Articles | Volume 18, issue 20
https://doi.org/10.5194/gmd-18-7951-2025
https://doi.org/10.5194/gmd-18-7951-2025
Development and technical paper
 | 
28 Oct 2025
Development and technical paper |  | 28 Oct 2025

Tensorweave 1.0: interpolating geophysical tensor fields with spatial neural networks

Akshay V. Kamath, Samuel T. Thiele, Hernan Ugalde, Bill Morris, Raimon Tolosana-Delgado, Moritz Kirsch, and Richard Gloaguen

Related authors

Multiphysics property prediction from hyperspectral drill core data
Akshay V. Kamath, Samuel T. Thiele, Moritz Kirsch, and Richard Gloaguen
Solid Earth, 16, 351–365, https://doi.org/10.5194/se-16-351-2025,https://doi.org/10.5194/se-16-351-2025, 2025
Short summary
Hyperspectral mapping of density, porosity, stiffness, and strength in hydrothermally altered volcanic rocks
Samuel T. Thiele, Gabor Kereszturi, Michael J. Heap, Andréa de Lima Ribeiro, Akshay Kamath, Maia Kidd, Matías Tramontini, Marina Rosas-Carbajal, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1904,https://doi.org/10.5194/egusphere-2025-1904, 2025
Short summary

Cited articles

Axler, S., Bourdon, P., and Ramey, W.: Harmonic Function Theory, in: vol. 137 of Graduate Texts in Mathematics, Springer, New York, NY, ISBN 978-1-4419-2911-2 978-1-4757-8137-3, https://doi.org/10.1007/978-1-4757-8137-3, 2001. a
Blakely, R. J.: Potential Theory in Gravity and Magnetic Applications, in: 1st Edn., Cambridge University Press, ISBN 978-0-521-41508-8, https://doi.org/10.1017/CBO9780511549816, 1995. a, b, c, d
Bottou, L.: Stochastic Gradient Descent Tricks, Springer, Berlin Heidelberg, 421–436, ISBN 9783642352898, https://doi.org/10.1007/978-3-642-35289-8_25, 2012. a
Bracewell, R. and Kahn, P. B.: The Fourier Transform and Its Applications, Am. J. Phys., 34, 712–712, https://doi.org/10.1119/1.1973431, 1966. a
Brewster, J.: Description and evaluation of a full tensor interpolation method, in: SEG Technical Program Expanded Abstracts 2011, Society of Exploration Geophysicists, 811–814, https://doi.org/10.1190/1.3628199, 2011. a, b
Download
Short summary
We present a new machine learning approach to reconstruct gravity and magnetic tensor data from sparse airborne surveys. By treating the data as derivatives of a hidden potential field and enforcing physical laws, our method improves accuracy and captures geological features more clearly. This enables better subsurface imaging in regions where traditional interpolation methods fall short.
Share