Articles | Volume 18, issue 19
https://doi.org/10.5194/gmd-18-7185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-7185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A novel model hierarchy isolates the limited effect of supercooled liquid cloud optics on infrared radiation
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Jennifer E. Kay
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Penny Rowe
NorthWest Research Associates, Seattle, WA, USA
Related authors
No articles found.
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
Geosci. Model Dev., 18, 4935–4950, https://doi.org/10.5194/gmd-18-4935-2025, https://doi.org/10.5194/gmd-18-4935-2025, 2025
Short summary
Short summary
Satellites have observed Earth's emissions of infrared radiation since the 1970s. Because infrared wavelengths interact with the atmosphere in distinct ways, these observations contain information about Earth and the atmosphere. We present a tool that runs within Earth system models and produces output that can be directly compared with satellite measurements of infrared radiation. We then use this tool for climate model evaluation, climate change detection, and satellite mission design.
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
The Cryosphere, 18, 5239–5258, https://doi.org/10.5194/tc-18-5239-2024, https://doi.org/10.5194/tc-18-5239-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are long, narrow corridors of strong water vapor transport in the atmosphere. ARs play an important role in extreme weather in polar regions, including heavy rain and/or snow, heat waves, and surface melt. The standard AR scale is developed based on the midlatitude climate and is insufficient for polar regions. This paper introduces an extended version of the AR scale tuned to polar regions, aiming to quantify polar ARs objectively based on their strength and impact.
Megan Thompson-Munson, Jennifer E. Kay, and Bradley R. Markle
The Cryosphere, 18, 3333–3350, https://doi.org/10.5194/tc-18-3333-2024, https://doi.org/10.5194/tc-18-3333-2024, 2024
Short summary
Short summary
The upper layers of the Greenland Ice Sheet are absorbent and can store meltwater that would otherwise flow into the ocean and raise sea level. The amount of meltwater that the ice sheet can store changes when the air temperature changes. We use a model to show that warming and cooling have opposite but unequal effects. Warming has a stronger effect than cooling, which highlights the vulnerability of the Greenland Ice Sheet to modern climate change.
Leah Bertrand, Jennifer E. Kay, John Haynes, and Gijs de Boer
Earth Syst. Sci. Data, 16, 1301–1316, https://doi.org/10.5194/essd-16-1301-2024, https://doi.org/10.5194/essd-16-1301-2024, 2024
Short summary
Short summary
The vertical structure of clouds has a major impact on global energy flows, air circulation, and the hydrologic cycle. Two satellite instruments, CloudSat radar and CALIPSO lidar, have taken complementary measurements of cloud vertical structure for over a decade. Here, we present the 3S-GEOPROF-COMB product, a globally gridded satellite data product combining CloudSat and CALIPSO observations of cloud vertical structure.
Marika M. Holland, Cecile Hannay, John Fasullo, Alexandra Jahn, Jennifer E. Kay, Michael Mills, Isla R. Simpson, William Wieder, Peter Lawrence, Erik Kluzek, and David Bailey
Geosci. Model Dev., 17, 1585–1602, https://doi.org/10.5194/gmd-17-1585-2024, https://doi.org/10.5194/gmd-17-1585-2024, 2024
Short summary
Short summary
Climate evolves in response to changing forcings, as prescribed in simulations. Models and forcings are updated over time to reflect new understanding. This makes it difficult to attribute simulation differences to either model or forcing changes. Here we present new simulations which enable the separation of model structure and forcing influence between two widely used simulation sets. Results indicate a strong influence of aerosol emission uncertainty on historical climate.
Genevieve L. Clow, Nicole S. Lovenduski, Michael N. Levy, Keith Lindsay, and Jennifer E. Kay
Geosci. Model Dev., 17, 975–995, https://doi.org/10.5194/gmd-17-975-2024, https://doi.org/10.5194/gmd-17-975-2024, 2024
Short summary
Short summary
Satellite observations of chlorophyll allow us to study marine phytoplankton on a global scale; yet some of these observations are missing due to clouds and other issues. To investigate the impact of missing data, we developed a satellite simulator for chlorophyll in an Earth system model. We found that missing data can impact the global mean chlorophyll by nearly 20 %. The simulated observations provide a more direct comparison to real-world data and can be used to improve model validation.
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022, https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
Short summary
We present a dataset of cloud optical depths, effective radii and water paths from optically thin clouds observed in the Arctic around Svalbard. The data have been retrieved from infrared spectral radiance measured using a Fourier-transform infrared (FTIR) spectrometer. Besides a description of the measurements and retrieval technique, the data are put into context with results of corresponding measurements from microwave radiometer, lidar and cloud radar.
Cited articles
Blanchard-Wrigglesworth, E., Roach, L. A., Donohoe, A., and Ding, Q.: Impact of winds and Southern Ocean SSTs on Antarctic sea ice trends and variability, J. Climate, 34, 949–965, https://doi.org/10.1175/JCLI-D-20-0386.1, 2021. a
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.: Ubiquitous low-level liquid-containing Arctic clouds: new observations and climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL053385, 2012. a
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, JQSRT, 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. a, b
Computational and Information Systems Laboratory (CISL): Cheyenne: HPE/SGI ICE XA System, https://doi.org/10.5065/D6RX99HX, 2022. a
Computational and Information Systems Laboratory (CISL): Derecho: HPE Cray EX System (University Community Computing), https://doi.org/10.5065/qx9a-pg09, 2023. a
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020. a, b, c, d
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020. a, b
Downing, H. D. and Williams, D.: Optical constants of water in the infrared, J. Geophys. Res., 80, 1656–1661, https://doi.org/10.1029/JC080i012p01656, 1975. a
DuVivier, A. K., Holland, M. M., Kay, J. E., Tilmes, S., Gettelman, A., and Bailey, D. A.: Arctic and Antarctic sea ice mean state in the Community Earth System Model Version 2 and the influence of atmospheric chemistry, J. Geophys. Res.-Oceans, 125, e2019JC015934, https://doi.org/10.1029/2019JC015934, 2020. a
European Centre for Medium-Range Weather Forecasts: ERA-Interim Project, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6CR5RD9, 2009. a
Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale, R. B., Bogenschutz, P. A., and Simpson, I. R.: The Single Column Atmosphere Model Version 6 (SCAM6): not a scam but a tool for model evaluation and development, J. Adv. Model. Earth Sy., 11, 1381–1401, https://doi.org/10.1029/2018MS001578, 2019. a, b
Gettelman, A., Bardeen, C. G., McCluskey, C. S., Järvinen, E., Stith, J., Bretherton, C., McFarquhar, G., Twohy, C., D'Alessandro, J., and Wu, W.: Simulating observations of Southern Ocean clouds and implications for climate, J. Geophys. Res.-Atmos., 125, e2020JD032619, https://doi.org/10.1029/2020JD032619, 2020. a, b
Gilbert, A.: A Novel Model Hierarchy Isolates the Limited Effect of Supercooled Liquid Cloud Optics on Infrared Radiation, Zenodo [data set], https://doi.org/10.5281/zenodo.15741756, 2025a. a
Gilbert, A.: GilbertCloud/arctic-cri-scripts: Published version of code and namelists for accepted paper, Zenodo [code], https://doi.org/10.5281/zenodo.16414171, 2025b. a
Gilbert, A.: GilbertCloud/arctic-cri-analysis-plotting: Published version of plotting code for accepted paper, Zenodo [code], https://doi.org/10.5281/zenodo.16415183, 2025c. a
Harrington, J. and Verlinde, J.: Mixed-Phase Arctic Clouds Experiment (M-PACE), Tech. Rep. DOE/SC-ARM-0602, U.S. Dep. Energy, 36 pp., 2005. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2008JD009944, 2008. a, b
Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., and Eaton, B.: Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations, J. Geophys. Res.-Atmos., 121, 4162–4176, https://doi.org/10.1002/2015JD024699, 2016. a
Kooperman, G. J., Pritchard, M. S., Ghan, S. J., Wang, M., Somerville, R. C. J., and Russell, L. M.: Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5, J. Geophys. Res.-Atmos., 117, https://doi.org/10.1029/2012JD018588, 2012. a, b, c
Lubin, D. and Vogelmann, A. M.: A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439, 453–456, https://doi.org/10.1038/nature04449, 2006. a
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A., Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A., Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H., Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and Vogelmann, A. M.: AWARE: the Atmospheric Radiation Measurement (ARM) West Antarctic radiation experiment, B. Am. Meteorol. Soc., 101, E1069–E1091, https://doi.org/10.1175/BAMS-D-18-0278.1, 2020. a
Maahn, M., Goren, T., Shupe, M. D., and de Boer, G.: Liquid containing clouds at the north slope of Alaska demonstrate sensitivity to local industrial aerosol emissions, Geophys. Res. Lett., 48, e2021GL094307, https://doi.org/10.1029/2021GL094307, 2021. a
McIlhattan, E. A., L'Ecuyer, T. S., and Miller, N. B.: Observational evidence linking Arctic supercooled liquid cloud biases in CESM to snowfall processes, J. Climate, 30, 4477–4495, https://doi.org/10.1175/JCLI-D-16-0666.1, 2017. a
McIlhattan, E. A., Kay, J. E., and L'Ecuyer, T. S.: Arctic clouds and precipitation in the Community Earth System Model Version 2, J. Geophys. Res.-Atmos., 125, e2020JD032521, https://doi.org/10.1029/2020JD032521, 2020. a, b, c, d
Meng, J., Huang, Y., Leung, D. M., Li, L., Adebiyi, A. A., Ryder, C. L., Mahowald, N. M., and Kok, J. F.: Improved parameterization for the size distribution of emitted dust aerosols reduces model underestimation of super coarse dust, Geophys. Res. Lett., 49, e2021GL097287, https://doi.org/10.1029/2021GL097287, 2022. a
Pithan, F., Athanase, M., Dahlke, S., Sánchez-Benítez, A., Shupe, M. D., Sledd, A., Streffing, J., Svensson, G., and Jung, T.: Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition, Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023, 2023. a, b
Roach, L. A. and Blanchard-Wrigglesworth, E.: Observed winds crucial for September Arctic sea ice loss, Geophys. Res. Lett., 49, e2022GL097884, https://doi.org/10.1029/2022GL097884, 2022. a
Rowe, P. M., Walden, V. P., Brandt, R. E., Town, M. S., Hudson, S. R., and Neshyba, S.: Evaluation of temperature-dependent complex refractive indices of supercooled liquid water using downwelling radiance and in-situ cloud measurements at South Pole, J. Geophys. Res.-Atmos., 127, e2021JD035182, https://doi.org/10.1029/2021JD035182, 2022. a, b
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris, J. R., Proistosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. B., and Zelinka, M. D.: An assessment of Earth's climate sensitivity using multiple lines of evidence, Rev. Geophys., 58, e2019RG000678, https://doi.org/10.1029/2019RG000678, 2020. a
Webb, M. J., Andrews, T., Bodas-Salcedo, A., Bony, S., Bretherton, C. S., Chadwick, R., Chepfer, H., Douville, H., Good, P., Kay, J. E., Klein, S. A., Marchand, R., Medeiros, B., Siebesma, A. P., Skinner, C. B., Stevens, B., Tselioudis, G., Tsushima, Y., and Watanabe, M.: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6, Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, 2017. a
Wilks, D. S.: “The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about It, B. Am. Meteorol. Soc., 97, 2263–2273, https://doi.org/10.1175/BAMS-D-15-00267.1, 2016. a, b, c, d
Wiscombe, W. J.: Mie Scattering Calculations: Advances in Technique and Fast, Vector-speed Computer Codes, Tech. Rep. NCAR/TN-140+STR, UCAR, https://doi.org/10.5065/D6ZP4414, 98 pp., 1979. a
Short summary
We developed a novel methodology for assessing whether a new physics parameterization should be added to a climate model based on its effect across a hierarchy of model dynamical constraints. Our study used this model hierarchy to evaluate the effect of a new cloud radiation parameterization on longwave radiation and determined that the parameterization should be added to climate radiation models, but its effect is not large enough to be a priority.
We developed a novel methodology for assessing whether a new physics parameterization should be...