithms significantly improve the accuracy of crop yield
simulations (Khanal et al., 2018). Machine learning algo-
rithms are advanced methods for exploring the relationships
between climate and yield, capable of capturing hierarchical
and nonlinear relationships between predictors and response
variables. Numerous studies have demonstrated the effective-
ness of machine learning in crop yield estimation (Boori et
al., 2022; Cao et al., 2021; Han et al., 2020; Iniyan et al.,
2023; Maimaitijiang et al., 2019; Ruan et al., 2022; Singh
Boori et al., 2023; Sun et al., 2020; Tian et al., 2021; Torsoni
et al., 2023; Wang et al., 2018, 2020). However, both statis-
tical models such as linear regression and machine learning
models focus on establishing correlations between climate

Geosci. Model Dev., 18, 8379-8400, 2025

J. Zheng et al.: Modeling wheat development under extreme weather with WOFOST-EW v1

and yield data, neglecting the physiological and ecological
processes of crops and failing to fully consider the mecha-
nisms of crop growth (Bai et al., 2024; Roberts et al., 2017;
Xiao et al., 2024; Zhao et al., 2022).

Process-based crop models have been developed to explain
the complex interactions between local environments, crop
genotypes, and management practices (Chenu et al., 2017).
Compared to statistical models, process-based crop models
are mechanistic, flexible, and applicable (Li et al., 2024;
Tang et al., 2023; Zhang et al., 2017b; Zheng and Zhang,
2023). However, most crop models are developed under rel-
atively stable climatic conditions. The impacts of extreme
weather events — such as abnormal temperature, precipita-
tion, or drought during the crop growing season — are often
oversimplified and vaguely represented in crop models, lead-
ing to inaccurate simulations under extreme climatic condi-
tions (Bai et al., 2024; Feng et al., 2019a; Yu et al., 2025;
Zheng and Zhang, 2025b). This also leads to global process-
based crop models often underestimating the magnitude of
crop yield losses caused by extreme heatwaves and exces-
sive rainfall (Fu et al., 2023; Heinicke et al., 2022; Liu et al.,
2020).

Given the limitations of crop models and statistical regres-
sion models, some studies have combined crop models with
machine learning to achieve better yield prediction results. Li
et al. (2023) improved the accuracy and reduced uncertainty
in predicting corn and soybean yields under extreme weather
by combining machine learning algorithms with nine global
gridded crop models. Feng et al. (2019a) incorporated AP-
SIM model outputs and extreme climate indicators into a ran-
dom forest algorithm, resulting in improved model prediction
accuracy. Shahhosseini et al. (2021) coupled crop model out-
puts with machine learning models to enhance crop yield pre-
dictions in the US corn belt. However, most previous studies
simply input crop model outputs into machine learning mod-
els, overlooking some key dynamic changes in crop growth
processes, especially under extreme weather events. For ex-
ample, extreme heat or drought may cause wheat to head or
mature earlier (Hou et al., 2024; Liu et al., 2023), and such
nonlinear changes can significantly affect the process of dry
matter accumulation. However, they are often overlooked in
traditional machine learning frameworks. Furthermore, these
methods lack accuracy and robustness in dealing with the im-
pact of extreme weather on crop yields, failing to fully cap-
ture the effects of extreme weather on crop growth (Bai et al.,
2024; Feng et al., 2019a; Yu et al., 2025; Zheng and Zhang,
2025b).

In this study, we introduce WOFOST-EW v1, an enhanced
version of the WOFOST (World Food Studies Simulation
Model) model that integrates extreme weather indices and
the Long Short-Term Memory (LSTM) algorithm to improve
simulations of winter wheat growth under extreme condi-
tions. The main objectives of the research are (1) Calibra-
tion and validation of the WOFOST model using wheat yield
and phenology data from the North China Plain for the pe-
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riod 1980-2020; (2) Evaluate the simulation performance of
WOFOST-EW in yield and phenology; (3) Validation in agri-
cultural meteorological station impacted by extreme weather
to assess the model’s robustness.

2 Materials and methods
2.1 Study areas

The North China Plain (Fig. 1) features a warm temper-
ate continental monsoon climate, characterized by abundant
sunlight and warmth, although precipitation is unevenly dis-
tributed, with the majority falling during the summer months
(June to August). The predominant soil type in the North
China Plain is aeolian soil deposited over geological peri-
ods by rivers. This study focuses on wheat cultivation in the
North China Plain, the second-largest plain in China, which
plays a crucial role in grain production. The dominant crop-
ping system in this region is a double-cropping system of
winter wheat and summer maize. To ensure data quality and
integrity, we selected 25 counties for this research (Fig. 1).
Table S1 in the Supplement provides detailed information on
the crops and climate at these research stations.

2.2 Datasets

2.2.1 WOFOST input data

The input data for the WOFOST model includes weather,
crop, soil, and field management parameters. The mete-
orological data used in this study is sourced from the
United States National Centers for Environmental Infor-
mation (https://www.ncei.noaa.gov, last access: 5 January
2024), providing key climate variables from 1980 to 2020,
including air pressure, temperature, humidity, precipitation,
and wind speed and direction from over 9000 stations. This
dataset covers meteorological observation stations across the
country and undergoes rigorous quality control and valida-
tion, ensuring high reliability and usability.

The field management data required by the WOFOST
model mainly includes simulation start and end dates, crop
type, and cultivar information. In this study, the simulation
period is determined based on phenological observations of
winter wheat provided by agricultural meteorological sta-
tions of the China Meteorological Administration (https://
www.cma.gov.cn/, last access: 10 January 2024), while other
parameters are obtained from model literature and calibra-
tion. In the study area, winter wheat is typically sown in
September or October and harvested in mid-June. To achieve
high yields, farmers usually apply more than 300 mm of ir-
rigation water over three to four irrigation cycles during the
growing season (Li et al., 2012; Sun et al., 2011). Regarding
fertilization, traditional practices involve the application of a
base fertilizer at sowing, followed by topdressing before irri-
gation during the greening to jointing stages of winter wheat
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(Bai et al., 2020; Liu et al., 2022). In this study, seasonal ir-
rigation was set to 320 mm in four equal events of 80 mm,
scheduled according to winter wheat phenology: 30d after
sowing (mid-November) for overwintering, late February—
early March for tillering, late March—early April for stem
elongation, and early May for grain filling. The irrigation ef-
ficiency was set at 70 %. Since the WOFOST model used in
this study does not include a nutrient cycling module, it was
assumed that crop growth in the model was not limited by
nutrient availability.

Soil data were obtained from the ISRIC global database
(https://www.isric.org, last access: 15 January 2024), encom-
passing soil type, profile depth (cm), bulk density (cgcm™3),
cation exchange capacity (mmol kg~!), volumetric fraction
of coarse fragments (cm®dm™3), clay content (gkg™!),
total nitrogen content (cgkg™!), available water capacity
(mmm™"), etc. The depth of the soil profile was categorized
into intervals: 0-5, 5-15, 15-30, 30-60, 60—100, and 100—
200 cm.

2.2.2 Yield data

The county-level wheat yields time series data from 1980 to
2020 were sourced from the Agricultural Yearbook of each
province (https://www.stats.gov.cn, last access: 21 January
2024).

2.2.3 Extreme weather data

The extreme weather data used in this study was sourced
from the Yearbook of Meteorological Disasters in China
(https://data.cma.cn, last access: 3 February 2024), Min-
istry of Ecology and Environment of the People’s Repub-
lic of China (https://www.mee.gov.cn, last access: 3 Febru-
ary 2024), and previous research (Bai et al., 2022a; Guo
et al., 2024; Wang et al., 2019; Yang et al., 2022; Yin et
al., 2017; Zhao et al., 2019a). This dataset comprehensively
records the occurrence of various extreme weather events in
China, including typhoons, heavy rainfall, droughts, strong
winds, snow disasters, and more. The yearbook provides
statistics on the frequency of extreme events, affected ar-
eas, population impact, and resulting economic losses. Ta-
ble S2 provides information on the stations affected by ex-
treme weather events in 2009, 2010, 2012, and 2018.

2.3 Methods
2.3.1 Climate indices

We quantified the impact of extreme weather on wheat pro-
duction using seven metrics (Table 1). Among these, the
high-temperature degree day (HDD) and low-temperature
degree day (LDD) are widely used in studies on crops such
as rice and wheat, as they reflect the influence of extreme
weather on crop growth (Dong et al., 2023; Osman et al.,
2020; Zhang et al., 2016; Zhang and Tao, 2019). The meth-
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Figure 1. Location of the study areas.

ods for calculating HDD and LDD follow those outlined in
previous research (Osman et al., 2020). Previous studies have
shown that wheat exhibits varying sensitivity to tempera-
ture during different developmental stages (Porter and Gaw-
ith, 1999; Tack et al., 2015). Based on prior research (Fa-
rooq et al., 2011; Liu et al., 2013; Porter and Gawith, 1999),
we set the high-temperature thresholds for wheat at 25 °C
from planting to heading and 30 °C from heading to maturity.
The low-temperature thresholds were defined as —5.7 °C for
planting to heading and —2 °C for heading to maturity. In this
study, HDD and LDD are calculated and accumulated on a
daily basis. These indicators directly reflect the sustained im-
pact of extreme temperatures during key phenological stages.
Their timing is precisely aligned with the wheat growth cy-
cle, making them suitable as input features for the LSTM
model to characterize the intensity of stage-specific climate
stress.

The calculations for R95P, R10mm, and Rxlday were
based on the ETCCDI indices, as applied in previous studies
(Al-Sakkaf et al., 2024; Hong and Ying, 2018). Data for the
Palmer Drought Severity Index (PDSI) and Vapor Pressure
Deficit (VPD) (Zhang and Miao, 2024) were spatially pro-
cessed to extract site-specific values. PDSI is one of the most
widely used drought indices (Oubaha et al., 2024; Yang et al.,
2024; Zhang et al., 2025), as it accounted for preseason pre-
cipitation and the balance between water supply and demand,
providing clear physical meaning — particularly suitable for
assessing agricultural drought. In this study, we focused on
the wheat growing season, during which PDSI effectively
captured drought dynamics. Numerous studies demonstrated
significant correlations between PDSI and crop yield (Bay-
daroglu et al., 2024; Kumar and Mahapatra, 2024; Peethani
et al., 2024; Pei et al., 2024; SM et al., 2025). Moreover,
the validity of PDSI has been widely demonstrated in crop-
related studies (Peethani et al., 2024; Pei et al., 2024; Yan et
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al., 2016). VPD, on the other hand, is a key variable reflect-
ing atmospheric dryness and directly influenced crop tran-
spiration and water stress. Studies reported a steady global
increase in VPD from 2010 to 2019, which posed a serious
constraint on agricultural productivity (Koehler et al., 2023;
Nesmith and Ritchie, 1992). Under extreme heat and low hu-
midity conditions, elevated VPD intensifies transpiration and
water loss, exacerbating plant water stress and posing a direct
threat to yield. Therefore, VPD can partially reflect the inten-
sity of short-term extreme heat and drought stress (Yu et al.,
2024). In this study, we used seasonal averages or cumulative
values of these indices as model inputs.

2.3.2 Deep learning algorithm

LSTM algorithm, a type of recurrent neural network (RNN),
was first proposed by Sepp Hochreiter and Jiirgen Schmid-
huber in 1997 to address the problem of the error back-flow
problems (Kalchbrenner et al., 2019). This study utilizes the
“Keras” library in Python to implement LSTM, which is dis-
tinguished by its multiple self-parameterizing control gates.
These gates facilitate the selective storage and exclusion of
information, allowing for the accumulation of specific data
units.

We developed a five-layer deep neural network consisting
of an input layer, two LSTM layers, a dense layer, and an
output layer (Fig. 2). The input data include seven extreme
weather indices corresponding to the winter wheat growth
period. The model’s output predicts the extreme weather
impact factor, which represents the influence of extreme
weather on phenological stages of wheat growth and is deter-
mined during the model calibration period. To prevent over-
fitting, a dropout mechanism is applied to the input of the
dense layer. The number of hidden units is determined em-
pirically, as there is no universally applicable rule. Data from
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Table 1. Definition of extreme weather indices.

Extreme indices Index Definition

Unit

High-temperature degree days HDD

Cumulative temperature above the threshold during the winter ~ °Cd

wheat growing season.

Low-temperature degree days LDD

Cumulative temperature below the threshold during the winter ~ °Cd

wheat growing season.

Very wet days R95P Total precipitation on days exceeding the 95th percentile mm
during the winter wheat growing season.

Heavy precipitation days R10mm  Number of days with precipitation > 10 mm during the winter d
wheat growing season.

Max 1 d precipitation amount Rxlday Maximum 1 d precipitation during the winter wheat growing mm
season.

Palmer Drought Severity Index ~ PDSI

A standardized index assessing long-term soil moisture and -

drought conditions during the winter wheat growing season.

Vapor pressure deficit VPD

The difference between saturation vapor pressure and actual kPa

vapor pressure, indicating dryness during the winter wheat

growing season.

1980 to 2000 are used for LSTM model training and internal
validation. During this phase, we adopt the leave-one-year-
out cross-validation (LOOCYV) method (Ji et al., 2022; Ma
et al., 2021; Pei et al., 2025), in combination with “Grid-
SearchCV” (Kalchbrenner et al., 2019; Panigrahy, 2024) to
determine optimal hyperparameters and conduct model train-
ing. It is noteworthy that the model training period encom-
passed abnormal weather events, including severe drought,
low temperatures, and short-term heavy rainfall. After com-
pleting model training and hyperparameter optimization on
the 1980-2000 dataset, we use data from 2001 to 2020 as a
fully independent test set to evaluate the final performance of
the WOFOST-EW model. For network parameter optimiza-
tion, we employ the Adam optimizer based on gradient de-
scent, with a learning rate of 0.001.

2.3.3 WOFOST model improvement protocol

The WOFOST model, developed by Wageningen Univer-
sity in the Netherlands in collaboration with the World Food
Studies Center, is used to calculate the daily biomass accu-
mulation of crops based on photosynthesis and its distribu-
tion across various crop components (De Wit et al., 2020).
The model includes several modules, such as phenological
development, CO, assimilation, respiration, dry matter allo-
cation, leaf area development (source and sink limitations),
soil water and nutrient balance, and more. The outputs of the
WOFOST model include simulated total crop biomass, crop
yield, leaf area, and crop water use efficiency. For a detailed
description of the WOFOST calculation process, refer to the
relevant literature (de Wit et al., 2018; De Wit and Boogaard,
2021; Supit et al., 1994).

https://doi.org/10.5194/gmd-18-8379-2025

Here, we utilized the Python Crop Simulation Envi-
ronment (PCSE 6.0.6) framework to run the WOFOST
crop growth model (Wofost72_WLP_CWB). The research
flowchart is shown in Fig. 3. In the WOFOST, phenologi-
cal development is guided by the daily thermal time (DTT)
(De Wit et al., 2020). It is noteworthy that in WOFOST,
crop emergence occurs when the cumulative daily effective
temperature exceeds a specific threshold temperature for the
crop. The calculation of DVI is accumulated from the Devel-
opment Rate (DVR):

i=t
DVI, = ) "DVR; (1)
i=0
where DVI; is the developmental index at day ¢, and DVR;
is the developmental rate on the ith day from planting.
The calculation for DVR is:

DVR FaT) F(V)x F(P) 2)
==X X
>Ti

where F(T) represents the daily effective temperature, and
> T; denotes the temperature sum required to complete stage
i. We modified 7; to represent the sum of effective temper-
atures between emergence and heading or between heading
and maturity. Accordingly, the DVI values were reset, with
1 corresponding to the heading stage and 2 to the maturity
stage. F(T) is calculated as:

T<Ty:F(T)=0 3
Ty <T <Tm:F(T)=T-T, 4
T>Tn:F(T)=Tpn )

where Ty refers to the base temperature below which phe-
nological development stops, Ty, represents the maximum
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Figure 2. The workflow of a Long Short-Term Memory (LSTM) network. In the figure, the training target y refers to the extreme weather

impact factor.
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Figure 3. The program flowchart used in this study. HDD, LDD,
R95P, R10mm, Rx1day, PDSI, and VPD represent different climate
indices, and LSTM represents the Long Short-Term Memory algo-
rithm.

temperature beyond which phenological activity does not in-
crease, and T represents the average daily temperature. In
this study, 7, is set to 0 °C and Tp, to 30 °C.

The vernalization (F(V)) and photoperiod functions
(F(P)) also affected the daily development of wheat. Each
function is defined as follows:

F(V):m, O<FWV)<D (6)
Vsat_ Vbase

F(P)=P_P°,(O<F(P)<1) (7
P,— P.

where Vpaee represents the minimum vernalization require-
ment (lower threshold) for development, while Vi, defines
the maximum vernalization limit (upper threshold). P. rep-
resents the threshold for day length in development; when the
day length falls below P, F'(P) equals 0. P, is the optimum
day length for development, above which F(P) equals 1.

Geosci. Model Dev., 18, 8379-8400, 2025

In this study, we proposed an improved WOFOST model
incorporating an extreme weather function, referred to as
WOFOST-EW vl. The algorithm improvement workflow is
shown in Fig. S1. We developed an extreme weather function
(F(EW)) to enhance the DVI calculation of the WOFOST
model.

The calculation is as follows:

F(EW) = fLstm(HDD, LDD, R95P, R10mm,
Rxlday, PDSI, VPD) ()

where frstm represents the LSTM algorithm, while HDD,
LDD, R95P, R10mm, Rx1day, PDSI, and VPD respectively
represent climate indices.

The core objective of the LSTM algorithm is to learn and
estimate a spatiotemporally dynamic extreme weather func-
tion, F(EW). During the calibration period (1980-2000),
F(EW) is treated as an optimizable parameter, and its values
are estimated through calibration. These calibrated values are
subsequently used as the target variable for LSTM training.
Specifically, the extreme weather indices serve as input fea-
tures, while the SCE-UA—derived F (EW) values are used as
outputs to train the LSTM network. This process establishes
a nonlinear mapping between extreme weather conditions
and their regulatory effects on crop development. Finally, we
applied F(EW) to the WOFOST model and obtained the up-
dated DVRgw:

F(T)

1

DVRgw =

x F (V) x F(P) x F(EW) ©)]

Extreme weather impacts on phenology were represented
as a re-modulation of multiple interacting factors. The cor-
rection factor F'(EW) was thus multiplicatively incorporated
into development rate calculations, preserving the original
multi-factor structure while proportionally reflecting the in-
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fluence of extreme events. This approach maintains the phys-
iological framework and enhances the model’s realism under
extreme climate conditions.

2.3.4 Model calibration and validation

First, we applied the Sobol algorithm to evaluate the sensitiv-
ity of crop model parameters on the total weight of storage
organs (TWSO), which allowed us to identify the parame-
ters requiring calibration (Sect. S1 and Table S3). Calibra-
tion was then performed accordingly (Sect. S2). To enhance
the performance of the crop model, calibration is essential.
We employed the SCE-UA (Shuffled Complex Evolution-
University of Arizona) algorithm to determine the optimal
parameter set for each agricultural meteorological station.
Parameters were considered optimal when the root mean
square error (RMSE) between observed and simulated yields,
as well as between observed and simulated phenological
stages, was minimized. Specifically, three objective functions
were defined in the SCE-UA algorithm: the RMSE between
simulated and observed values for yield, heading date, and
maturity date. The objective function prioritized phenologi-
cal errors to ensure biologically realistic crop responses un-
der extreme climate conditions. Yield errors were included as
a low-weight auxiliary constraint to prevent large deviations
from observed yields without compromising phenology fit-
ting (Sect. S2).

The WOFOST model was calibrated using observational
data from 1980 to 2000. The resulting optimal parameter sets
were then applied to each simulated growing season at each
location. The model was validated using independent data
from 2001 to 2020. It is important to note that once cali-
brated, the model parameters remained fixed throughout the
entire experiment, including in the WOFOST-EW simula-
tions. Detailed WOFOST parameter values are provided in
Table S4.

2.3.5 Model performance assessment

The performance of the model is evaluated by calculating
the regression coefficients of determination (R2), Pearson’s
rank correlation coefficient (Pearson’s r), and RMSE using
the following equations:

https://doi.org/10.5194/gmd-18-8379-2025

n Y
R =1-— —Zijl(y‘ ?)2 (10)
21 i—y)
i i =) ()75 —5)
Pearson’s r = - (11)
S0 9P (54 -5)
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RMSE = M (12)
n
VS (i = 9)
RRMSE = 2 (13)
y
1 n
MAE=—3 |y - 3i (14)
i=1
1 y._);.
MRE = — L (15)
n ; Yi
Bias; = y; — J; (16)

where y; is the observed value, y; is the simulated value, and
n is the number of observations.

3 Results
3.1 Phenological simulation results

The phenological period simulation results for the 25 sites in
the study area showed good performance in both the calibra-
tion and validation datasets (Fig. 4, Tables S5 and S6). In the
calibration dataset (Fig. 4, Table S5), the WOFOST model’s
RMSE for heading ranged from 1.4 to 12.8 d, with an aver-
age of 5.7d. The best-performing site was Jiexiu, while the
worst-performing site was Fengyang. For the maturity pe-
riod, the RMSE ranged from 3.1 to 13.1d, with an average
of 8.0d. In comparison, The WOFOST-EW model’s RMSE
results for heading and maturity periods were 4.2 and 5.4 d,
respectively.

In the phenological simulation results for the validation
dataset (Fig. 4, Table S6), the RMSE for heading and ma-
turity periods using the WOFOST model ranged from 1.0
to 9.5d (average of 4.7 d) and from 3.2 to 11.8 d (average of
7.0 d), respectively. For the WOFOST-EW model, the RMSE
for heading date simulations ranged from 1.0 to 6.0d, with
an average of 4.2 d, while for maturity date simulations, the
RMSE ranged from 3.2 to 8.0d, with an average of 6.1d.
The best and worst-performing sites for heading and matu-
rity dates simulations using the WOFOST-EW model were
Bazhou and Shenzhou, and Laiyang and Shenzhou, respec-
tively.

Figure 4c and d present box plots of the RMSE for
heading and maturity dates simulated by the WOFOST
and WOFOST-EW models. In the validation dataset, for

Geosci. Model Dev., 18, 8379-8400, 2025
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Figure 4. Simulation results of phenological stages for winter wheat using the WOFOST model and the WOFOST-EW model at 25 agrom-
eteorological stations in the study area. (a) shows the Root Mean Square Error (RMSE) of simulated heading dates for the calibration and
validation datasets at different stations for both models. (b) shows the RMSE of simulated maturity dates for the calibration and validation
datasets at different stations for both models. (¢) and (d) present boxplots of the RMSE for simulated heading and maturity dates, respectively.
The x symbol represents the mean RMSE value, and the horizontal line within the box indicates the median (Q2). The box represents the
interquartile range (IQR), with the top and bottom edges of the box denoting the upper quartile (Q3) and lower quartile (Q1), respectively.
The whiskers extend to the maximum and minimum values, where the maximum value is defined as Q3 + 1.5 x IQR, and the minimum value

is defined as Q1 — 1.5 x IQR.

the heading date, the lower and upper quartiles for the
WOFOST model were 3.8 and 5.5 d, respectively, while for
the WOFOST-EW model, they were 3.9 and 4.7 d (Fig. 4c).
For the maturity date, the lower and upper quartiles for the
WOFOST model were 5.4 and 7.7d (Fig. 4d), while for the
WOFOST-EW model, they were 4.6 and 7.0 d. These results
indicate that, compared to the WOFOST model, the proposed
WOFOST-EW model significantly reduced the RMSE for
both heading and maturity dates, thus improving accuracy.
Furthermore, the smaller interquartile range suggests a nar-
rower error range, indicating more stable and precise simula-
tion results.

During the validation period, the original WOFOST model
exhibited an RRMSE of 4.61 % for heading and 4.74 % for
maturity, with R? of 0.53 and 0.45 (p < 0.05), and MAE
of 4.4 and 5.6d, respectively (Fig. 4). In contrast, the im-
proved WOFOST-EW model substantially enhanced pheno-
logical simulation performance, achieving lower RRMSEs
of 3.74 % (heading) and 3.98 % (maturity), higher R? val-
ues of 0.69 and 0.56 (p < 0.05), and reduced MAEs of 3.8
and 5.3d, respectively (Fig. 4). These results indicate that

Geosci. Model Dev., 18, 8379-8400, 2025

WOFOST-EW improves both the accuracy and precision of
phenological predictions. Based on the evaluation using the
validation dataset, the RMSE for heading simulation is re-
duced by 10.64 %, and for maturity by 12.86 % (Fig. 4).

3.2 Simulation results of yield

Despite some differences in simulation results across coun-
ties, the WOFOST model’s simulated yields aligned well
with observed yields (Figs. 5, 6, and 7, Tables S5 and S6). In
the calibration dataset, the average RMSE in the simulated
counties was 673.01 kgha~! (RRMSE = 16.66 %) (Figs. 5
and 6, Table S5). Among these, Dingxiang performed the
best, with an RMSE of 355.83kgha~! (RRMSE =9.75 %),
while Changli showed poorer results, with an RMSE
of 844.58kgha~! (RRMSE =21.38 %). For the validation
dataset, the RMSE of simulated yields by the WOFOST
model ranged from 256.61 to 938.19 kg ha—!, with an aver-
age RMSE of 665.76kgha~! (RRMSE = 13.55 %) (Figs. 5
and 6, Table S6).

https://doi.org/10.5194/gmd-18-8379-2025
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Figure 5. Root Mean Square Error (RMSE) values for winter wheat yield simulated by the WOFOST model and the WOFOST-EW model in
the study area for the calibration dataset (a) and validation dataset (b). (c) illustrates the distribution of simulation errors for the two models
during the validation period. HDD, LDD, and R95P represent climatic indices related to extremely high temperatures, low temperatures, and
precipitation, respectively. PDSI represents the Palmer Drought Severity Index.

The improved WOFOST-EW model more accurately sim-
ulated winter wheat yields from 1980 to 2020 (Figs. 5, 6, and
7, Tables S5 and S6). In the calibration dataset, the RMSE
for yield simulations ranged from 295.63 to 758.14kgha™!,
with an average of 541.90kgha~! (RRMSE = 13.60%).
In the validation dataset, the RMSE ranged from 279.64
to 960.75kgha~!, with an average of 565.63kgha™!
(RRMSE =11.30 %).

From 1990 to 2020, a comprehensive evaluation of annual
yield simulations by the WOFOST model was performed
(Fig. 6). The WOFOST model utilized a set of optimal pa-
rameters obtained through the SCE-UA method, allowing
for effective simulation of wheat yields. During the verifica-
tion period, in the WOFOST model, the MAE of the simula-
tion results was 566.08 kg ha—! (MRE = 12.09 %), while the
WOFOST-EW model reduced the MAE to 463.82kgha™!
(MRE =10.11 %) (Fig. 6). Despite the overall high accuracy,
errors were identified in yield simulations for certain years
(Fig. 6b).

To further evaluate the performance of the two models, we
analyzed the results for the validation dataset from 2001 to
2020 (Fig. 7). The simulation results of the WOFOST model
showed a Pearson’s r of 0.83 and an R? of 0.67 (p <0.01).

https://doi.org/10.5194/gmd-18-8379-2025

In comparison, the WOFOST-EW model demonstrated en-
hanced yield estimation accuracy, with a Pearson’s r of 0.86
and an improved R2 0f 0.76 (p < 0.01) (Fig. 7). In addition,
we compared the annual distribution of traditional extreme
weather indices with the extreme weather function values
F(EW) proposed in this study (Fig. 8). We used 1 — F(EW)
to represent the intensity of extreme weather impacts on crop
growth. The results indicate that in years with extreme cli-
matic conditions, this metric exhibits higher values, reflect-
ing stronger weather-induced stress on crops. Conversely, in
years with relatively normal climate conditions, F (EW) val-
ues remain stable, suggesting limited impact. These findings
demonstrate that the model effectively captures and quanti-
fies the influence of extreme weather on crop development.

3.3 Simulation analysis of counties affected by extreme
weather

To further evaluate the effectiveness of the improved model,
we conducted yield simulations at specific sites affected by
extreme weather events. Based on prior reports, the years
2009, 2010, 2012, and 2018 were selected for modeling anal-
ysis under extreme weather conditions. Detailed information

Geosci. Model Dev., 18, 8379-8400, 2025
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Figure 6. Model simulation results by year. Panel (a) represent the winter wheat yield prediction results during the calibration and validation
periods using the WOFOST and WOFOST-EW models. Panel (b) indicates the simulation errors of yield.

on the agricultural meteorological experimental stations im-
pacted during these events is provided in Table S2.

According to the Ministry of Ecology and Environment
of the People’s Republic of China (https://www.mee.gov.cn,
last access: 3 February 2024), the study region experienced
record-breaking high temperatures in 2009, with several lo-
cations breaking previous historical records. In 2010, the fre-
quency of meteorological disasters increased, with numer-
ous extreme weather events reported. In 2012, China expe-
rienced 38 heavy rainfall events, 21 of which occurred dur-
ing the summer. Some regions were hit by exceptionally ex-
treme weather events, most notably the “7.21” event (Zhao
et al., 2019b). Additional disasters — including droughts
and cold waves — also occurred during this period (Zhao
et al., 2019b; Zheng et al., 2018). In 2018, extreme low-
temperature events caused frost damage, significantly affect-
ing agricultural productivity (China Meteorological Admin-
istration, https://www.cma.gov.cn, last access: 10 January
2024). These extreme events in the selected years contributed
to significant yield reductions in the study area (Figs. 6 and
8)

In the four experimental years (Figs. 9 and 10, Table S7),
WOFOST produced simulation results with a Pearson’s r
ranging from 0.81 to 0.87 (p <0.01), an R? of 0.61 to
0.71 (p <0.01), an RMSE of 781.56 to 1043.28 kgha™!
(RRMSE of 16.22 % to 23.83 %), and an MAE of 654.78
to 871.20kgha~! (MRE of 14.07 % to 26.65 %). In compar-
ison, WOFOST-EW achieved a Pearson’s r of 0.91 to 0.94

Geosci. Model Dev., 18, 8379-8400, 2025

(p <0.01), an R? of 0.80 to 0.86 (p < 0.01), an RMSE of
555.72 to 711.38 kgha™! (RRMSE of 11.53 % to 16.25 %),
and an MAE of 372.25 to 587.84 kgha~! (MRE of 8.21 % to
19.15 %). Overall, WOFOST-EW demonstrated higher sim-
ulation accuracy.

4 Discussion

4.1 Limitations of the temperature response function
in the WOFOST model

In the WOFOST model, crop responses to temperature are
represented by the function F (T) (Egs. 2-5), which is simple
and intuitive in form. Within the optimal temperature range,
F(T) can approximate a linear relationship between temper-
ature and crop development rates. However, it exhibits no-
table limitations in capturing the nonlinear stress effects as-
sociated with extreme temperature conditions.

First, the model does not account for the suppressive im-
pacts of heat stress. When temperatures exceed the upper
threshold Ti,, F(T) remains constant, implying that crops
cease to respond to further temperature increases. This over-
looks the detrimental effects of extreme heat, such as inhib-
ited photosynthesis, elevated respiration rates, and damage to
reproductive organs, potentially leading to an overestimation
of crop growth under high-temperature conditions. Second,
the model oversimplifies cold stress. When temperatures fall
below the base temperature Ty, the development rate is set to

https://doi.org/10.5194/gmd-18-8379-2025
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Distribution.

zero. While this indicates a conceptual halt in growth, it fails
to differentiate between varying intensities of cold stress and
their distinct physiological impacts on crops.

To address these limitations, this study introduces an ex-
treme weather function F(EW), which incorporates the cu-
mulative and phenological-stage-specific impacts of stressors
such as heat, drought, and heavy precipitation. This function
dynamically adjusts phenological development and enhances
the model’s sensitivity to extreme climatic events. Impor-
tantly, F(EW) does not replace F(7T") but complements it —
offering a more comprehensive framework for assessing the
effects of climate extremes and climate change on crop pro-
duction.

4.2 Impact of extreme weather events on the growth of
winter wheat

Extreme weather events — such as heatwaves, frosts,
droughts, and floods — have substantial impacts on crop
growth and yield (Liittger and Feike, 2017; Xiao et al., 2018;
Zahra et al., 2021). Wheat phenology is particularly sensitive
to meteorological factors like temperature and moisture, and
extreme weather often leads to stage-specific disruptions in
its developmental process (Asseng et al., 2015; Sadras and

https://doi.org/10.5194/gmd-18-8379-2025

Monzon, 2006; Tao and Zhang, 2013; Zahra et al., 2021). In
the North China Plain, both HDD and LDD fluctuate con-
siderably during the winter wheat growing season, reflect-
ing frequent exposure to severe heat and cold stress. This
is consistent with previous findings indicating that winter
wheat is often subject to extreme low temperatures prior to
flowering and extreme high temperatures afterward — both
of which significantly reduce yield (Bai et al., 2024). Stud-
ies have shown that elevated temperatures tend to shorten
the wheat growing period, particularly affecting the sowing-
to-flowering phase (Asseng et al., 2015; Li et al., 2020b;
Sadras and Monzon, 2006; Tao and Zhang, 2013; Zahra et al.,
2021). During early growth stages, moderate warming can
enhance thermal accumulation and stimulate photosynthetic
enzyme activity, promoting leaf area expansion and chloro-
phyll synthesis, and thereby accelerating heading and flow-
ering (Chen et al., 2014; Li et al., 2020b; Tao et al., 2017a;
Tao et al., 2017b). However, high temperatures following
flowering can trigger premature leaf senescence and reduced
photosynthetic capacity, leading to early maturity and short-
ened grain-filling duration (Harrison, 2021; Liu et al., 2023).
Conversely, extreme low temperatures — particularly frost —
can significantly delay development. Frost events may dam-
age young spikes and floral organs, disrupting reproductive

Geosci. Model Dev., 18, 8379-8400, 2025
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Figure 8. Distribution of extreme weather indices and the proposed extreme weather function values (F (EW)) across the study area from
1980 to 2020. Panel (a) shows HDD and LDD, representing extreme temperature conditions; panel (b) includes R95p, R10mm, and Rx1day,
which capture extreme precipitation events; panel (c¢) presents drought-related indices, PDSI and VPD. F(EW) denotes the extreme weather
function developed in this study, representing the influence of extreme weather factors as modeled using deep learning.

development (Fuller et al., 2007), while cold stress during
the vegetative stage can cause visible injuries such as leaf
tip burn (Shroyer et al., 1995). Rapid temperature drops are
more damaging than gradual cooling (Al Issawi et al., 2013;
Li et al., 2014b) and can impair organ formation even with-
out reaching lethal thresholds. Cold stress also suppresses
metabolic activity and delays cell division and elongation,
especially prolonging the jointing-to-heading interval (Xiao
et al., 2021). If such events occur during spike differentia-
tion, they can lead to spikelet abortion or sterility, posing a
severe threat to final yield.

Although drought or water stress is not typically the pri-
mary factor influencing phenology, it can still exert a signifi-
cant impact in drought-prone regions (McMaster and Smika,
1988; McMaster and Wilhelm, 2003). The effect of drought
depends on its timing, intensity, and the crop’s developmen-
tal stage, often resulting in either accelerated development
or developmental arrest (Chachar et al., 2016; Ihsan et al.,
2016). Wheat has evolved several drought-resistance strate-
gies to cope with water stress, including drought escape (ac-
celerating the life cycle to avoid drought periods), drought

Geosci. Model Dev., 18, 8379-8400, 2025

avoidance (e.g., regulating stomatal behavior to minimize
water loss), and drought tolerance (maintaining cellular func-
tion under stress conditions) (Nyaupane et al., 2024). While
these adaptive responses enhance survival and confer a de-
gree of yield stability, they are often associated with a short-
ened developmental cycle and advancement of phenological
phases (Chachar et al., 2016; Chowdhury et al., 2021; Thsan
et al., 2016; McMaster and Wilhelm, 2003). Extreme precip-
itation events can also disrupt wheat development, primarily
through waterlogging. Under flooded conditions, oxygen de-
ficiency in the root zone inhibits root elongation and nutri-
ent uptake (Chachar et al., 2016; Chowdhury et al., 2021;
Thsan et al., 2016; McMaster and Wilhelm, 2003), and in
severe cases, may cause root death (Herzog et al., 2016).
Additional negative effects include reduced root front ex-
pansion (Ebrahimi-Mollabashi et al., 2019), nutrient leach-
ing (Kaur et al., 2020), and impaired water transport, all of
which contribute to stomatal closure and diminished pho-
tosynthetic activity (Jitsuyama, 2017). Waterlogged condi-
tions also elevate the risks of lodging and disease outbreaks
(Nguyen et al., 2016). While most research has focused on
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the impacts of waterlogging on crop growth and yield, there
is increasing recognition of the need to understand its ef-
fects on crop phenology (Néia Junior et al., 2023). Empirical
studies have shown that waterlogging during critical early
stages such as tillering and jointing can significantly sup-
press chlorophyll synthesis and photosynthetic capacity, im-
peding early growth and potentially delaying or disrupting
subsequent phenological stages, including jointing and head-
ing (Dickin and Wright, 2008; Wu et al., 2015).

Phenological stages play a crucial role in determining crop
yield, and the phenological process itself serves as a primary
pathway through which extreme weather influences crop pro-
duction (Chachar et al., 2016; Chowdhury et al., 2021; Thsan
et al., 2016; McMaster and Wilhelm, 2003). However, most
current crop models struggle to accurately simulate phenol-
ogy under extreme conditions and often fail to capture phe-
nological shifts induced by extreme weather events (Zhang
and Tao, 2019). Enhancing the accuracy of phenology pre-
diction under such conditions is therefore essential for over-
coming key limitations in crop models and improving their
ability to simulate crop performance under climate extremes
(Pei et al., 2025). In this study, we employed seven climate
indices to quantify extreme climate conditions and observed
spatial variability in the impacts of extreme weather across
different counties (Fig. 8). Against the backdrop of global
warming, future changes in the frequency and intensity of
extreme weather events may pose increasing risks to wheat
production.
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4.3 Uncertainty in simulation results

The uncertainty of crop model parameters is a complex and
significant issue, with limited empirical data on crop devel-
opment rates under extreme temperature conditions being a
key factor. Previous studies have shown that the parameters
of temperature response functions largely depend on field ex-
perimental data; however, these data often lack coverage of
extreme temperature environments (Bai et al., 2022b; Ellis
et al., 1992; Tollenaar, 1979; Watts, 1971; Zhang and Tao,
2019). A recent study (Zheng and Zhang, 2025b) highlighted
that the rising frequency of extreme weather events leads to
increased variability and unpredictability in meteorological
observations (e.g., temperature and precipitation). Such vari-
ability complicates the derivation of stable and representa-
tive input parameters (e.g., thermal time, stress thresholds)
for crop models, thereby introducing uncertainty into model
simulations (Gao et al., 2020, 2021). This instability may
lead to deviations in model outputs, ultimately affecting the
accuracy of crop growth predictions. Additionally, obtaining
reliable crop simulation parameters under extreme weather
conditions is highly challenging. For instance, in the North
China Plain, frequent high and low-temperature extremes can
disrupt the consistency of daily weather inputs used in mod-
els (Gu et al., 2024). This inconsistency affects the reliability
of key model parameters (e.g., effective temperature accu-
mulation, phenological thresholds), ultimately reducing the

Geosci. Model Dev., 18, 8379-8400, 2025
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accuracy of crop growth and yield simulations under such
extreme conditions (Bai et al., 2024).

To address these challenges, we developed the WOFOST-
EW model to better quantify the impacts of extreme weather
events. This improved model demonstrated lower uncertainty
and reduced fluctuation in simulation results. The phenolog-
ical simulation results (Fig. 4) and yield simulation results
(Figs. 5-7) showed that the improved model simulated crop
growth more accurately, reducing bias and increasing the
model’s reliability.

4.4 Advantages and limitations of the WOFOST-EW
model

In this study, we developed the F(EW) function, leverag-
ing climate indices and LSTM algorithms, and successfully
integrated it into the WOFOST model. The results demon-
strate that the WOFOST-EW model significantly enhanced
yield prediction accuracy in the counties impacted by ex-
treme weather events (Figs. 9 and 10). By incorporating cli-
mate indices, the model achieves improved accuracy in pre-
dicting heading dates, maturity dates, and yield. After an
evaluation of simulations from 1990 to 2020, the WOFOST-
EW model demonstrated superior predictive accuracy. These
findings confirm that the F(EW) function is a robust ap-
proach for enhancing model performance. Future research
could explore its potential applications across other crops and
regions to broaden its utility. Further analysis revealed that
the WOFOST-EW model excelled in simulating wheat yields
under extreme climate conditions. Notably, extreme weather
events in 2009, 2010, 2012, and 2018 presented significant
challenges for traditional modeling approaches. However, by
integrating climate indices and LSTM algorithms, the im-
proved model achieved a substantial enhancement in simu-
lation accuracy (Figs. 9 and 10). The extreme weather cor-
rection factor F(EW) developed in this study relies on the
complete growing-season weather sequence to capture stage-
specific crop responses, enhancing end-of-season yield simu-
lation. This dependence limits its use for in-season forecasts
when future weather data are unavailable. Future work could
address this by generating scenario-based F(EW) from sea-
sonal forecasts or ensemble predictions, coupled with data
assimilation to update it dynamically during crop growth.
Previous studies have attempted to estimate the impacts of
extreme weather events on crop yields using machine learn-
ing approaches. However, many of these studies have relied
on outputs from crop models as inputs to machine learn-
ing algorithms, rather than directly modeling the weather-
crop relationship (Feng et al., 2019a; Li et al., 2023; Shah-
hosseini et al., 2021; Zhuang et al., 2024). The key inno-
vation of our model lies in the integration of an extreme
weather function, F(EW), which enhances the ability of the
model to capture the dynamic effects of extreme weather
events on wheat yields. This theoretically improves predic-
tion accuracy while maintaining a strong physiological basis.
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The WOFOST-EW model performs robustly not only under
general climatic conditions but also under extreme weather
scenarios, owing to the responsiveness and spatial-temporal
specificity of the F(EW) variable. Moreover, WOFOST-EW
exhibits broad applicability and holds potential for extension
beyond the North China Plain to other regions and crop types.
Future research could further improve the model by incor-
porating additional environmental and management-related
data to enhance its adaptability and predictive accuracy under
diverse conditions. Nevertheless, the physiological diversity
across crops — including differences in growth cycles and en-
vironmental responses — presents challenges for direct trans-
ferability of the model. While WOFOST is a generic crop
simulation model, its current structure and parameters are
particularly well-suited to cereal crops. Application to crops
with fundamentally different morphological or physiological
characteristics (e.g., root vegetables, oilseeds, or perennials)
would require substantial recalibration and structural adjust-
ments. Additionally, although the LSTM-based deep learn-
ing component of WOFOST-EW lacks the biological trans-
parency of traditional physiological models, the hybrid de-
sign enhances the model’s explanatory power regarding ex-
treme weather impacts. Regional variation in crop growth
due to differences in climate, soil properties, and manage-
ment practices further underscores the need for localized pa-
rameter calibration when applying the model to new regions
or crop types. Currently, the F(EW) function in WOFOST-
EW focuses primarily on meteorological stressors. However,
crop performance is also influenced by complex and inter-
acting non-meteorological factors such as soil fertility, pest
and disease outbreaks, irrigation, and fertilization practices.
This study assumes that crop growth is not limited by nu-
trient availability, it cannot reflect the dynamic regulatory
effects of fertilization management and may underestimate
the potential interactions between nutrient stress and climatic
factors. A key direction for future development is the in-
tegration of these additional stressors — particularly sudden
biotic pressures or severe nutrient limitations — and their
interactions with extreme weather into the WOFOST-EW
framework. Such advancements would further strengthen the
model’s realism and utility for decision-making under cli-
mate extremes.

During validation, the WOFOST-EW model underper-
formed in several counties (Fig. 5). Further investigation re-
vealed that the primary reason for this was that, due to data
limitations, we only accounted for the heading and maturity
stages and omitted other key phenological periods of win-
ter wheat. In addition, the F(EW) generated by the model
is a season-scale scalar correction factor, which is applied to
the calculation of crop development rates throughout the en-
tire growing period. This incomplete consideration of growth
stages likely impacted the model’s ability to fully capture
the crop’s growth dynamics under varying conditions. Pre-
vious studies have shown that the effects of extreme climate
events on crop production vary across different growth stages
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Figure 10. Distribution of simulation errors of the WOFOST model and WOFOST-EW in the counties affected by extreme weather in 2009

(a), 2010 (b), 2012 (c), and 2018 (d).

(Feng et al., 2019b; Porter and Gawith, 1999; Tack et al.,
2015). During the wheat growth cycle, different stages ex-
perience varying types and intensities of climatic stress, re-
sulting in significant differences in yield impacts. Moreover,
severe droughts occurring during the critical growth stages
from April to May are particularly likely to affect winter
wheat yields (Xu et al., 2018; Yang et al., 2020). Addition-
ally, a series of studies on different crop types and regions
have demonstrated that crop yields are more vulnerable to
droughts occurring during key growth stages (Pena-Gallardo
et al., 2018; Potopova et al., 2015; Zipper et al., 2016). This
phenomenon can be attributed to two main factors: (1) physi-
ological differences and variations in field management prac-
tices across phenological stages (Wu et al., 2004), which
result in distinct drought resistance capacities at different
growth stages (Nesmith and Ritchie, 1992); and (2) the vary-
ing impacts of droughts on yield formation depending on
the growth stage at which they occur (Zhao, 2001). This
presents an important direction for future research and model
improvement. By further refining the model to account for
specific types and intensities of climatic stress at different
growth stages, we can enhance prediction accuracy and bet-
ter capture the impacts of extreme weather events on wheat
yields.

5 Conclusions

In this study, we introduced the WOFOST-EW vl by in-
tegrating extreme weather indices with the LSTM deep
learning algorithm, aiming to improve the simulation of
crop yield and phenology under extreme weather conditions,

https://doi.org/10.5194/gmd-18-8379-2025

thereby enhancing its accuracy and robustness. Validation
results from study stations in the study area over the pe-
riod 1980-2020 show that the WOFOST-EW model out-
performed the WOFOST model in both yield and phenol-
ogy simulations. We validate WOFOST-EW using phenolog-
ical, yield, and extreme weather data from agricultural me-
teorological stations in the North China Plain. The results
show that WOFOST-EW improves simulation accuracy. The
RRMSE for heading and maturity decreases from 4.61 % to
3.73 % and from 4.74 % to 3.98 %, respectively (with RMSE
reductions of 10.64 % and 12.86 %). The R? value for yield
simulations increases from 0.67 to 0.76.

In addition, we further validate the WOFOST-EW model
in years affected by extreme weather and find that, com-
pared to the original WOFOST model (R? ranging from
0.61 to 0.71), WOFOST-EW achieves more accurate results
(R? ranging from 0.80 to 0.86). The WOFOST-EW model
we proposed not only enhances the simulation capability of
crop growth under extreme weather events but also improves
its robustness and accuracy. As extreme weather events be-
come more frequent in the future, our model holds signifi-
cant potential for application. WOFOST-EW model can help
decision-makers more accurately assess the potential impacts
of these events on crop yields, thereby supporting more ef-
fective agricultural planning and risk management. This will
provide practical experience and technical support for the
adaptation of agricultural systems and their sustainable de-
velopment in the context of global climate change.
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