Articles | Volume 18, issue 18
https://doi.org/10.5194/gmd-18-6275-2025
https://doi.org/10.5194/gmd-18-6275-2025
Model description paper
 | 
24 Sep 2025
Model description paper |  | 24 Sep 2025

A dynamic informed deep-learning method for future estimation of laboratory stick–slip

Enjiang Yue, Mengjiao Qin, Linshu Hu, Riel Bryan, Sensen Wu, and Zhenhong Du

Related authors

GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023,https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary

Cited articles

Arbabi, H. and Mezić, I.: Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator, SIAM J. Appl. Dyn. Syst., 16, 2096–2126, https://doi.org/10.1137/17M1125236, 2017. 
Avila, A. M. and Mezić, I.: Data-driven analysis and forecasting of highway traffic dynamics, Nat. Commun., 11, 2090, https://doi.org/10.1038/s41467-020-15582-5, 2020. 
Azencot, O., Erichson, N. B., Lin, V., and Mahoney, M. W.: Forecasting sequential data using consistent Koopman autoencoders, https://doi.org/10.48550/arXiv.2003.02236, 2020. 
Bai, S., Kolter, J. Z., and Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, https://doi.org/10.48550/arXiv.1803.01271, 2018. 
Bakarji, J., Champion, K., Kutz, J. N., and Brunton, S. L.: Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders, Proc. Roy. Soc. A, 479, 20230422, https://doi.org/10.1098/rspa.2023.0422, 2023. 
Download
Short summary
Laboratory earthquakes are an important means to understand natural earthquakes. While previous work focused on transient prediction, lacking future prediction capability, we propose a method and evaluate on data from laboratory experiments with different slip behaviours. It shows stable predictions in modelling slip moments, intervals, and predictions beyond trained horizons, especially for challenging slip scenarios, which is crucial for cyclic geophysical process such as seismicity.
Share