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Abstract. Tensor fields, as spatial derivatives of scalar or
vector potentials, offer powerful insight into subsurface
structures in geophysics. However, accurately interpolating
these measurements–such as those from full-tensor potential
field gradiometry–remains difficult, especially when data are
sparse or irregularly sampled. We present a physics-informed
spatial neural network that treats tensors according to their
nature as derivatives of an underlying scalar field, enabling
consistent, high-fidelity interpolation across the entire do-
main. By leveraging the differentiable nature of neural net-
works, our method not only honours the physical constraints
inherent to potential fields but also reconstructs the scalar and
vector fields that generate the observed tensors. We demon-
strate the approach on synthetic gravity gradiometry data
and real full-tensor magnetic data from Geyer, Germany.
Results show significant improvements in interpolation ac-
curacy, structural continuity, and uncertainty quantification
compared to conventional methods.

1 Introduction

Full-tensor gravity and magnetic gradiometry measurements
capture the spatial derivatives of potential fields, offering rich
detail about subsurface density and magnetisation variations.
These tensor fields enhance geological imaging by encod-
ing directional and gradient information that scalar fields
do not straightforwardly provide (Brewster, 2011; Ugalde
et al., 2024). However, gradiometry data are typically sparse
and anisotropically sampled – often along sub-parallel flight

lines – posing significant challenges for downstream analy-
sis, which relies on gridded representations.

Interpolating these tensor fields accurately is far from triv-
ial. Conventional methods often treat tensor components as
independent scalar fields, leading to noise amplification, loss
of directional trends, and violations of physical constraints
like symmetry and harmonicity. More advanced approaches,
such as eigen-decomposition-based interpolation (Fitzgerald
et al., 2012; Satheesh et al., 2023), attempt to preserve tensor
structure, but remain limited in generalisability and scalabil-
ity.

Recent advances in neural fields (Xie et al., 2022) – also
known as coordinate-based or implicit neural representations
– offer a promising alternative. These models learn contin-
uous functions that map spatial coordinates to field values.
Their differentiable nature allows them to incorporate gra-
dient information directly into training – a key advantage
for geophysical applications where tensor data often repre-
sents derivatives of an underlying field (Raissi et al., 2019).
However, standard multilayer perceptron (MLP) architec-
tures suffer from spectral bias (Rahaman et al., 2018), mean-
ing they struggle to capture high-frequency features common
in geophysical signals. To address this, techniques like Ran-
dom Fourier Feature mapping (Tancik et al., 2020), periodic
activation functions (e.g. SiREN, Sitzmann et al., 2020), and
wavelet activations (Saragadam et al., 2023) have been in-
troduced, enabling neural fields to model fine-scale spatial
variations more effectively.

In this paper, we introduce a physics-informed neural field
approach tailored for interpolating geophysical tensor data.
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Our model learns a single scalar potential field from sparse
tensor measurements, leveraging RFF mappings and embed-
ded physical constraints (e.g., symmetry, Laplacian proper-
ties) to reconstruct consistent, physically meaningful tensor
fields. We further introduce an ensemble strategy to quan-
tify uncertainty in the interpolations, offering insights into
data sensitivity and model confidence. We demonstrate this
framework on both synthetic gravity gradiometry data and
real airborne magnetic gradiometry from Geyer, Germany,
highlighting clear improvements over traditional methods in
accuracy and structural continuity, as well as opening the
door to uncertainty quantification.

2 Background

A tensor is an algebraic object that encodes multilinear rela-
tionships between sets of vectors and linear functionals (Lee,
2012). A tensor field assigns a tensor to every point in space,
describing the local structure of a vector field or scalar poten-
tial throughout a region. In geophysical applications, tensors
naturally arise as derivatives of vector and scalar fields, ex-
tending classical multivariable calculus into field-based for-
mulations.

2.1 Potential fields

Many measured geophysical quantities, such as gravitational
acceleration g and the magnetic field b, are conservative vec-
tor fields – i.e., they are gradients of scalar potential fields
(Blakely, 1995). Within R3, a conservative vector field v is
irrotational at all points (given by the position vector r), sat-
isfying

v =∇φ↔∇× v = 0 (1)

where ∇ =
[
∂
∂rx
, ∂
∂ry
, ∂
∂rz

]
is the gradient operator. For in-

stance, the magnetic field can be expressed as the gradient of
a scalar magnetic potential in regions free of electric currents
– a condition typically met outside source distributions. Tak-
ing the gradient of v yields the Hessian tensor H, a second-
order tensor that captures the local curvature of the scalar
potential

H=∇v =∇(∇φ)=
∂2φ

∂ri∂rj
≡ ∂i∂jφ ∀ i,j = 1,2,3. (2)

In source-free regions, these fields are not only irrotational
but also solenoidal – i.e., divergence-free. The divergence of
v corresponds to the trace of the Hessian, which reflects the
Laplace equation

∇
2φ ≡ tr(H)= 0. (3)

This implies that, outside source regions, scalar potentials
are harmonic functions, and their Hessians are traceless.
Additionally, since mixed partial derivatives commute (by
Schwarz’s theorem), the Hessians are symmetric and thus
comprise five independent components.

2.2 Full tensor gradiometry

Direct measurements of second-order Hessian tensors – par-
ticularly gravity and magnetic gradient tensors – represent
the current frontier in potential field surveying (Rudd et al.,
2022; Stolz et al., 2021). Access to the full tensor enables
characterisation of scalar field curvature, aiding in tasks such
as edge detection, structure delineation (Zuo and Hu, 2015),
and magnetic remanence characterisation (Ugalde et al.,
2024). These measurements are typically acquired via air-
borne surveys, which are highly anisotropic in their sam-
pling: dense along flight lines and sparse across them. Vector
fields are frequently reconstructed from tensor components
using Fourier-domain transfer functions, which integrate the
measured gradients into vector components while suppress-
ing noise (Vassiliou, 1986). Since most downstream analy-
ses, including Fourier-based reconstructions, require gridded
tensor and vector fields, interpolation is a critical preprocess-
ing step.

Rudd et al. (2022) note that, in practice, tensor components
are often treated as separate scalar fields and interpolated us-
ing standard methods like minimum curvature or radial basis
functions (RBFs). Several alternative approaches have been
proposed to enforce physical or geometric constraints dur-
ing interpolation. For example, Brewster (2011) uses itera-
tive Fourier-domain transformations, while Fitzgerald et al.
(2012) suggest interpolating eigenvalues and eigenvectors
separately, using a quaternion-based interpolation technique.
In essence, the quaternion interpolation algorithm decom-
poses the process into two parts: interpolating the eigenval-
ues and the corresponding eigenvectors. Two of the three
eigenvalues are interpolated using standard schemes (e.g.,
RBF or minimum curvature), with the third computed such
that their sum is zero – a direct consequence of the Hes-
sian’s traceless-ness. The eigenvector matrix of any symmet-
ric real matrix is guaranteed to be real and orthogonal, allow-
ing it to be represented as a 3D orientation and encoded as a
quaternion (Hamilton, 1844), provided some constraints on
ordering and sign convention are imposed (Satheesh et al.,
2023). These quaternions are then interpolated using Spheri-
cal Linear Interpolation or SLERP (Shoemake, 1985), which
ensures smooth variation of orientation across space. While
SLERP works for two quaternions, Markley et al. (2007) de-
vised a scheme that works across a set of weighted quater-
nions.

Another widely used approach for interpolating and trans-
forming potential-field (and gradient) data is the equivalent-
source/equivalent-layer method: one replaces the true 3D dis-
tribution of sources by a 2D layer of hypothetical monopoles
or dipoles beneath the observation surface whose field ex-
actly reproduces the measured data on that surface (Damp-
ney, 1969; Blakely, 1995). In practice the infinite layer is
discretised into a finite set of sources and the correspond-
ing dense sensitivity matrix is solved – often with regular-
isation – to obtain source strengths that honour the phys-
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ical constraints of potential fields and enable stable con-
tinuation and derivative transforms (Hansen and Miyazaki,
1984; Blakely, 1995; Oliveira Junior et al., 2023). This for-
mulation is powerful but computationally demanding for
large surveys. Consequently, a substantial literature focuses
on accelerating the method by exploiting data geometry
and matrix structure: scattered equivalent-source gridding
(Cordell, 1992); the “equivalent data” concept to reduce sys-
tem size (Mendonça and Silva, 1994); wavelet compression
and adaptive meshing to sparsify sensitivities (Li and Old-
enburg, 2010; Davis and Li, 2011); fast iterative schemes
in the space/wavenumber domains (Xia and Sprowl, 1991;
Siqueira et al., 2017); and scalable algorithms that leverage
the block-Toeplitz Toeplitz-block (BTTB) structure of the
sensitivity matrix (Piauilino et al., 2025). Recent machine-
learning – inspired variants (e.g., gradient-boosted equiva-
lent sources) further cut memory and runtime for continental-
scale datasets (Soler and Uieda, 2021). Open-source imple-
mentations, notably Harmonica, provide practical tools for
gravity and magnetic datasets using these ideas (Fatiando a
Terra Project et al., 2024).

However, these methods still have limitations: component-
wise methods can be insensitive to the true shape of the ten-
sor, whereas full-tensor schemes involve complex handling
of 3D rotations, which are complicated due to the existence
of indeterminate points and the need for shifting reference
frames due to non-uniqueness of 3D rotations. Equivalent
source methods offer a physically consistent approach, but
suffer from the trade-off between computational expense and
fidelity of the interpolated result (e.g., Piauilino et al., 2025).
In this contribution, we propose a neural field method that
interpolates the scalar potential field directly – constrained
by physical laws and Hessian measurements – to produce
consistent, noise-minimising tensor and vector fields that
respect observations and preserve geologically meaningful
structures.

2.3 Neural fields

Neural fields – also known as implicit neural representa-
tions, or spatial neural networks – are models that represent
continuous spatial functions using neural networks. Unlike
traditional methods that store information in discrete grids
or meshes, neural fields encode spatial structure within the
weights and biases of a neural network, enabling resolution-
independent, continuous representations of complex signals.

The application of spatial neural networks in geoscience
dates back to Openshaw (1993), who used them for interpo-
lating sparse spatial data and found their performance com-
petitive with fuzzy logic and genetic algorithms, a conclu-
sion also reached by Hewitson et al. (1994). More recently,
neural fields have gained traction in computer vision – for
example, in volumetric radiance field modelling (Mildenhall
et al., 2020) – and in geoscience applications such as 3D ge-

ological modelling (Hillier et al., 2023) and potential field
representation (Smith et al., 2025).

A key advantage of neural fields is their differentiability:
they allow access not only to predicted signals but also to
their spatial derivatives via automatic differentiation. This is
especially useful when the scalar field itself is unmeasurable
or physically arbitrary, but its gradients are measurable – as
is often the case in geological modelling using structural ori-
entation data (Kamath et al., 2025; Thiele et al., 2025), or in
reconstructing potential fields from tensor gradiometry data.

3 Methodology

This section outlines the key components of our proposed
framework, including the use of random Fourier features,
a harmonic feature embedding, model architecture, training
regimen, and loss function. We also describe the methodol-
ogy used to generate the synthetic dataset used in our study.

3.1 Random Fourier Feature mapping

A common challenge in implicit neural representations is the
mismatch between low-dimensional input coordinates and
the complex, high-frequency structure of the target signal.
To address this, we employ Random Fourier Feature (RFF)
mapping – a kernel approximation technique introduced by
Rahimi and Recht (2007) and adapted to deep learning by
Tancik et al. (2020). RFF mapping projects spatial coordi-
nates into a higher-dimensional space, making it easier for
the network to learn fine-scale spatial variation.

Given the position vector r ∈ RN , we define a frequency
(also called weights) matrix W, of the dimension M ×N ,
with every component sampled from a standard Gaussian
distribution, where M is the number of Fourier features (i.e.,
frequencies). To encode known signal frequency character-
istics (e.g., the maximum possible frequency based on sam-
pling resolution), we rescale the weights matrix using differ-
ent length scales. Therefore, for a 3D input, we get a 2M di-
mensional feature vector νs for every length scale `s given
by

νs = [sin(2πWsr) , cos(2πWsr)] ,

where Ws = `
−1
s WM×3 (4)

where r = [x,y,z]T , Wij ∼N (0,1), sin(x) := [sin(xi)]i ,
and [:, :] represents concatenation along the feature axis.
Hence, for L length scales, as the feature vectors are con-
catenated, we get a 2ML-dimensional feature vector. This
feature vector is then fed into the subsequent multi-layer per-
ceptron to get the scalar potential at the input coordinate.

The transformation enables the model to capture high-
frequency details more effectively, while the random sam-
pling of frequencies introduces a useful stochastic compo-
nent. When followed by a linear MLP with no non-linear ac-
tivations, the resulting mapping approximates a full Fourier
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reconstruction of the signal (Bracewell and Kahn, 1966).
Non-linear activations help the model fit sparse data more
flexibly (LeCun et al., 2015), albeit at the cost of simplicity,
interpretability, and gradient stability.

3.2 Harmonic feature embedding

Applying Fourier features uniformly in all dimensions can
hinder convergence when modelling harmonic fields. By Li-
ouville’s Theorem (Axler et al., 2001), any bounded har-
monic function on RN is constant, so naive periodic em-
beddings can bias the network toward trivial solutions. We
therefore introduce a harmonic Fourier mapping that uses
Fourier features in the horizontal plane and an analytically
motivated vertical decay. Since our model reconstructs the
spatial domain signal from a combination of sinusoids, we
use the frequencies of the sinusoids to encode the harmonic-
ity condition into the mapping. Specifically, in the Fourier
domain, if we couple Laplace’s equation with the standard
separation-of-variables method for a scalar potential φ, we
get an ordinary differential equation of the form(
k2
z −‖kh‖

2
2

)
Fx,y(φ)= 0 (5)

where Fx,y(·) is the 2D Fourier transform operator, kh =

[kx,ky] represents the horizontal wavenumbers (i.e., frequen-
cies), and kz is the vertical wavenumber (Lacava, 2022).
This implies that the vertical wavenumber is constrained by
k2
z = k

2
x+k

2
y , making the vertical dependence evanescent and

not oscillatory. This is the classical half-space solution of
Laplace’s equation and underpins upward/downward contin-
uation in potential-field geophysics (Blakely, 1995; Parker,
1973). Our harmonic embedding scheme simply bakes in the
same physics at a feature-level, helping with convergence
while training on mostly co-planar datasets, and potentially
allowing robust upward/downward continuation.

For a 3D input r = [x,y,z]T , we extract the horizontal co-
ordinates rxy = [x,y]T . As defined in the previous section,
we generate a random weights matrix WM×2 with the en-
tries independently drawn from a standard normal distribu-
tion Wij ∼N (0,1), and scale it with the length scale `s to
acquire a scaled matrix Ws = `

−1
s W. For every length scale,

we define a new vector, κs, such that

(κs)m = ‖Ws,m:‖2, κs ∈ RM (6)

where m refers to the mth row of the Ws matrix, giving us a
vector of length M i.e., one norm per row (per feature). With
element-wise sine/cosine and Hadamard product �, the new
feature vector νs for the scale `s is

νs =
[
sin
(
2πWsrxy

)
� e−κsz, cos

(
2πWsrxy

)
� e−κsz

]
(7)

where z is the vertical coordinate, and the exponential is
applied element-wise, producing a 2M-dimensional vector.
Concatenating across L scales yields a 2ML-dimensional

embedding that encodes horizontal oscillations with physi-
cally consistent vertical decay, aligning the features with so-
lutions of Laplace’s equation and improving generalisation
in under-sampled regions.

3.3 Synthetic dataset

To evaluate our method, we generated a synthetic gravity
gradiometry dataset (Fig. 1) using SimPEG (Cockett et al.,
2015). The model consists of three density-contrast anoma-
lies within a zero-density half-space:

1. Torus: +1 g cm−3, semi-major axis 450 m, semi-minor
axis 220 m, cross-section radius 40 m, lying in the
xy plane and rotated 12° CCW from the y axis.

2. Dyke: +0.15 g cm−3, 60 m aperture, striking at 45° to
the y axis.

3. Cube: −0.2 g cm−3, 400 m side length, rotated 45°
about the vertical (z) axis.

The simulation mesh has a voxel size of 20 m. This ge-
ometry offers a challenging mix of sharp discontinuities
and smooth curvature for testing interpolation. We gener-
ated a high-resolution ground truth dataset sampled at 25 m
spacing both along and across the lines, as well as a low-
resolution airborne-style dataset with flight lines 200 m apart
in the y direction (perpendicular to the flight line), and
sampled densely (15 m) along the x direction (Fig. 1b–f).
Furthermore, to make the data more realistic, We corrupt
the full-tensor gradiometry data with additive white Gaus-
sian noise at a prescribed signal-to-noise ratio (SNR). For
each independent component of the Hessian Hk (where k ∈
{xx,xy,xz,yy,yz}), we estimate the power spectrum Pk =

〈H 2
k 〉, convert the target SNR from dB to linear units as:

SNRk = 10SNRk,dB/10. (8)

Using this SNR, we set the noise variance of the sig-

nal as σ 2
k =

P 2
k

SNRk
. Independent samples εi,k ∼N (0,σ 2

k ) are
then added to each datum, to acquire a noisy synthetic
dataset (H̃ ), given by:

H̃i,k =Hi,k + εi,k ∀ i = 1 . . .P (9)

where P is the number of points in the dataset.
To test robustness to data sparsity, we also computed

10 versions of the low-resolution dataset with line spacings
varying from 80 to 560 m. These were used to benchmark
interpolation quality and information loss under varying ac-
quisition densities. Comparisons were made with a truncated
RBF interpolator (250 nearest neighbours, smoothing fac-
tor 100), as well as results from the quaternion interpolation
(QUAT; Fitzgerald et al., 2012), combining RBF-interpolated
eigenvalues with SLERP-interpolated quaternions. All re-
sults were evaluated on the same high-resolution grid using
the R2 (coefficient of determination), MSE (Mean Squared
Error), and SSIM (Structural Similarity Index Measure).
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Figure 1. Synthetic subsurface model and corresponding gravity gradiometry data. (a) Horizontal cross-section of the synthetic geological
model at a depth of 140 m, with high-resolution observation points shown as black dots. The five independent components of the gravity
gradiometry tensor generated via forward modelling using SimPEG are also shown (b–f). Each panel displays both the high-resolution dataset
(grey scale; cell size of 25 m) and the low-resolution dataset (colour; 200 m cross-line spacing and 15 m inline spacing) for the corresponding
tensor component.

3.4 Model architecture, training regimen, and loss
functions

Our model has two main components: a RFF mapping block
followed by a sequence of fully-connected feed-forward lay-
ers that together produce a continuous scalar field represen-
tation (Fig. 2). In our tests, we varied the number of Fourier
features from anywhere between 16 to 64, depending on the
complexity of underlying field. The specifications of each in-
dividual model showcased in this contribution can be found
in the following sections.

The MLP block in our model uses non-linear activations
for all layers except the output layer. As our framework
involves computing second derivatives with AD, activation
functions like ReLU (which do not satisfy the C2 differentia-
bility criterion) resulted in abrupt edges within the resultant
interpolation. Notably, even within the activations that satisfy
the aforementioned criterion, some functions performed bet-
ter than the others. For example, the Hyperbolic Tangent acti-
vation function has extremely small second order derivatives
which tend to get saturated, impeding convergence. These
activations are stable, but not ideal for our models. Among
the various activation functions tested, Swish (Sigmoid Lin-

ear Unit, SiLU; Ramachandran et al., 2017) and Mish (Misra,
2019) activations provided the best results.

The loss function used to train our model involves two
types of losses – a data loss and a Laplacian loss. The
data loss is computed at the points of measurement between
the measured tensor components and the Hessians acquired
from the predicted scalar field through automatic differentia-
tion (AD) (Margossian, 2019). Since the model is built with
PyTorch (v2.8.0; Paszke et al., 2019), we use the inbuilt auto-
grad engine to compute Hessians from the scalar field output.
For the predicted scalar field φ, the data loss term is given by

Ld =
1
P

P∑
p=1

∣∣∣∂i∂jφp −Hp
ij

∣∣∣ ∀ i,j = 1,2,3 (10)

where ∂iφp refers to the partial derivative with the respect
to the ith input computed with AD at the pth location,
and Hp is the corresponding measured hessian tensor. The
first, second, and third indices correspond to x (East–West),
y (North–South) and z (Up–Down) axes respectively. Only
the upper-triangular part of the Hessian is used for loss com-
putation i.e., the losses for the off-diagonal components are
only considered once per measurement. Hence we get a six-
component data loss vector, consisting of the misfit between
the xx, xy, xz, yy, yz and zz components.
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Figure 2. Neural Fourier Field model architecture. The blue block projects the input position vector into a feature space and passes it through
the fully-connected layers (orange block) to acquire the scalar potential. The red arrows signify the use of automatic differentiation to acquire
the first (gradient) and second (curvature) spatial derivatives of the potential.

The second term in the loss function is derived to encour-
age the predicted scalar field to conform with a partial dif-
ferential equation defined across the whole domain of inter-
est. Since the predicted field has to be harmonic not only at
the points of measurement, but everywhere, we thus penalise
non-zero traces of the predicted Hessian tensors, hereafter re-
ferred to as the Laplacian loss. During every training epoch,
we use a Poisson disk sampling routine based on a hierar-
chical dart throwing approach (White et al., 2007), to select
evenly spaced points within a predefined grid that covers the
area of interest. The spacing for these points is evaluated us-
ing an exponentially decaying function that goes from a user
specified large spacing (at the start of training) to a tighter
spacing (towards the final epochs). For theQ sampled points
in any epoch, the Laplacian loss is given by:

Ll =
1
Q

Q∑
q=1

∣∣tr(∇ (∇φq))∣∣= 1
Q

Q∑
q=1

∣∣∂i∂iφq ∣∣ . (11)

Here, the Einstein summation convention is used to repre-
sent the Laplacian, and the superscript refers to the point
of evaluation. This loss penalises high values of the trace
of the predicted hessian tensor outside the measured points,
thereby encouraging harmonicity on the underlying scalar
field within the domain of interest. Hence, for every epoch,
we get a seven component combined loss vector, with the
first six components corresponding to the data loss, and the
seventh component referring to the global Laplacian loss.

When combined, the total loss acquired from Eqs. (10)
and (11) is thus

Ltotal =

7∑
i=1

αiLi (12)

where Li is the ith component of the combined loss vec-
tor, [αi] are the corresponding hyperparameters. Instead of
manually fine-tuning these hyperparameters, we tested vari-
ous multi-objective optimisation schemes for our framework.
The best-performing scheme involved dynamically updating
hyperparameters, such that every loss function was scaled by
the real-time magnitude of the loss. Mathematically, we re-
place the [αi] in Eq. (12) as follows:

Ltotal =

7∑
i=1

Li
L̃i

(13)

where L̃i refers to the magnitude of the loss, detached from
the computational graph. This ensures that the gradients only
flow through the numerator of the scaled loss, even when the
real-time value of the loss is always equal to 1. This real-
time normalisation yields a scale-invariant objective whose
update is approximately ∇θ

∑
i

logLi (where ∇θ is the gra-

dient with respect to the network parameters), encouraging
proportional improvements across terms. Similar in spirit to
uncertainty-based weighting (Kendall et al., 2017), Grad-
Norm (Chen et al., 2017), and Density Weight Averaging
(Liu et al., 2019), this variant requires no extra parameters
or gradient-norm computations and worked reliably in our
setting.

We train the MLP parameters (weights and biases) with
Adam (Kingma and Ba, 2014), while keeping the RFF en-
coder fixed after initialisation. The initial learning rate is
set to 10−3 (occasionally 10−2 when the initial loss scale is
large). We apply a plateau scheduler that reduces the learn-
ing rate by a factor of 0.8 whenever the loss fails to improve
for 20 epochs. Optionally, we also optimise a set of learnable
length-scale parameters that modulate the Fourier features;
the log-values of these scales are stored as parameters and
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updated jointly with the MLP. However, the learnable nature
of these length scales did not help the model convergence
greatly, reproducing results explored by Tancik et al. (2020),
which suggested that neural fields fail to suitably optimise
these length scale parameters.

To make the stopping criterion robust to small oscillations,
we monitor an exponential moving average (EMA) of the
pre-scaled loss:

L̂n = βL̂n−1+ (1−β)Ln β ∈ (0,1) (14)

where L̂n denotes the smoothed loss on the nth epoch. This
combination – Adam for fast, well-scaled updates, plateau-
based learning-rate decay, and EMA-stabilised early stop-
ping – follows common best practices for training smooth
function approximators and has been shown to curb overfit-
ting while maintaining convergence speed (Goodfellow et al.,
2016; Prechelt, 1998; Bottou, 2012).

3.5 Uncertainty estimation

A key benefit of using RFF embeddings is that their stochas-
tic nature allows for ensemble-based uncertainty estimation.
As a result of the stochasticity, each initialisation of the RFF
mapping induces a unique basis in the feature space, caus-
ing the neural network to converge on a solution that repre-
sents a random sample from a broader distribution of plausi-
ble scalar fields conditioned on the training data.

To exploit this property for uncertainty quantification,
we generate an ensemble of model outputs by varying the
random seed used to sample the RFF projection matrix.
Ensemble-based uncertainty quantification has a long and
successful history in geophysics, particularly in subsurface
modelling and inversion. In seismic full waveform inversion
(FWI), ensembles have been used to assess the variability and
reliability of recovered velocity models under data noise and
model ambiguities (Fichtner et al., 2011). In reservoir geo-
physics, the Ensemble Kalman Filter (EnKF) has become a
widely used tool to propagate uncertainty in dynamic reser-
voir simulation and history matching (Evensen, 2009). More
recently, ensemble-based methods have also been applied
to probabilistic gravity and magnetotelluric inversion (Tveit
et al., 2020; Giraud et al., 2023), demonstrating their utility
in quantifying non-uniqueness and guiding data acquisition
strategies.

In our implementation, each ensemble member corre-
sponds to a different realisation of the frequency space, lead-
ing to stochastically independent function approximations
that depend, largely, on the degree to which the solution is
constrained by the available data. This ensemble-based ap-
proach provides a Monte Carlo-style estimate of the model’s
epistemic uncertainty. Furthermore, because the scalar field
is modelled continuously, we can propagate this ensemble
approach to the field’s derivatives, helping us quantify un-
certainty in derived physical quantities. Therefore, we show-
case our results as the Ensemble Neural Field (ENF) method,

which corresponds to the average prediction from an ensem-
ble of models. We also compute results from the individual
models within the ensemble (shown as the Neural Field or
NF result), to ascertain the effect of averaging over multiple
predictions.

4 Results

4.1 Synthetic data

We first evaluate the Ensemble Neural Field (ENF) method
on the synthetic gravity gradiometry dataset, comparing it
against a Truncated Radial Basis Function (RBF) interpo-
lator (Fig. 3). The ensemble showcased here has 25 mod-
els, each with 16 Fourier features, three length scales of
[200, 400, 1000], and two hidden layers with 256 neu-
rons each. Each model within the ensemble was trained for
400 epochs. A predefined grid with a cell-size of 25 m was
provided for evaluating the Laplacian loss, with the Poisson
sampling radius going from 250 to 80 m. Figure 3a and b
shows the residuals between predicted and true Hxy values
for the RBF and ENF methods, respectively. The RBF out-
put exhibits high-amplitude residuals (MSE= 4.60 eotvos)
between flight lines, indicating overfitting to sampled re-
gions and poor generalisation across them. It also fails to
preserve continuity in linear trends that lie at high an-
gles to the flight direction. In contrast, the ENF method
yields spatially smoother residuals with significantly lower
error (MSE= 0.30 eotvos; improvement of ≈ 93.4 % over
the RBF), suggesting homogeneous improved performance
across the domain. Insets in both panels show 1 : 1 kernel
density plots, where the ENF predictions cluster more tightly
along the identity line – further confirming its accuracy.

For a quantitative measure of the improvement offered by
our method, we plot the R2 scores for each tensor compo-
nent across three interpolation methods: RBF, and two neu-
ral field-based (NF and ENF) (Fig. 3c). The NF method
reflects the mean R2 from 25 independently trained mod-
els, with error bars showing standard deviation. The ENF
method, by contrast, uses the averaged prediction across
those same models. Both neural field approaches outperform
classical methods, with ENF showing a slight edge – demon-
strating that ensemble averaging reduces variance and en-
hances prediction stability. Figure 3d shows the loss curves
for the various losses for one of the models within the en-
semble, as a function of epochs. The data loss terms reason-
ably plateau after reaching values of ≈ 1 eotvos, while the
real-time updating hyperparameters help avoid overfitting to
a single component. The Laplacian loss (dotted pink line; Ll)
keeps steadily decreasing as the sampling gets tighter and
ever more points are sampled from the grid.

To further evaluate structural accuracy, we compute the
Structural Similarity Index Measure (SSIM) between pre-
dicted and true tensor fields (Fig. 4). The ENF method
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Figure 3. Quantitative comparison of interpolation performance for the synthetic dataset. Spatial distribution of residuals between the true
and predictedHxy tensor component using (a) the Truncated Radial Basis Function (RBF) method and (b) the Ensemble Neural Field (ENF)
approach (with 25 models in the ensemble). Insets show 1 : 1 parity kernel density plots comparing predicted and true values. (c) R2 scores
for each tensor component (Hxx , Hxy , Hxz, Hyy , Hyz, Hzz) across three interpolation methods: RBF, the mean of the individual Neural
Field (NF) scores from the models within the ensemble, and ENF. The ENF and NF models consistently achieve higher accuracy across all
components, while RBF exhibits reduced performance. The loss curves (d) for various components of the loss show the data fitting parts
(solid lines) plateau while the Laplacian part (dotted line) keeps decreasing owing to increased sampling with each progressive epoch.

achieves higher SSIM scores across all three components –
0.95 (Hxx), 0.97 (Hxy), and 0.96 (Hxz) – compared to 0.78,
0.64, and 0.76 for RBF. The greatest improvement is seen
in Hxy (improvement of ≈ 50.46 %), where RBF results
show structural distortion, over-smoothing, and “boudinage”
artefacts along flight lines (Naprstek and Smith, 2019). ENF,
on the other hand, preserves coherent anomalies and direc-
tional continuity even across sparsely sampled regions.

4.2 Rate of information loss

To assess robustness under sparse sampling, we compare the
interpolation results for varying line spacings from 80 to
560 m (Fig. 5). Classical methods (RBF and quaternion-
based interpolation, or QUAT) show sharp drops in accuracy
beyond 200 m spacing. For example, the RBF method’s root-
mean-squared R2 (computed over the components) drops
to 0.54, and the root-mean-squared SSIM plummets to 0.26

at 560 m. In contrast, NF interpolation maintains relatively
stable performance up to ≈ 400 m spacing, with a much
gentler decline at wider gaps. At 560 m, the NF model
still achieves a root-mean-squared R2 of 0.91 and an SSIM
of 0.65.

The MSE trends mirror this behaviour: classical methods
exhibit steep error increases with sparser lines, while the
NF model degrades more gracefully. QUAT offers minor im-
provements over component-wise interpolation but follows a
similar performance trajectory. This suggests that the main
bottleneck in full tensor interpolation lies in the eigenvalue
interpolation step, which – like the component-wise case –
relies on RBF methods.

4.3 Magnetic gradiometry from Geyer

Finally, we validated the method on real airborne magnetic
gradiometry data from Geyer, located in Germany’s Erzge-
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Figure 4. Comparison of gravity gradiometry tensor components derived from two interpolation methods applied to the synthetic dataset.
The ground truth Hxx , Hxy , and Hxz components (a–c) are compared with the results from the Truncated Radial Basis Function (RBF)
(d–f) interpolation with 250 nearest neighbours and a smoothing factor of 100, and corresponding results produced by the Ensemble Neural
Field (ENF) method (g–i) with 25 models in the ensemble. Black lines in interpolated results (d–i) indicate the input flight lines used for
interpolation.

Figure 5. Accuracy metrics as a function of increasing line spacing for the synthetic dataset.R2 score (a), Structural Similarity Index Measure
(SSIM) (b), and Mean Squared Error (MSE) (c) were computed between the ground truth and the gridded results from the interpolation
methods. The Radial Basis Function (RBF) used 250 nearest neighbours, with a smoothing factor of 100, and the Neural Field (NF) model
used the same architecture as discussed in Sect. 3.3. The full tensor interpolation algorithm (QUAT; Fitzgerald et al., 2012) was also included
for comparison, using the aforementioned RBF for the eigenvalue interpolation, and SLERP for rotational interpolation. The shaded regions
show the minimum and maximum metric across all the components, and the plotted line shows the root-mean-squared metric computed
across the components.
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Figure 6. Case study site near Geyer, Erzgebirge, Germany. Flight lines from a subset of the airborne magnetic gradiometry survey (a), with
every fourth line (red) used as input for interpolation and the remaining lines (black) reserved for validation. (b) Spatial distribution of the
measured zz-component of the magnetic gradiometry tensor across the survey region.

birge region – part of the Central European Variscides. The
area features high- and medium-pressure metamorphic units,
orthogneiss domes, and post-orogenic granites (Kroner and
Romer, 2013), with abundant ore-forming skarns contain-
ing magnetic minerals (Burisch et al., 2019; Lefebvre et al.,
2019) as well as magnetite-rich quartzites and amphibolites
that occur as intercalations within the metamorphic rocks.
These rocks contribute to complex magnetic anomalies ideal
for real-world evaluation.

We test the ENF method on a real airborne magnetic gra-
diometry dataset from Geyer (Fig. 6), acquired by Supra-
con AG in 2016 as part of the E3 (ErzExploration Erzgebirge)
project. As in the synthetic case, we compare ENF to RBF
interpolation. Due to the complex nature of the signal, we
run a 50 model ensemble for the Geyer dataset. Each model
uses 64 Fourier features, with four length scales of [220, 400,
1000, 100 000]. The number of hidden layers is increased
to three, with 1024, 512 and 256 neurons respectively. Each
model is trained for 600 epochs, with early stopping triggered
after 30 epochs of no improvement. A predefined grid with a
cell-size of 20 m is used to evaluate the Laplacian loss, with
the Poisson sampling radius starting at 500 m, and going to
200 m. Every fourth flight line is used for training, with the
others reserved for testing the interpolation. Since ground-
truth grids are unavailable, we assess accuracy using residual
analysis and R2 scores computed for points in the withheld
lines.

We plot the residual maps for Hxy on test lines (Fig. 7).
While absolute R2 scores are lower than in the synthetic case
– owing to added geological complexity and noise – ENF
still achieves more than 30 % better performance than RBF
across most tensor components, with a whopping increase of
≈ 157 % in the R2 score for Hyy , and an average increase
of approximately 57.27 %. Both NF and ENF results are bet-
ter than the RBF across all components. Residuals show that
ENF (Fig. 7a) reduces systematic bias between lines and pre-
serves anomaly shapes more faithfully. RBF (Fig. 7b), by

contrast, displays patchy behaviour with abrupt shifts be-
tween lines – a well-known artifact of interpolating sparse or
anisotropically sampled data (Hillier et al., 2014; Wittwer,
2009). The loss curves (Fig. 7d) show a similar trend to the
synthetic case, with the data loss terms plateauing around
0.1 nT m−1, and the Laplacian loss steadily decreasing.

To get a qualitative overview of the overall result, we plot
the gridded visualisations of the Hxx , Hxy , and Hxz tensor
components (Fig. 8). We also compute a result from using
all of the flight lines with an RBF interpolator (Fig. 8a–c),
serving as our ground-truth. The RBF results from using ev-
ery fourth line (Fig. 8d–f) reveal strong aliasing and incon-
sistent behaviour between flight lines – hallmarks of inade-
quate cross-line interpolation. In contrast, the ENF interpo-
lations (Fig. 8g–i) exhibit smoother transitions and clearer
structural trends, especially in directions orthogonal to flight
lines. The ENF model successfully mitigates high-frequency
striping and captures geologically meaningful features.

5 Discussion

5.1 Accurately reconstructing tensor fields

The proposed Neural Field (NF) Interpolator has shown re-
markable success in interpolating tensor gradiometry data.
Our results show that the additional information contained
within the hessian tensor can help derive a more accurate
reconstruction of the entire field as sampling gets sparser
(Fig. 5), provided the interpolation algorithm can access the
full tensor constraints. For equivalent inputs, the NF interpo-
lation recovers a signal that better fits all the tensor compo-
nents, while maintaining the integrability and physical prop-
erties inherent to a hessian tensor field.

We also see equivalent results from all methods when line
spacings are tight (i.e., for line spacings of 80, 100 and 120 m
in our synthetic tests). This suggests an oversampling with
respect to the spatial frequencies in the signal, such that all
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Figure 7. Quantitative comparison of interpolation performance for the Geyer dataset. Spatial distribution of residuals between the true and
predicted Hxy tensor component along the test flight lines using the Truncated Radial Basis Function (RBF) (a) method and the Ensemble
Neural Field (ENF) (b) approach (with 50 models in the ensemble). Insets show 1 : 1 parity kernel density plots comparing predicted and
true values. (c) R2 scores for each tensor component (Hxx , Hxy , Hxz, Hyy , Hyz, Hzz) across three interpolation methods: RBF, mean of the
individual Neural Field (NF) scores from the models within the ensemble, and ENF. The ENF and NF models consistently achieve higher
scores across all components, while RBF exhibits reduced performance. The loss curves (d) for various components of the loss show similar
characteristics to the synthetic loss curve.

the interpolation methods converge to the same (correct) re-
sult to yield high accuracy metrics. Results then diverge as
line spacing increases to 200 m, indicating the neural field in-
terpolation is able to leverage information in the shape of the
tensors to continue to derive accurate reconstructions, while
the RBF and quaternion methods cannot.

The reason that the results converge with close spatial
sampling could be attributed to the equivalence of SLERP
and standard linear interpolation as the angle between the
quaternions describing the orientations of the input data
points goes to zero. Since a tighter line spacing ensures
a smoother graduation of the eigenvector orientations (i.e.,
a smaller change in the angle between the corresponding
quaternions), the resulting interpolation is closer to what one
would achieve with standard linear interpolation of the com-
ponents. But, under sparse sampling conditions, the differ-
ences seen in the results indicate that an interpolation using
neural field formulation better preserves the shape of inter-
polated tensors, without the need for cumbersome quaternion
formalisms.

The interpolated tensor components for Geyer (Fig. 8)
also showcase significant improvements over the component-
wise interpolation of these tensors. The extension and con-
tinuation of the trend from the centre of the grid, towards the
north-east is preserved in the ENF result, but is completely
absent in the RBF result. Any interpretation of these grids
would thus result in significantly different geological struc-
tures, highlighting the necessity for appropriate interpolation
methods. The Laplacian constraint is handled with an objec-
tive minimisation approach in our method. One could poten-
tially enforce harmonicity by design, however this is chal-
lenging for 3D (i.e. geophysical potential) fields and difficult
to enforce through the non-linear activation functions inher-
ent to neural networks. In 2D, holomorphic functions (i.e.,
complex-differentiable functions of multiple variables) con-
sist of real and imaginary parts that are harmonic functions,
a fact that is utilised by Harmonic Neural Networks (e.g.,
PIHNNs; Calafà et al., 2024) to yield exactly harmonic out-
puts. These concepts do not directly extend to 3D, promot-
ing an objective driven enforcement of the constraint. Vec-
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Figure 8. Comparison of magnetic gradient tensor components interpolated onto a uniform grid (cell size= 20 m) using two methods.
Gridded Hxx , Hxy , and Hxz components obtained using the Truncated Radial Basis Function (RBF) interpolation method, with 250 nearest
neighbours and a smoothing factor of 100 for all of the flight lines (a–c) are used as the ground truth. We compare the ground truth with the
corresponding components interpolated with RBF using every fourth flight line (d–f), and the corresponding components interpolated using
the Ensemble Neural Field (ENF) approach (g–i) with 50 models in the ensemble. Each column visualises a distinct component of the tensor.
Black lines within the plots indicate the locations of the input flight lines used in the interpolation process.

tor potential based formulations (e.g. CurlNet; Ghosh et al.,
2022) enforce divergence-free fields but fail to enforce the
zero curl constraint. Furthermore, as our network consists of
non-linear activations, and as non-linear compositions do not
generally preserve harmonicity (Reich, 1987), we are further
motivated to rely on our new mapping that has harmonic el-
ements (see Sect. 3.2) and use an objective to constrain the
Laplacian.

5.2 Recovery of vector fields

Many analysis methods applied to tensor gradiometry data
require a domain-wide integral to estimate the underlying
vector field. The simplest way of computing this integral is
by ignoring everything but the last row of the gradiometry
tensor, and using the Hxz, Hyz, and Hzz components to get
vector components. Due to the Fourier domain properties,
vector components are defined as a vertical integral in the
Fourier domain (Mickus and Hinojosa, 2001). Similarly, the
power spectrum of these signals can also be used to gener-

ate vector components, using transfer functions that fit all of
the signals while minimising noise (Vassiliou, 1986). How-
ever, in our method, we can completely avoid this potentially
complex integral. We can use automatic differentiation to ac-
quire the vector field components from the predicted scalar
potential as the neural field predicts scalar potential and not
the gradiometry tensor itself. Importantly, we thus estimate
the vector field components exclusively from real measure-
ments, rather than from an integral over a regularly spaced
(i.e. interpolated) grid that is already one-step removed from
the data.

To test the recovery of vector components from our model,
we compared it to the benchmark generated using the RBF
interpolation on all flight lines and then applying Fourier do-
main transfer functions to compute the integral. We also use
the transfer functions on the RBF interpolation results for our
training data for a baseline comparison (Fig. 9). Comparing
the resulting bx (Fig. 9a, d and g) components, we see that
features present in both the ground truth and the ENF re-
sults are completely erased from the RBF result. Similarly,
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Figure 9. Comparison of recovered vector magnetic field components from two interpolation methods, evaluated against a high-resolution
reference model. We use vector components bx , by , and bz computed using Fourier domain transfer functions applied to magnetic tensor
components gridded via the Truncated Radial Basis Function (RBF) from all available flight lines (a–c) as our reference. Fourier domain
reconstruction of the vector components obtained using the RBF method on tensor data from the training set of flight lines (d–f), and the
corresponding results computed from the spatial derivatives of the scalar field predicted by the Ensemble Neural Field (ENF) model (g–
i) are shown. The black lines in each panel represent the flight lines used to generate the corresponding component. Each panel shows the
histogram-equalised spatial distribution of the respective vector component across the subset of the Geyer survey area, mapped from 0 to 1.

the shape of the anomaly at the top-right corner of the grid is
distorted in the RBF result, but completely preserved within
the ENF grid. Slight changes in trend directions (i.e., the shift
of the strike of the anomalies to having a smaller azimuth)
also cannot be seen in the RBF results, which has promi-
nent “boudinage” artefacts along the flight lines that cause a
loss of trend and directional information perpendicular to the
flight line. We suggest that these results highlight the ability
of the neural field interpolation to extract sensible informa-
tion (resembling the ground truth) from data acquired at four
times the line spacing.

5.3 Uncertainty analysis and ensemble models

We also used the stochastic nature of our feature embeddings
to do a preliminary uncertainty analysis for the results from
our interpolator for the Geyer dataset (Fig. 10). The standard
deviation plot shows higher variability in model predictions
across regions without data points (i.e., between the flight

lines), which could be interpreted as an uncertainty measure.
Interestingly, the variance between flight lines seems to scale
with the value of the underlying tensor component, leading
to heteroscedasticity in the predictions. This might need cor-
rection in future developments of our methodology. It is also
worth noting that the NF approach has parallels to the turning
bands and spectral methods to simulate random fields (Man-
toglou and Wilson, 1982), suggesting that a deeper stochas-
tic link to other Gaussian process methods may be possible.
This link could be exploited to better understand the variance
of neural field ensembles or consider future modifications of
the present NF algorithms towards tuned frequency matrix
distributions.

The variance of our ensemble model is generally higher for
the components with two derivatives in the same dimension
(i.e., Hxx , Hyy , and Hzz), and for the derivatives involving
the z component (i.e., Hxy seems to be the least uncertain).
High same-dimension double derivative uncertainties might
reflect the propagation of uncertainty through differentiation,
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Figure 10. Uncertainty maps for the 50-model ensemble. The standard deviation computed across 50 models for the Hxx (a), Hxy (b),
Hxz (c), Hyy (d), Hyz (e), and Hzz (f) tensor components, and the recovered components bx (g), by (h), and bz (i) vector magnetic field.

as uncertainties in two variables have a chance of cancelling
out, but are only amplified with multiple passes through the
same derivative operator (Li and Oldenburg, 1998). The high
uncertainty in the z components likely reflects the lack of in-
formation in the z direction, as all of our training data are
close to co-planar. Furthermore, we also see that the uncer-
tainty in the recovered vector components (Fig. 10g–i) never
goes to zero (even where we have measurements of the ten-
sor), reflecting the lack of information on the constant of in-
tegration.

Interpolated grids alter the observation error model:
smoothing and continuation introduce spatially correlated
errors that, if ignored, can bias ensemble-based inversions
(EnKF). Best practice is naturally to invert at the real mea-
surement locations, however when a grid is needed we sug-
gest that our ENF ensemble could provide a mean and a sam-
ple covariance for the pseudo-observations. It is possible (al-
though untested) that this might be used as the observation-
error covariance in the inversion.

5.4 Challenges and future directions

We suggest that the proposed approach opens the door to us-
ing neural fields for potential field geophysics, and broader

applications involving tensor quantities (e.g., stresses and
strains). However, further work and research is needed in sev-
eral areas. Firstly, our model is highly sensitive to the length
scales chosen for the Fourier encoding. As shown by Tan-
cik et al. (2020), optimisation algorithms fail to tweak these
scales, meaning they need to be selected with careful empir-
ical tuning. Furthermore, while we have utilised a real-time
updating hyperparameter based on the magnitude of the loss,
research into other possible avenues of automatising hyper-
parameter tuning could boost the usability of our method and
help to ensure robust results.

In addition, while the recovery of integrated vector fields is
a big advantage of our approach, these have arbitrary integra-
tion constants. This ambiguity means that, for every vector
component, there is a constant that is unbounded in the other
two dimensions. The same problem occurs when we use the
Fourier domain transfer functions, as a fundamental lack on
long wavelength information leads us to misrepresenting the
baseline for the recovered vector field (Ugalde et al., 2024).
However, in our methodology, this could be resolved with a
few measurements of the vector components included as con-
straints on the neural field. Therefore, one additional future
direction would be to include multiple datasets (e.g., TMI
measurements for magnetic gradiometry, satellite or ground
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gravity measurements for gravity gradiometry) during the
training process. Further research on the propagation of un-
certainties through our model, as well as impact of ensembles
during inversion, would help in improving the robustness of
our proposed framework.

Finally, the inclusion of a harmonic decaying term in the
feature mapping makes our method a possible contender
for an innovative downward continuation scheme, and thus
help with the problem of noise amplification in the ill-posed
downward continuation of potential field anomalies. This ap-
plication needs further research, with proper tuning of the
weight matrices and data acquired at multiple elevations for
validation.

6 Conclusion

We introduce an innovative interpolation method tailored
to tensor gradiometry data in potential field geophysics.
This approach leverages the inherent physical relationships
among tensor components by representing them as deriva-
tives of an underlying scalar potential field. Our method
clearly demonstrates advantages over conventional interpo-
lation techniques, particularly in scenarios involving sparse
and anisotropic data coverage, as are typical during aerial
surveys.

Our method has shown substantial improvements in inter-
polation accuracy, structural fidelity, and robustness against
data sparsity during evaluations on both synthetic gravity
gradiometry data and a real-world magnetic gradiometry
dataset from Geyer, Germany. Quantitative comparisons us-
ing metrics such as R2 scores and Structural Similarity In-
dex Measure (SSIM) highlights the NF interpolator’s perfor-
mance across all tensor components, a preservation of ge-
ological trends that are typically used during interpretation,
and a reduction of common artefacts caused by line-to-line
inconsistencies.

Furthermore, by incorporating stochastic random Fourier
features, our model likely opens the possibility to quantify
uncertainty. Our analysis reveals heteroscedastic behaviour
in the interpolations, and also highlights regions that require
further data acquisition or refinement. Additionally, our ap-
proach seamlessly integrates vector and scalar field recon-
structions through automatic differentiation, simplifying sub-
sequent geophysical analyses and interpretations.

Overall, we argue that the proposed neural field interpola-
tion method represents a significant advancement in process-
ing tensor gradiometry data. Future developments should fo-
cus on larger scale applications, better understanding uncer-
tainty of the model predictions, extended vertical interpola-
tion capabilities (e.g., up- and downward continuations), and
the integration of this approach into broader geophysical in-
version and interpretation frameworks.
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