Articles | Volume 18, issue 18
https://doi.org/10.5194/gmd-18-6275-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-6275-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dynamic informed deep-learning method for future estimation of laboratory stick–slip
Enjiang Yue
School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310058, China
Mengjiao Qin
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430081, China
Linshu Hu
School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310058, China
Riel Bryan
School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
Sensen Wu
School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310058, China
Zhenhong Du
CORRESPONDING AUTHOR
School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310058, China
Related authors
No articles found.
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024, https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Short summary
In geography, understanding how relationships between different factors change over time and space is crucial. This study implements two neural-network-based spatiotemporal regression models and an open-source Python package named Geographically Neural Network Weighted Regression to capture relationships between factors. This makes it a valuable tool for researchers in fields such as environmental science, urban planning, and public health.
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023, https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary
Short summary
We develop a generalized spatial autoregressive neural network model used for three-dimensional spatial interpolation. Taking the different changing trend of geographic elements along various directions into consideration, the model defines spatial distance in a generalized way and integrates it into the process of spatial interpolation with the theories of spatial autoregression and neural network. Compared with traditional methods, the model achieves better performance and is more adaptable.
Cited articles
Arbabi, H. and Mezić, I.: Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator, SIAM J. Appl. Dyn. Syst., 16, 2096–2126, https://doi.org/10.1137/17M1125236, 2017.
Avila, A. M. and Mezić, I.: Data-driven analysis and forecasting of highway traffic dynamics, Nat. Commun., 11, 2090, https://doi.org/10.1038/s41467-020-15582-5, 2020.
Azencot, O., Erichson, N. B., Lin, V., and Mahoney, M. W.: Forecasting sequential data using consistent Koopman autoencoders, https://doi.org/10.48550/arXiv.2003.02236, 2020.
Bai, S., Kolter, J. Z., and Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, https://doi.org/10.48550/arXiv.1803.01271, 2018.
Bakarji, J., Champion, K., Kutz, J. N., and Brunton, S. L.: Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders, Proc. Roy. Soc. A, 479, 20230422, https://doi.org/10.1098/rspa.2023.0422, 2023.
Berman, A. D., Ducker, W. A., and Israelachvili, J. N.: Origin and characterization of different stick-slip friction mechanisms, Langmuir, 12, 4559–4563, https://doi.org/10.1021/la950896z, 1996.
Borate, P., Rivière, J., Marone, C., Mali, A., Kifer, D., and Shokouhi, P.: Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes, Nat. Commun., 14, 3693, https://doi.org/10.1038/s41467-023-39377-6, 2023.
Brandstetter, J., Worrall, D., and Welling, M.: Message Passing Neural PDE Solvers, https://doi.org/10.48550/arXiv.2202.03376, 2023.
Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E., and Kutz, J. N.: Chaos as an Intermittently Forced Linear System, Nat. Commun., 8, 19, https://doi.org/10.1038/s41467-017-00030-8, 2017.
Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N.: Modern Koopman theory for dynamical systems, SIAM Rev., 64, 229–340, https://doi.org/10.1137/21m1401243, 2022.
Brunton, S. L., Noack, B. R., and Koumoutsakos, P.: Machine Learning for Fluid Mechanics, Ann. Rev. Fluid Mech., 52, 477–508, https://doi.org/10.1146/annurev-fluid-010719-060214, 2020.
Degen, D., Caviedes Voullième, D., Buiter, S., Hendricks Franssen, H.-J., Vereecken, H., González-Nicolás, A., and Wellmann, F.: Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations, Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, 2023.
Dieterich, J. H.: Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res.: Solid Earth, 84, 2161–2168, https://doi.org/10.1029/JB084iB05p02161, 1979.
Dresen, G., Kwiatek, G., Goebel, T., and Ben-Zion, Y.: Seismic and aseismic preparatory processes before large stick–slip failure, Pure Appl. Geophys., 177, 5741–5760, https://doi.org/10.1007/s00024-020-02605-x, 2020.
Feng, D., Liu, J., Lawson, K., and Shen, C.: Differentiable, learnable, regionalized process‐based models with multiphysical outputs can approach state‐of‐the‐art hydrologic prediction accuracy, Water Resour. Res., 58, e2022WR032404, https://doi.org/10.1029/2022WR032404, 2022.
Franzke, C., Gugole, F., and Juricke, S.: Systematic multiscale decomposition of ocean variability using machine learning, Chaos: Interdiscip. J. Nonlin. Sci., 32, 73122, https://doi.org/10.1063/5.0090064, 2022.
Froyland, G., Giannakis, D., Lintner, B. R., Pike, M., and Slawinska, J.: Spectral analysis of climate dynamics with operator-theoretic approaches, Nat. Commun., 12, 6570, https://doi.org/10.1038/s41467-021-26357-x, 2021.
Gualandi, A., Avouac, J.-P., Michel, S., and Faranda, D.: The predictable chaos of slow earthquakes, Sci. Adv., 6, eaaz5548, https://doi.org/10.1126/sciadv.aaz5548, 2020.
Gualandi, A., Faranda, D., Marone, C., Cocco, M., Mengaldo, G., and Bendick, R.: Deterministic and stochastic chaos characterize laboratory earthquakes, Earth Planet. Sc. Lett. [data set], https://doi.org/10.1016/j.epsl.2023.117995, 2023.
Hammoud, M. A. E. R., Titi, E. S., Hoteit, I., and Knio, O.: CDAnet: a physics‐informed deep neural network for downscaling fluid flows, JAMES, 14, e2022MS003051, https://doi.org/10.1029/2022MS003051, 2022.
Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997.
Hulbert, C., Rouet-Leduc, B., Johnson, P. A., Ren, C. X., Rivière, J., Bolton, D. C., and Marone, C.: Similarity of fast and slow earthquakes illuminated by machine learning, Nat. Geosci., 12, 69–74, https://doi.org/10.1038/s41561-018-0272-8, 2019.
Jasperson, H., Bolton, D. C., Johnson, P., Guyer, R., Marone, C., and De Hoop, M. V.: Attention network forecasts time-to-failure in laboratory shear experiments, J. Geophys. Res.: Solid Earth, 126, e2021JB022195, https://doi.org/10.1029/2021JB022195, 2021.
Johnson, C. W. and Johnson, P. A.: Seismic features predict ground motions during repeating caldera collapse sequence, Geophys. Res. Lett., 51, e2024GL108288, https://doi.org/10.1029/2024GL108288, 2024.
Johnson, C. W., Wang, K., and Johnson, P. A.: Automatic speech recognition predicts contemporaneous earthquake fault displacement, Nat. Commun., 16, 1069, https://doi.org/10.1038/s41467-025-55994-9, 2025.
Johnson, P. A., Rouet-Leduc, B., Pyrak-Nolte, L. J., Beroza, G. C., Marone, C. J., Hulbert, C., Howard, A., Singer, P., Gordeev, D., Karaflos, D., Levinson, C. J., Pfeiffer, P., Puk, K. M., and Reade, W.: Laboratory earthquake forecasting: A machine learning competition, P. Natl. Acad. Sci. USA, 118, e2011362118, https://doi.org/10.1073/pnas.2011362118, 2021.
Karimpouli, S., Caus, D., Grover, H., Martínez-Garzón, P., Bohnhoff, M., Beroza, G., Dresen, G., Goebel, T., Weigel, T., Kwiatek, G., and Bendick, R.: Explainable machine learning for labquake prediction using catalogue-driven features, Earth Planet. Sc. Lett., 622, 118383, https://doi.org/10.1016/j.epsl.2023.118383, 2023.
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L.: Physics-informed machine learning, Nat. Rev. Phys., 3, 422–440, https://doi.org/10.1038/s42254-021-00314-5, 2021.
Koopman, B. O.: Hamiltonian systems and transformation in Hilbert space, P. Natl. Acad. Sci. USA, 17, 315–318, https://doi.org/10.1073/pnas.17.5.315, 1931.
Lan, Y. and Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum, Physica D, 242, 42–53, https://doi.org/10.1016/j.physd.2012.08.017, 2013.
Laurenti, L., Tinti, E., Galasso, F., Franco, L., and Marone, C.: Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress, Earth Planet. Sc. Lett. [data set], 598, 117825, https://doi.org/10.1016/j.epsl.2022.117825, 2022.
Li, L., Zuo, H., Chen, B., Guo, Y., Ma, M., and Dong, L.: Revealing the dynamical transition of anisotropy behind the HOST by Koopman analysis, Geophys. Res. Lett., 47, e2020GL091123, https://doi.org/10.1029/2020GL091123, 2020.
Lintner, B. R., Giannakis, D., Pike, M., and Slawinska, J.: Identification of the Madden–Julian Oscillation With Data-Driven Koopman Spectral Analysis, Geophys. Res. Lett., 50, e2023GL102743, https://doi.org/10.1029/2023GL102743, 2023.
Liu, Y., Li, C., Wang, J., and Long, M.: Koopa: learning non-stationary time series dynamics with Koopman predictors, in: Advances in Neural Information Processing Systems, 12271–12290, 2023.
Lorenz, E. N.: The mechanics of vacillation. Journal of Atmospheric Sciences, 20(5): 448–465, 1963.
Lubbers, N., Bolton, D. C., Mohd-Yusof, J., Marone, C., Barros, K., and Johnson, P. A.: Earthquake catalogue-based machine learning identification of laboratory fault states and the effects of magnitude of completeness, Geophys. Res. Lett., 45, https://doi.org/10.1029/2018gl079712, 2018.
Lusch, B., Kutz, J. N., and Brunton, S. L.: Deep learning for universal linear embeddings of nonlinear dynamics, Nat. Commun., 9, 4950, https://doi.org/10.1038/s41467-018-07210-0, 2018.
Mastella, G., Corbi, F., Bedford, J., Funiciello, F., and Rosenau, M.: Forecasting surface velocity fields associated with laboratory seismic cycles using Deep Learning, Geophys. Res. Lett., 49, e2022GL099632, https://doi.org/10.1029/2022GL099632, 2022.
Mele Veedu, D.: Bifurcations at the stability transition of earthquake faulting, Geophys. Res. Lett. [data set], 47, e2020GL087985, https://doi.org/10.17605/OSF.IO/9DQH7, 2020.
Okazaki, T., Ito, T., Hirahara, K., and Ueda, N.: Physics-informed deep learning approach for modeling crustal deformation, Nat. Commun., 13, 7092, https://doi.org/10.21203/rs.3.rs-1576456/v1, 2022.
Riel, B., Minchew, B., and Bischoff, T.: Data‐driven inference of the mechanics of slip along glacier beds using physics‐informed neural networks: case study on Rutford ice stream, Antarctica, JAMES, 13, e2021MS002621, https://doi.org/10.1029/2021MS002621, 2021.
Rouet‐Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., and Johnson, P. A.: Machine learning predicts laboratory earthquakes, Geophys. Res. Lett., 44, 9276–9282, https://doi.org/10.1002/2017GL074677, 2017.
Rouet-Leduc, B., Hulbert, C., Bolton, D. C., Ren, C. X., Riviere, J., Marone, C., Guyer, R. A., and Johnson, P. A.: Estimating Fault Friction from Seismic Signals in the Laboratory, Geophys. Res. Lett., 45, 1321–1329, https://doi.org/10.1002/2017gl076708, 2018.
Rouet-Leduc, B., Hulbert, C., and Johnson, P. A.: Continuous chatter of the cascadia subduction zone revealed by machine learning, Nat. Geosci., 12, 75–79, https://doi.org/10.1038/s41561-018-0274-6, 2019.
Schmid, P. J.: Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5–28, https://doi.org/10.1017/S0022112010001217, 2010.
Shokouhi, P., Girkar, V., Rivière, J., Shreedharan, S., Marone, C., Giles, C. L., and Kifer, D.: Deep Learning Can Predict Laboratory Quakes From Active Source Seismic Data, Geophys. Res. Lett., 48, e2021GL093187, https://doi.org/10.1029/2021gl093187, 2021.
Takeishi, N., Kawahara, Y., and Yairi, T.: Learning Koopman invariant subspaces for dynamic mode decomposition, in: Advances in Neural Information Processing Systems, 2017.
Takens, F.: Detecting strange attractors in turbulence, in: Lecture Notes in Mathematics, Dynamical Systems and Turbulence, Warwick 1980, 366–381, https://doi.org/10.1007/bfb0091924, 1981.
Truttmann, S., Poulet, T., Wallace, L., Herwegh, M., and Veveakis, M.: Slow slip events in New Zealand: irregular, yet predictable?, Geophys. Res. Lett., 51, e2023GL107741, https://doi.org/10.1029/2023GL107741, 2024.
Velasco Herrera, V. M., Rossello, E. A., Orgeira, M. J., Arioni, L., Soon, W., Velasco, G., Rosique-de La Cruz, L., Zúñiga, E., and Vera, C.: Long-Term Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine Learning, Front. Earth Sci., 10, 905792, https://doi.org/10.3389/feart.2022.905792, 2022.
Wang, K., Johnson, C. W., Bennett, K. C., and Johnson, P. A.: Predicting fault slip via transfer learning, Nat. Commun., 12, 7319, https://doi.org/10.1038/s41467-021-27553-5, 2021.
Wang, K., Johnson, C. W., Bennett, K. C., and Johnson, P. A.: Predicting future laboratory fault friction through deep learning transformer models, Geophys. Res. Lett., 49, e2022GL098233, https://doi.org/10.1029/2022GL098233, 2022.
Yue, E.: A dynamic informed deep learning method for future estimation of laboratory stick-slip, Zenodo [code], https://doi.org/10.5281/zenodo.13123381, 2024.
Zeng, A., Chen, M., Zhang, L., and Xu, Q.: Are Transformers Effective for Time Series Forecasting?, Proceedings of the AAAI Conference on Artificial Intelligence, 37, 11121–11128, https://doi.org/10.1609/aaai.v37i9.26317, 2023.
Short summary
Laboratory earthquakes are an important means to understand natural earthquakes. While previous work focused on transient prediction, lacking future prediction capability, we propose a method and evaluate on data from laboratory experiments with different slip behaviours. It shows stable predictions in modelling slip moments, intervals, and predictions beyond trained horizons, especially for challenging slip scenarios, which is crucial for cyclic geophysical process such as seismicity.
Laboratory earthquakes are an important means to understand natural earthquakes. While previous...