Articles | Volume 18, issue 20
https://doi.org/10.5194/gmd-18-7951-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-7951-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tensorweave 1.0: interpolating geophysical tensor fields with spatial neural networks
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
Samuel T. Thiele
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
Hernan Ugalde
DIP Geosciences, Hamilton, ON, Canada
Bill Morris
Morris Magnetics Inc., Fonthill, ON, Canada
Raimon Tolosana-Delgado
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
Moritz Kirsch
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
Richard Gloaguen
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
Related authors
Akshay V. Kamath, Samuel T. Thiele, Moritz Kirsch, and Richard Gloaguen
Solid Earth, 16, 351–365, https://doi.org/10.5194/se-16-351-2025, https://doi.org/10.5194/se-16-351-2025, 2025
Short summary
Short summary
We developed a deep learning model that uses hyperspectral imaging data to predict key physical rock properties, specifically density, slowness, and gamma-ray values. Our model successfully learned to translate hyperspectral information into predicted physical properties. Tests on independent data gave accurate results, demonstrating the potential of hyperspectral data for mapping physical rock properties.
Samuel T. Thiele, Gabor Kereszturi, Michael J. Heap, Andréa de Lima Ribeiro, Akshay Kamath, Maia Kidd, Matías Tramontini, Marina Rosas-Carbajal, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1904, https://doi.org/10.5194/egusphere-2025-1904, 2025
Short summary
Short summary
Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and weathering. These processes change the rock's properties, making it difficult to predict volcanic hazards or design tunnels and mines in volcanic areas. In this study, we build on earlier research to connect unique spectral signatures that can be remotely imaged using hyperspectral cameras to the density, porosity, strength, and stiffness of volcanic rocks.
Akshay V. Kamath, Samuel T. Thiele, Moritz Kirsch, and Richard Gloaguen
Solid Earth, 16, 351–365, https://doi.org/10.5194/se-16-351-2025, https://doi.org/10.5194/se-16-351-2025, 2025
Short summary
Short summary
We developed a deep learning model that uses hyperspectral imaging data to predict key physical rock properties, specifically density, slowness, and gamma-ray values. Our model successfully learned to translate hyperspectral information into predicted physical properties. Tests on independent data gave accurate results, demonstrating the potential of hyperspectral data for mapping physical rock properties.
Samuel T. Thiele, Gabor Kereszturi, Michael J. Heap, Andréa de Lima Ribeiro, Akshay Kamath, Maia Kidd, Matías Tramontini, Marina Rosas-Carbajal, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1904, https://doi.org/10.5194/egusphere-2025-1904, 2025
Short summary
Short summary
Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and weathering. These processes change the rock's properties, making it difficult to predict volcanic hazards or design tunnels and mines in volcanic areas. In this study, we build on earlier research to connect unique spectral signatures that can be remotely imaged using hyperspectral cameras to the density, porosity, strength, and stiffness of volcanic rocks.
Aldino Rizaldy, Pedram Ghamisi, and Richard Gloaguen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W11-2024, 103–109, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, 2024
Léa Géring, Moritz Kirsch, Samuel Thiele, Andréa De Lima Ribeiro, Richard Gloaguen, and Jens Gutzmer
Solid Earth, 14, 463–484, https://doi.org/10.5194/se-14-463-2023, https://doi.org/10.5194/se-14-463-2023, 2023
Short summary
Short summary
We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type Cu–Ag deposit in Germany, mapping minerals such as iron oxides, kaolinite, sulfate, and carbonates at millimetre resolution and in a rapid, cost-efficient, and continuous manner to track hydrothermal fluid flow paths and vectors towards base metal deposits in sedimentary basins.
Robert Jackisch, Björn H. Heincke, Robert Zimmermann, Erik V. Sørensen, Markku Pirttijärvi, Moritz Kirsch, Heikki Salmirinne, Stefanie Lode, Urpo Kuronen, and Richard Gloaguen
Solid Earth, 13, 793–825, https://doi.org/10.5194/se-13-793-2022, https://doi.org/10.5194/se-13-793-2022, 2022
Short summary
Short summary
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a Ni–Cu–PGE prospect on Disko Island, West Greenland. The basalt unit has a complex magnetization, and we use a constrained 3D magnetic vector inversion to estimate magnetic properties and spatial dimensions of the target unit. Our 3D modelling reveals a horizontal sheet and a strong remanent magnetization component. We highlight the advantage of UAS use in rugged and remote terrain.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
Margret C. Fuchs, Jan Beyer, Sandra Lorenz, Suchinder Sharma, Axel D. Renno, Johannes Heitmann, and Richard Gloaguen
Earth Syst. Sci. Data, 13, 4465–4483, https://doi.org/10.5194/essd-13-4465-2021, https://doi.org/10.5194/essd-13-4465-2021, 2021
Short summary
Short summary
We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using the Smithsonian rare earth phosphate standards for electron microprobe analysis. With the recurring interest in rare earth elements (REEs), LiF may provide a powerful tool for their rapid and accurate identification. Applications of the spectral LiF library to natural materials such as rocks could complement the spectroscopy-based toolkit for innovative, non-invasive exploration technologies.
Cited articles
Axler, S., Bourdon, P., and Ramey, W.: Harmonic Function Theory, in: vol. 137 of Graduate Texts in Mathematics, Springer, New York, NY, ISBN 978-1-4419-2911-2 978-1-4757-8137-3, https://doi.org/10.1007/978-1-4757-8137-3, 2001. a
Blakely, R. J.: Potential Theory in Gravity and Magnetic Applications, in: 1st Edn., Cambridge University Press, ISBN 978-0-521-41508-8, https://doi.org/10.1017/CBO9780511549816, 1995. a, b, c, d
Bottou, L.: Stochastic Gradient Descent Tricks, Springer, Berlin Heidelberg, 421–436, ISBN 9783642352898, https://doi.org/10.1007/978-3-642-35289-8_25, 2012. a
Bracewell, R. and Kahn, P. B.: The Fourier Transform and Its Applications, Am. J. Phys., 34, 712–712, https://doi.org/10.1119/1.1973431, 1966. a
Brewster, J.: Description and evaluation of a full tensor interpolation method, in: SEG Technical Program Expanded Abstracts 2011, Society of Exploration Geophysicists, 811–814, https://doi.org/10.1190/1.3628199, 2011. a, b
Burisch, M., Gerdes, A., Meinert, L. D., Albert, R., Seifert, T., and Gutzmer, J.: The essence of time – fertile skarn formation in the Variscan Orogenic Belt, Earth Planet. Sc. Lett., 519, 165–170, https://doi.org/10.1016/j.epsl.2019.05.015, 2019. a
Calafà, M., Hovad, E., Engsig-Karup, A. P., and Andriollo, T.: Physics-Informed Holomorphic Neural Networks (PIHNNs): Solving 2D linear elasticity problems, Comput. Meth. Appl. Mech. Eng., 432, 117406, https://doi.org/10.1016/j.cma.2024.117406, 2024. a
Chen, Z., Badrinarayanan, V., Lee, C.-Y., and Rabinovich, A.: GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks, arXiv [preprint], https://doi.org/10.48550/ARXIV.1711.02257, 2017. a
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., and Oldenburg, D. W.: SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications, Comput. Geosci., 85, 142–154, https://doi.org/10.1016/j.cageo.2015.09.015, 2015. a
Cordell, L.: A scattered equivalent‐source method for interpolation and gridding of potential‐field data in three dimensions, Geophysics, 57, 629–636, https://doi.org/10.1190/1.1443275, 1992. a
Dampney, C. N. G.: The equivalent source technique, Geoophysics, 34, 39–53, https://doi.org/10.1190/1.1439996, 1969. a
Davis, K. and Li, Y.: Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression, Geophys. J. Int., 185, 157–166, https://doi.org/10.1111/j.1365-246x.2011.04929.x, 2011. a
Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, in: 2nd Edn., Springer, ISBN-10 3642424767, 2009. a
Fatiando a Terra Project, Castro, Y. M., Esteban, F. D., Li, L., Oliveira Jr., V. C., Pesce, A., Shea, N., Soler, S. R., Souza-Junior, G. F., Tankersley, M., Uieda, L., and Uppal, I.: Harmonica v0.7.0: Forward modeling, inversion, and processing gravity and magnetic data, Zenodo [code and data set], https://doi.org/10.5281/ZENODO.3628741, 2024. a
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P.: Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods, Geophys. J. Int., 186, 1459–1473, 2011. a
Fitzgerald, D., Paterson, R., and Holstein, H.: Comparing Two Methods for Gridding and Honouring Gravity Gradient Tensor Data, Copenhagen, Denmark, EarthDoc, https://doi.org/10.3997/2214-4609.20148284, 2012. a, b, c, d
Ghosh, A., Gentile, A. A., Dagrada, M., Lee, C., Kim, S.-H., Cha, H., Choi, Y., Kim, B., Kye, J.-I., and Elfving, V. E.: Harmonic (Quantum) Neural Networks, arXiv [preprint], https://doi.org/10.48550/ARXIV.2212.07462, 2022. a
Giraud, J., Seillé, H., Lindsay, M. D., Visser, G., Ogarko, V., and Jessell, M. W.: Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application, Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, 2023. a
Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, Adaptive computation and machine learning, The MIT Press, Cambridge, Mass., ISBN 978-0-262-03561-3, 2016. a
Hamilton, W. R.: II. On quaternions; or on a new system of imaginaries in algebra, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25, 10–13, https://doi.org/10.1080/14786444408644923, 1844. a
Hansen, R. O. and Miyazaki, Y.: Continuation of potential fields between arbitrary surfaces, Geophysics, 49, 787–795, https://doi.org/10.1190/1.1441707, 1984. a
Hewitson, B. C., Crane, R. G., and Tietze, W. (Eds.): Neural Nets: Applications in Geography, in: vol. 29 of The GeoJournal Library, Springer Netherlands, Dordrecht, ISBN 978-94-010-4490-5, https://doi.org/10.1007/978-94-011-1122-5, 1994. a
Hillier, M., Wellmann, F., De Kemp, E. A., Brodaric, B., Schetselaar, E., and Bédard, K.: GeoINR 1.0: an implicit neural network approach to three-dimensional geological modelling, Geosci. Model Dev., 16, 6987–7012, https://doi.org/10.5194/gmd-16-6987-2023, 2023. a
Hillier, M. J., Schetselaar, E. M., De Kemp, E. A., and Perron, G.: Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions, Math. Geosci., 46, 931–953, https://doi.org/10.1007/s11004-014-9540-3, 2014. a
Kamath, A., Thiele, S., and Gloaguen, R.: (Auto) Differentiating geology: Geological modelling with random Fourier features and neural fields, EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025, EGU25-9746, https://doi.org/10.5194/egusphere-egu25-9746, 2025. a
Kamath, A. V.: k4m4th/tensorweave: tensorweave-1.0, Zenodo [code and data set], https://doi.org/10.5281/ZENODO.16947831, 2025a. a
Kamath, A. V.: Pre-trained ensemble for Geyer Data (Tensorweave), Rodare [data set], https://doi.org/10.14278/RODARE.3943, 2025b. a
Kendall, A., Gal, Y., and Cipolla, R.: Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, arXiv [preprint], https://doi.org/10.48550/ARXIV.1705.07115, 2017. a
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, arXiv [preprint], https://doi.org/10.48550/ARXIV.1412.6980, 2014. a
Kroner, U. and Romer, R.: Two plates – Many subduction zones: The Variscan orogeny reconsidered, Gondwana Res., 24, 298–329, https://doi.org/10.1016/j.gr.2013.03.001, 2013. a
Lacava, F.: Separation of Variables in Laplace Equation, Springer International Publishing, 137–177, ISBN 9783031050992, https://doi.org/10.1007/978-3-031-05099-2_8, 2022. a
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a
Lee, J. M.: Introduction to Smooth Manifolds, in: vol. 218 of Graduate Texts in Mathematics, Springer, New York, NY, ISBN 978-1-4419-9981-8, https://doi.org/10.1007/978-1-4419-9982-5, 2012. a
Lefebvre, M. G., Romer, R. L., Glodny, J., Kroner, U., and Roscher, M.: The Hämmerlein skarn-hosted polymetallic deposit and the Eibenstock granite associated greisen, western Erzgebirge, Germany: two phases of mineralization – two Sn sources, Mineralium Deposita, 54, 193–216, https://doi.org/10.1007/s00126-018-0830-4, 2019. a
Li, Y. and Oldenburg, D. W.: 3-D inversion of gravity data, Geophysics, 63, 109–119, https://doi.org/10.1190/1.1444302, 1998. a
Li, Y. and Oldenburg, D. W.: Rapid construction of equivalent sources using wavelets, Geophysics, 75, L51–L59, https://doi.org/10.1190/1.3378764, 2010. a
Liu, S., Johns, E., and Davison, A. J.: End-To-End Multi-Task Learning With Attention, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1871–1880, https://doi.org/10.1109/cvpr.2019.00197, 2019. a
Mantoglou, A. and Wilson, J. L.: The Turning Bands Method for simulation of random fields using line generation by a spectral method, Water Resour. Res., 18, 1379–1394, https://doi.org/10.1029/WR018i005p01379, 1982. a
Margossian, C. C.: A Review of automatic differentiation and its efficient implementation, Wires, 9, e1305, https://doi.org/10.1002/WIDM.1305, 2019. a
Markley, F. L., Cheng, Y., Crassidis, J. L., and Oshman, Y.: Averaging Quaternions, J. Guidance Control Dynam., 30, 1193–1197, https://doi.org/10.2514/1.28949, 2007. a
Mendonça, C. A. and Silva, J. B. C.: The equivalent data concept applied to the interpolation of potential field data, Geophysics, 59, 722–732, https://doi.org/10.1190/1.1443630, 1994. a
Mickus, K. L. and Hinojosa, J. H.: The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique, J. Appl. Geophys., 46, 159–174, https://doi.org/10.1016/S0926-9851(01)00031-3, 2001. a
Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R.: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, arxiv, https://doi.org/10.48550/ARXIV.2003.08934, 2020. a
Misra, D.: Mish: A Self Regularized Non-Monotonic Activation Function, arXiv [preprint], https://doi.org/10.48550/ARXIV.1908.08681, 2019. a
Naprstek, T. and Smith, R. S.: A new method for interpolating linear features in aeromagnetic data, Geophysics, 84, JM15–JM24, https://doi.org/10.1190/geo2018-0156.1, 2019. a
Oliveira Junior, V. C., Takahashi, D., Reis, A. L. A., and Barbosa, V. C. F.: Computational aspects of the equivalent-layer technique: review, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1253148, 2023. a
Openshaw, S.: Modelling spatial interaction using a neural net, in: Geographic Information Systems, Spatial Modelling and Policy Evaluation, edited by: Fischer, M. M. and Nijkamp, P., Springer, Berlin, Heidelberg, 147–164, ISBN 978-3-642-77502-4, https://doi.org/10.1007/978-3-642-77500-0_10, 1993. a
Parker, R. L.: The Rapid Calculation of Potential Anomalies, Geophys. J. Int., 31, 447–455, https://doi.org/10.1111/j.1365-246x.1973.tb06513.x, 1973. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, version Number: 1, arXiv [preprint], https://doi.org/10.48550/ARXIV.1912.01703, 2019. a
Piauilino, L. S., Oliveira Junior, V. C., and Barbosa, V. C. F.: A Scalable and Consistent Method for Multi-Component Gravity-Gradient Data Processing, Appl. Sci., 15, 8396, https://doi.org/10.3390/app15158396, 2025. a, b
Prechelt, L.: Early Stopping – But When?, Springer, Berlin, Heidelberg, 55–69, ISBN 9783540494300, https://doi.org/10.1007/3-540-49430-8_3, 1998. a
Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F. A., Bengio, Y., and Courville, A.: On the Spectral Bias of Neural Networks, arXiv, https://doi.org/10.48550/ARXIV.1806.08734, 2018. a
Rahimi, A. and Recht, B.: Random features for large-scale kernel machines, in: Proceedings of the 21st International Conference on Neural Information Processing Systems, NIPS'07, Curran Associates Inc., Red Hook, NY, USA, 1177–1184, ISBN 9781605603520, 2007. a
Raissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686–707, https://doi.org/10.1016/j.jcp.2018.10.045, 2019. a
Ramachandran, P., Zoph, B., and Le, Q. V.: Searching for Activation Functions, arXiv [preprint], https://doi.org/10.48550/ARXIV.1710.05941, 2017. a
Reich, E.: The composition of harmonic mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 12, 47–53, https://doi.org/10.5186/aasfm.1987.1230, 1987. a
Rudd, J., Chubak, G., Larnier, H., Stolz, R., Schiffler, M., Zakosarenko, V., Schneider, M., Schulz, M., and Meyer, M.: Commercial operation of a SQUID-based airborne magnetic gradiometer, Leading Edge, 41, 486–492, https://doi.org/10.1190/tle41070486.1, 2022. a, b
Saragadam, V., LeJeune, D., Tan, J., Balakrishnan, G., Veeraraghavan, A., and Baraniuk, R. G.: WIRE: Wavelet Implicit Neural Representations, arXiv [preprint], https://doi.org/10.48550/ARXIV.2301.05187, 2023. a
Satheesh, A., Schmidt, C. P., Wall, W. A., and Meier, C.: Structure-preserving invariant interpolation schemes for invertible second‐order tensors, Int. J. Numer. Meth. Eng., 125, https://doi.org/10.1002/nme.7373, 2023. a, b
Shoemake, K.: Animating rotation with quaternion curves, ACM SIGGRAPH Comput. Graph., 19, 245–254, https://doi.org/10.1145/325165.325242, 1985. a
Siqueira, F. C. L., Oliveira Jr., V. C., and Barbosa, V. C. F.: Fast iterative equivalent-layer technique for gravity data processing: A method grounded on excess mass constraint, Geophysics, 82, G57–G69, https://doi.org/10.1190/geo2016-0332.1, 2017. a
Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., and Wetzstein, G.: Implicit Neural Representations with Periodic Activation Functions, CoRR, abs/2006.09661, arXiv [preprint], https://doi.org/10.48550/arXiv.2006.09661, 2020. a
Smith, L. T., Horrocks, T., Akhtar, N., Holden, E.-J., and Wedge, D.: Implicit neural representation for potential field geophysics, Sci. Rep., 15, 9799, https://doi.org/10.1038/s41598-024-83979-z, 2025. a
Soler, S. R. and Uieda, L.: Gradient-boosted equivalent sources, Geophys. J. Int., 227, 1768–1783, https://doi.org/10.1093/gji/ggab295, 2021. a
Stolz, R., Schmelz, M., Zakosarenko, V., Foley, C. P., Tanabe, K., Xie, X., and Fagaly, R.: Superconducting sensors and methods in geophysical applications, Supercond. Sci. Technol., 34, 033001, https://doi.org/10.1088/1361-6668/abd7ce, 2021. a
Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., and Ng, R.: Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains, arXiv [preprint], https://doi.org/10.48550/ARXIV.2006.10739, 2020. a, b, c, d
Thiele, S., Kamath, A., and Gloaguen, R.: Less is more: Weakly supervised interpolation using geological neural fields, EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025, EGU25-8735, https://doi.org/10.5194/egusphere-egu25-8735, 2025. a
Tveit, S., Mannseth, T., Park, J., Sauvin, G., and Agersborg, R.: Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large-scale CO2 injection, Comput. Geosci., 24, 1201–1220, https://doi.org/10.1007/s10596-020-09934-9, 2020. a
Ugalde, H., Morris, B., Kamath, A., and Parsons, B.: Full‐tensor magnetic gradiometry: Comparison with scalar total magnetic intensity, processing and visualization guidelines, Geophys. Prospect., 73, 303–314, https://doi.org/10.1111/1365-2478.13629, 2024. a, b, c
Vassiliou, A.: Numerical techniques for processing airborne gradiometer data, University of Calgary, https://doi.org/10.11575/PRISM/23539, 1986. a, b
White, K. B., Cline, D., and Egbert, P. K.: Poisson Disk Point Sets by Hierarchical Dart Throwing, in: 2007 IEEE Symposium on Interactive Ray Tracing, 129–132, https://doi.org/10.1109/rt.2007.4342600, 2007. a
Wittwer, T.: Regional gravity field modeling with radial basis functions, vol. 72 of Publications on Geodesy, Nederlandse Commissie voor Geodesie, ISBN 978-90-6132-315-0, https://doi.org/10.54419/hboxky, 2009. a
Xia, J. and Sprowl, D. R.: Correction of topographic distortion in gravity data, Geophysics, 56, 537–541, https://doi.org/10.1190/1.1443070, 1991. a
Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., Tombari, F., Tompkin, J., Sitzmann, V., and Sridhar, S.: Neural Fields in Visual Computing and Beyond, Comput. Graph. Forum, 41, 641–676, https://doi.org/10.1111/cgf.14505, 2022. a
Zuo, B. and Hu, X.: Edge detection of gravity field using eigenvalue analysis of gravity gradient tensor, J. Appl. Geophys., 114, 263–270, https://doi.org/10.1016/j.jappgeo.2015.01.013, 2015. a
Short summary
We present a new machine learning approach to reconstruct gravity and magnetic tensor data from sparse airborne surveys. By treating the data as derivatives of a hidden potential field and enforcing physical laws, our method improves accuracy and captures geological features more clearly. This enables better subsurface imaging in regions where traditional interpolation methods fall short.
We present a new machine learning approach to reconstruct gravity and magnetic tensor data from...