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Abstract. Fault activity modelling is vital for earthquake
monitoring, risk management, and early warning. Studies on
laboratory earthquakes are instrumental for modelling natu-
ral fault ruptures and enhancing our understanding of natural
earthquake dynamics. Recently, machine learning methods
have proven effective in predicting instantaneous fault stress
in laboratory settings and fault activities on Earth. However,
these methods have struggled to obtain steady future predic-
tions because of the lack of understanding of the complex
dynamics of highly non-linear laboratory fault slip systems.
To address this, we introduce the Hankel–Koopman autoen-
coder (HKAE), a novel method inspired by dynamic system
theories. The HKAE performs dynamic modelling of labo-
ratory fault systems and provides a continuous estimation of
the future state of the system. It has been used in experiments
with different slip behaviours and has the ability to predict
shear stress variation during a slip cycle and slip activity dur-
ing long-term seismic cycles. The HKAE outperforms tra-
ditional statistical methods while achieving results compa-
rable to cutting-edge deep-learning methods across multiple
prediction scales. This is particularly evident in its accurate
prediction of the stress release phase and precise estimation
of the slip interval. More importantly, through dynamic the-
ory and operator analysis in latent space, the HKAE pro-
vides insights into the stability of laboratory slip systems
rather than full end-to-end black-box predictions. The abil-
ity of the HKAE to decompose, model, and reveal complex
temporal dynamics highlights its potential in the monitoring
of sparsely observed geophysical systems with cyclic char-
acteristics, such as natural faults.

1 Introduction

Modelling fault activity is crucial for understanding patterns
of seismic activity, monitoring and predicting earthquakes,
and estimating seismic hazards. Laboratory earthquake stud-
ies have contributed to modelling natural fault ruptures and
enhancing our understanding of natural earthquakes (John-
son et al., 2021). These studies indicate a similar mechanism
between slow and fast slip (Hulbert et al., 2019) and aid in ex-
tracting physical property changes in faults from dense earth-
quake records (Rouet-Leduc et al., 2019). Machine learn-
ing has proven effective in extracting information about the
rupture behaviour of laboratory earthquakes from acoustic
emission signals for instantaneous prediction. Rouet-Leduc
et al. (2017) reported that the random forest method can be
used to accurately predict the time to failure via acoustic
emissions. Subsequently, stress variation, which is a crucial
physical feature of faults, has been identified and evaluated
from acoustic emissions via XGBoost, enabling further anal-
ysis of the acoustic signals (Rouet-Leduc et al., 2018). Lub-
bers et al. (2018) reported that the event catalogue, which
is more available for natural earthquakes, can also be used
to predict the transient fault mechanism during laboratory
earthquakes. Active-source seismic data are also valid data
sources for predicting instantaneous fault behaviour (Shok-
ouhi et al., 2021). Jasperson et al. (2019) and Karimpouli
et al. (2023) discussed prediction methods, such as traditional
machine learning methods, neural networks, and explainable
machine learning methods. An assessment of the transfer-
ability across diverse experiments and simulations was con-
ducted, highlighting the critical role of applying laboratory
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methods to in-field models (Wang et al., 2021; Borate et al.,
2023).

While most studies have focused on instantaneous predic-
tions, several have explored future predictions. The state-of-
the-art sequence modelling architecture, namely, the trans-
former, has shown promise in extracting information for pre-
dicting friction in the future from continuous acoustic emis-
sion signals (Wang et al., 2022). The model’s attention score
reveals that the closer the fault is to the rupture moment, on
the basis of the friction data, the stronger the stress drop in
seismic records. Laurenti et al. (2022) reported that labora-
tory fault zone stress can be autoregressively inferred. Addi-
tionally, spatial dimensions have been introduced for autore-
gressively predicting surface velocity fields during laboratory
fault slips (Mastella et al., 2022). Although these studies un-
derscore the potential for inferring the future behaviour of
fault slips, they face challenges in modelling stability and
predicting future behaviour owing to the complex dynamics
of laboratory fault slip systems. Gualandi et al. (2023) pro-
posed that earthquake cycles in laboratory experiments can
be characterized as systems with average dimensions simi-
lar to those of natural earthquakes. The Lyapunov exponent
analysis reveals the predictability within a certain period,
albeit with deterministic and stochastic chaotic behaviours,
which are challenging to model via machine learning meth-
ods designed from traditional statistical knowledge.

Physics-informed machine learning methods constitute
a framework for geoscientific applications (Degen et al.,
2023), such as glacier modelling (Riel et al., 2021), ocean
modelling (Hammoud et al., 2022), and solid-Earth mod-
elling (Okazaki et al., 2022). These methods introduce prior
domain knowledge, which is the key factor in geoscientific
analysis, while leveraging the benefits of machine learning.
Recent advancements in dynamic theory, on the basis of the
Koopman theory (Koopman, 1931), have shown efficacy in
integrating dynamic insights within a data-driven framework,
yielding results that are more aligned with dynamic situations
(Karniadakis et al., 2021). Various methods based on the
Koopman theory have been acknowledged as powerful for
modelling and deciphering complex non-linear dynamic sys-
tems (Brunton et al., 2022), such as fluid mechanics (Brun-
ton et al., 2020), and have found applications in geophysi-
cal fields, including climate (Li et al., 2020; Froyland et al.,
2021), ocean variability (Franzke et al., 2022), and electro-
magnetic fields (Brunton et al., 2017; Lintner et al., 2023).

Given the complicated dynamics of laboratory fault slip
systems, we propose a deep-learning method that involves
the Koopman theory. Instead of defining the problem as a sta-
tistical time series forecast task, we take the shear stress time
series as one of the observations in a laboratory slip system
and infer changes in the future state of the system through
methods inspired by dynamic system theories. Generally, we
reconstruct the phase space of the system via delayed em-
bedding theory and linearize its complex dynamics via the
Koopman theory to perform future inference and further dy-

namic analysis. Laboratory fault systems with different slip
behaviours under different prediction horizons are adapted to
evaluate the effectiveness of Hankel–Koopman autoencoder
(HKAE) modelling.

2 Materials, methods, and models

2.1 Laboratory stick–slip data

Our study incorporates two categories of data: data drawn
from laboratory experiments carried out with biaxial shear
equipment and data derived via numerical simulations. The
experimental data from the biaxial shear equipment were
obtained from Chris Marone’s laboratory (Laurenti et al.,
2022). Different shear materials are situated between the two
plates to which positive pressure and shear force are exerted
from each side, and the equipment is used to record the mech-
anistic changes (Table S1 in the Supplement) in the system
during the shear process (Fig. 1a and b). This results in time
series data recorded at a temporal sampling rate of 0.001 s.
Here, we focus mainly on the variation in shear stress be-
cause of its direct indication of the onset of fault slip in the
laboratory. Experiments 4581 (Exp. 4581) and 5198 (Exp.
5198) demonstrate cyclic slow- and fast-slip behaviour, re-
spectively, whereas Experiment 4679 (Exp. 4679) involves a
switch between two types of slip behaviours (Fig. 1c). We
derive numerical simulation data from the model (Fig. 1d)
in the work by Gualandi et al. (2023). This model is based
on the rate–state friction law (Dieterich, 1979), and we set
the initial normal stress to τn0 = 17.003MPa and the initial
state vector to [x0,y0,z0,u0] = [0.05,0.0,0.0,0.0] to gener-
ate fast–slow switching slips as examples in the simulation.

2.2 Dynamic system theories

2.2.1 Koopman theory

Laboratory earthquakes can be conceptualized as being gov-
erned by a dynamic system, and shear stress can be regarded
as a measurement within this system and is described by
Eq. (1):

st+1 = F(st ), (1)

where st is the state of the laboratory slip system and where
F represents the governing function of the system. The shear
stress xt can be viewed as an observation of the laboratory
slip system state st .

Koopman theory is a mathematical theoretical framework.
All finite-dimensional non-linear systems can evolve in an
alternative space through the mapping function g and the
infinite-dimensional Koopman operator K (Koopman, 1931;
Brunton et al., 2022). The Koopman operator in the trans-
formed space can be used directly to perform the linear evo-
lution of the system state, as shown in Eqs. (2) and (3) and
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Figure 1. (a) Laboratory fault slip experimental settings and (b) recorded data. Acoustic emission data are recorded in grey, and shear
stress time series are recorded in blue. (c) Three modelling experiments with different slip behaviours. (d) Simulated shear stress, where
[x,y,z,u] =

[
ln
(
ν
ν∗

)
,
τf−τ0
aσn0

, 1
λβσn0

, (φ−φ0),−
1
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p
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]
represents the system state.

Fig. 2.

Kg(xt )= g(F (xt ))= g(xt+1) (2)

xt+1 = g
−1Kg(xt ) (3)

Owing to the linear properties of the Koopman operator, lin-
ear methods, such as spectral decomposition, can be em-
ployed in the operator for enhanced analysis, prediction, and
control. The dimension of the learned approximate Koopman
operator indicates the dynamic modes needed to describe the
dynamic process, which can be decomposed as follows:

K = V 3V −1, (4)

where V = [v1,v2, . . .,vk] are the eigenvectors of K and
3= [λ1,λ2, . . .,λk] are the eigenvalues of K . Each eigen-
value describes the strength and oscillatory properties of its

corresponding dynamic component:

bkj = b
k
0e

j
1t

logλi . (5)

Here, bk = [bk1,b
k
2,b

k
N ] represents the temporal evolution of

the kth dynamic mode, and j represents the time step.
Provided that we know the current state, we can infer

the system’s future behaviour incrementally via the mapping
function g and the linear operator K , and the dynamic char-
acteristic can be explored through the eigen-decomposition
of K , for example, to explore the main components driving
the evolution of dynamic systems (Brunton et al., 2021) and
the pattern of its growth (Schmid et al., 2010).

The most important advantage of the Koopman theory is
that it linearizes the dynamics from complex laboratory slip
systems and then supports the analysis of system behaviour
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via linear analysis tools (e.g. singular value decomposition),
which offers insights from the perspective of dynamic sys-
tems rather than simply statistical inference.

2.2.2 Delay embedding theory

For analysing dynamic systems via the Koopman theory, it
would be useful to have direct system states or observables
that carry information about the main changes in the system.
However, in the real world, we often obtain state quantities
with a limited signal-to-noise ratio or observations that do not
carry all the information about the changes in the system, i.e.
partial observations. Inferring the state change of a laboratory
slip system from shear stress can be viewed as inferring the
future evolution of the system from very limited observations
(Arbabi et al., 2017). Here, we introduce delay embedding
theory to reconstruct the system behaviour. Delay embedding
theory supposes that topological reconstruction of attractors
from the original high-dimensional system, also known as
phase space reconstruction, can be performed using only the
observed univariate long time series (Takens, 1981). We de-
fine h as the embedded variable, taking H = [h1,h2, . . .,hi]

as the input. The embedding process is described in Eq. (6)
with the parameters, the embedded dimension d , and the de-
lay time τ . The delay time τ is usually 1 in most situations
(Brunton et al., 2017).

H=


x1 x2 . . . xi
x1+τ x2+τ . . . xi+τ
...

...
. . .

...

x1+(d−1)τ x2+(d−1)τ . . . xi+(d−1)τ



=


x1 x2 . . . xi
x2 x3 . . . xi+τ
...

...
. . .

...

xd xd+1 . . . xi+(d−1)

= [h1,h2, . . .,hi]

(6)

Here, we aim to utilize historical shear stress obser-
vations to ascertain the evolution of future states
or to discern the relationship between historical
shear stress (xt−K ,xt−K+1, . . .,xt ) and future states
(xt+1, . . .,xt+L−1,xt+L). On the basis of delay em-
bedding, the relationship between [h1,h2, . . .,hi] and
[hi+1,hi+2, . . .,hi+L] can be deconstructed to determine the
mapping function g and operator K .

Figure 3 shows the process of delayed embedding. To ver-
ify the retention of the original system’s topological relations
in the phase space following delayed embedding, we often
resort to singular value decomposition to identify the sys-
tem’s three primary components and use the corresponding
singular vectors to open the space to represent the evolu-
tion of the system. Taking the Lorenz system as an example
(Lorenz, 1963), Fig. 3a represents the tensor space using the
state variables of the original system. The observations yield
only a single scalar series, as depicted in Fig. 3c. Figure 3b

shows the first three singular vectors that result from delayed
embedding, which is diffeomorphic with the system repre-
sented by Fig. 3a. That is, they are considered to represent
the same dynamic system behaviour. This approach has been
shown to be effective in enhancing the feature dimensions
from the data, and it has also been shown to be important in
governing equation extraction (Bakarji et al., 2023) and mod-
elling with dynamic mode decomposition (DMD) (Avila and
Mezic, 2020). In summary, we utilize delay embedding the-
ory to reconstruct a laboratory slip system represented by a
single shear stress variable, thereby supporting subsequent
Koopman mode decomposition and prediction.

2.3 Architecture of the HKAE

Here, we propose the HKAE, which synthesizes the induc-
tive bias of dynamic system theories and the non-linear fit-
ting ability of deep learning. This model encompasses three
key modules (Fig. 4):

1. For the delay embedding module, by employing de-
lay embedding theory, the shear stress time series
(xt−d ,xt−d+1, . . .,xt ) are reconstructed in phase space
to obtain their Hankel matrix H = [h1,h2, . . .,hi] in
this module.

2. For the mapping learning module, the powerful non-
linear fitting capabilities of deep learning have been
demonstrated to effectively learn the mapping, thereby
approximating an optimal Koopman operator (Takeishi
et al., 2017; Lusch et al., 2018; Azencot et al., 2020).
Here, we utilize an encoder–decoder backbone incor-
porating a three-layer multilayer perceptron (MLP) to
learn the mapping between the phase space and Koop-
man invariant subspaces.

3. For the Koopman evolution module, in this module, the
Koopman operator is represented as a layer of neurons
consisting solely of weights and devoid of bias. Fol-
lowing the encoding process, the system is mapped into
Koopman invariant subspaces, where the Koopman op-
erator is applied to facilitate system evolution. Multistep
prediction is achieved through the iterative application
of the same set of operators corresponding to the pre-
defined prediction steps. The decoded evolution results
remain in phase space. A re-embedding process is sub-
sequently applied to derive the predicted shear stress,
which is implemented by selecting the final value of
each evolved result.

The loss of this model includes two parts, namely, recon-
struction and evolution loss, as shown in Eqs. (7)–(9). The
reconstruction loss is set to minimize the loss that occurred
during the mapping process, whereas the evolution loss is
set to minimize the loss of linear evolution achieved by the
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Figure 2. Conceptual illustration of the transformation between the non-linear trajectory of the high-dimensional state, with F (a) and a
linear operatorK representing dynamics (b), taking the Lorenz63 system as an example. Lorenz63 system observations are used to represent
the transformation (Lorenz, 1963).

Figure 3. Conceptual process of delay embedding theory. (a) Representation of laboratory system behaviour using the original state [u,x,y].
(b) Representation of laboratory slip system behaviour via singular vectors [v1,v2,v3] from the singular value decomposition (SVD) result
of delay embedded observations x. (c) Single observation of the laboratory slip system and shear stress used in this system. The data are
simulated on the basis of the Gualandi et al. (2023) model.
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Koopman operator.

εreconstruct =
1

2L

L∑
i=1

∥∥hi − ĥi∥∥2
2 (7)

εevolution =
1

2KL

K∑
j=1

L∑
i=1

∥∥hi+j − h̃i+j∥∥2
2 (8)

Loss= εreconstruct+ λεevolution (9)

2.4 Time series prediction models from a statistical
perspective

2.4.1 Long short-term memory (LSTM)

LSTM is a widely used deep-learning model for sequence
modelling that addresses the challenge of vanishing and
exploding gradients in long-sequence data (Hochreiter and
Schmidhuber, 1997). It has become a powerful tool in tem-
poral modelling in the Earth sciences (Feng et al., 2022). The
core of the LSTM is the LSTM cell. An LSTM cell consists
of a cell state and a set of gates (input, forget, and output
gates). The input gate determines the new input information
to add to the cell state, whereas the forget gate chooses the
information to drop in the cell state. The output gate controls
how the cell state is mapped to the output. The structure of
an LSTM cell is shown in Fig. 5a.

2.4.2 Temporal convolutional network (TCN)

A TCN is a sequence modelling method inspired by convo-
lutional operations that are widely used in image process-
ing (Bai et al., 2018). It has been regarded as a state-of-the-
art model in laboratory fault slip modelling (Laurenti et al.,
2022). The core of the TCN is a series of sequence convo-
lution and pooling blocks. In general, the features of the in-
put sequence are extracted through dilated convolution with
a sliding window. The pooling layer is adapted for dimen-
sional reduction. The weight norm and dropout are used to
improve the robustness of the model. The structures of the
TCN model and TCN block are shown in Fig. 5b.

2.4.3 MLP

In addition to the two-sequence modelling method, we also
test the simple MLP model. Here, we take the historical se-
quence as the input feature and predict the sequence as the
output, as shown in Fig. 5. In this way, the MLP is equivalent
to performing a 1×1 convolution directly in the time dimen-
sion, which is equivalent to a TCN model with the dilation
set to 1.

2.5 Experimental settings and evaluation

In our experiments, we utilized three datasets with distinct
slip features and one numerical simulation result to assess

the robustness of our model. Numerical simulation data are
primarily used to illustrate the dynamic modelling process
(Fig. 7) because of their relatively simple system trajectories.

We employed a unified time sampling rate of 0.1 s. Per-
centages of 50 %, 10 %, and 40 % were applied to each
dataset for training, validation, and testing, respectively. The
sliding window method was employed to generate data se-
quences for model training and inference. For the input
dataset [x1,x2, . . .,xN ], we sample the historical K steps to
predict the future L steps. The prediction of the sliding win-
dow can be presented as follows:

(xi, . . .,xi+K)→ (̃xi+K+1, . . ., x̃i+K+L), (10)

where i = (1, . . .,N −K −L+ 1) represents the number of
times the window slides.

The hyperparameters of the HKAE model were divided
into three main categories corresponding to the three model
modules. The first set comprises the embedding dimension
and delay time in the delay embedding module. For the de-
lay time, we took a value of 1, on the one hand, to construct
the Hankel matrix to satisfy the prediction requirements, and
on the other hand, Brunton et al. (2017) reported that, in
practice, most of the systems have a delay time of 1. With
a delay time setting of 1, the embedding dimensions in our
model architecture are numerically equal to the number of
steps in which the historical information is used. Given the
experimental setup in Laurenti’s work (2022), we suggest
that sufficient historical information is needed to predict fu-
ture changes. To evaluate both intra- and inter-cycle scenar-
ios of slip, we constructed an experimental setup using 10 s
of historical data to predict 3 s in the future and 20 s of his-
torical data to predict 10 s in the future (Fig. S1 in the Sup-
plement), corresponding to embedded dimensions of 200 and
100. Considering that the slip system experiences an instan-
taneous increase in system dimension during the sliding pro-
cess, we retain a higher embedding dimension setting (Gua-
landi et al., 2023). For comparison, we used consistent pa-
rameter settings across different slip data.

The number of MLP layers in the mapping learning mod-
ule was set to 3 on the basis of previous work and results.
Finally, the dimension of the Koopman operator module was
set to 10 on the basis of the data and performance. We
adopted a batch size of 64, L2 loss as the loss function, and
Adam as the optimization algorithm. Weight decay and gra-
dient clip skills were adopted to improve performance. Given
the single-step evolutionary nature of the Koopman operator,
to keep it robust for future leading predictions by learning
the dynamics, we used a multistep trick for error estimation
during model training (Eq. 8).

For the comparative models, LSTM and MLP obey similar
settings in Laurenti’s work. The detailed key parameter set-
tings are listed in Table 1. To achieve multistep prediction,
we add a fully connected layer as a decoder in our LSTM,
TCN, and MLP models to map the extracted features to the
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Figure 4. Architecture of the HKAE.

prediction window. Temporal bundling (TB) is adopted to re-
duce the rate of error propagation by reducing the number of
model calls (Brandstetter et al., 2023).

We evaluated the prediction results via the R2 and root
mean square error (RMSE) metrics. As Eq. (13) shows, the
predictions are conducted in a certain time window, and the
window keeps sliding to the end of this lead situation. Then,
the lead time increases to adapt to a new round of sliding pre-
dictions. In this study, we calculated the difference between
the predicted results and the ground truth corresponding to
each case of leading prediction steps.

For leading prediction steps j = (1, . . .,L), we generate a
forecast window i = (1, . . .,N−K−L+1) and compute R2

j

and RMSEj as follows:

R2
j = 1−

∑N−K−L+1
i=0

(
x̃
j
i − x

j
i

)2

∑N−K−L+1
i=0

(
xj − x

j
i

)2 , (11)

RMSEj =

√√√√ 1
N −K −L+ 1

N−K−L+1∑
i=0

(
x̃
j
i − x

j
i

)2
, (12)

where j is the leading prediction step in the ith forecast win-
dow. R2

j and RMSEj represent R2 and RMSE, respectively,
for j th leading predictions. x̃, x, and x are the prediction,
mean, and ground truth of x, respectively.

To assess the efficacy of temporal dynamics modelling, we
utilized mean-period statistics that are commonly employed
in the analysis of laboratory earthquake systems (Mele Veedu
et al., 2020). We pick the shear stress peaks and compute the
interval of peaks 1T as the period of shear stress variation
for the predictions and ground truth. The R2 metric is used to
test whether the period of stress variation of the predictions
fits well. The slip interval 1T is computed via the algorithm

from Gualandi et al. (2023) according to the timing of the
shear stress peaks. The peaks are found via the find_peak
function from scipy.

1Ti =1t ·
(
tcen
i+1− t

cen
i

)
, (13)

tcen
i = t

top
i + argmin

(∣∣∣x (t top
i

)
, . . .,x

(
tbot
i+1

)∣∣∣) , (14)

where tcen
i represents the central moment of slip behaviour

derived from x(t
top
i ), which are the maximum peaks of the

shear stress series, and where x(tbot
i+1) represents the mini-

mum peaks of the shear stress series.
Then, we compute the R2

slipj
(or R2 of the event period)

for the modelled slip intervals for different leading steps:

R2
slipj
= 1−

∑Nslip
i=0 (1̃T

j

i −1T
j
i )

2∑Nslip
i=0 (1T

j
−1T

j
i )

2
, (15)

where j is the leading prediction step and where i is the num-
ber of slips in the j th predictions. 1̃T , 1T , and 1T are the
prediction, mean, and ground truth of 1T , respectively. Fig-
ure 6 illustrates the computation and statistics of the slip in-
tervals from three shear experiments.

3 Results

3.1 Evaluation of the dynamic modelling process

We conduct multistep prediction experiments for three types
of shear stress recorded in laboratory seismic experiments,
and each type exhibits different rupture characteristics: fast
rupture (Exp. 4581), alternating fast and slow rupture (Exp.
4679), and slow slip (Exp. 5198). These patterns essentially
cover the types of behaviour of the laboratory slip system
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Figure 5. Architecture of comparative deep-learning models.
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Table 1. Key parameters adopted in the experiments for different models.

LSTM TCN MLP HKAE

Input_size: 1 Input_size: 1 Input_size: K Embedded dimension: K
Num_layer: 3 Num_channel: [64, 256] Hidden_size: [64, 256] Delay time: 1
Hidden_size: 128 Kernel_size: 3 Output_size: L Bottleneck: 10
Output_size: L Drop_out: 0.1 Hidden_size: 16 ∗ a, a = 5

Output_size: L

Figure 6. (a) Calculation of the slip interval 1T . (b–d) Slip intervals histogram and spectrogram of three experiments.

and correspond to real-world seismic activity and slow-slip
events. Unlike other statistical or deep-learning methods, the
HKAE is not a completely black-box approach. Thus, we can
further check the status of the data during the modelling pro-
cedure to evaluate the effectiveness of HKAE modelling. We
employ singular value decomposition (SVD) to illustrate the
trajectory of the system and eigen-decomposition (ED) to in-
terpret the approximated operator.

First, we adopt SVD for the result after delay embedding,
utilizing three dominant right singular vector modes as coor-
dinates to represent the reconstructed phase space (Fig. 7b).
The phase space describes the possible state of a dynamic
system, and the reconstructed results reveal the distinct dy-
namic behaviours of the slip system under different slip char-
acteristics (Berman et al., 1996). Using numerical simulation
data as an example, it is evident that the system evolves along
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a “two-cycle-like” stable trajectory. Each cycle represents a
slip process with varying intensities of stress drop, and the
system alternates between these two states. The trajectories
of Exps. 4581 and 5198 do not exhibit concentrated traces
but rather more complex behaviours, which is indicative of
the quasi-periodic behaviours of slow and fast slip (Gualandi
et al., 2023). For Exp. 4679, the trajectory displays a more
significantly disordered pattern but cycles around two main
traces, illustrating the bifurcation process during the stabil-
ity transition (Veedu et al., 2020). The structure of the attrac-
tors is preserved following non-linear mapping by the HKAE
(Fig. 7c), indicating that the system dynamics are retained
after mapping from the observed space to the Koopman sub-
space.

We apply ED to the learned Koopman operator (Eq. 4) and
obtain the decomposed complex eigenvalue (Table 2), which
represents eigendynamic modes characterized by distinct
amplitudes and periods. The results are in general agreement
with the dominant period obtained from frequency spectral
analysis of different slip experimental stresses (Fig. 6b–d).
We illustrate these modes within a unit circle, which rep-
resents the attraction set. As Fig. 7d shows, not all modes
are near the unit circle. This may be caused by a single ob-
servation dimension or by a metastable stick–slip system in
which the data do not exactly follow the attractor trajectory
during the experiment (Jasperson et al., 2021). The dynamic
modes represented by the eigenvalues are limited by a narrow
threshold (0.01) of the distance to the unit circle. Eigenvalues
that exceed the threshold are considered unstable if they are
large, stable if they are small, and neutral if they are within
the threshold (Avila et al., 2020).

All three experiments decompose and obtain stable modes
(red points, which represent modes close to the unit circle).
Modes with approximately 10 and 6 s for the cyclic fast slip
occur in Exp. 4581, and those for slow slip occur in Exp.
5198. The dual modes of approximately 6 and 10 s for the
bifurcations of slips in Exp. 4679 are also modelled suc-
cessfully. There are modes with amplitudes close to 1 and
zero frequency in Exps. 4581 and 5198, but the amplitude of
the zero-frequency (also infinite period) mode in Exp. 4679
is much lower, which means that the static component is a
small percentage of the shear stress variation compared with
the other two experiments. This may indicate that when a
laboratory earthquake system is in a state of alternating fast-
and-slow slip, the dynamics of the system strongly vary over
time, and our execution of the short-time Fourier transform
(STFT) for the stress observations in Exp. 4679 should con-
firm this conclusion (Fig. S2 in the Supplement).

3.2 Evaluation of the intra-cycle prediction settings

We test two different experimental settings to validate the
modelling and prediction capabilities pertaining to slip be-
haviour. The first focuses on the stress variation. Employing
the historical 100 steps (spanning 10 s, which encompasses a

complete slip cycle of stress increase and release), we predict
the subsequent 30 steps of shear stress (spanning 3 s, which
is long enough to include a process of stress increase or de-
crease).

Figure 8 shows that the evaluation metrics vary with the
leading prediction steps for the experimental data. Gener-
ally, the classical autoregressive moving average (ARIMA)
method yields competitive results during the initial 1–5 leads
but severely degrades the accuracy. The next lowest per-
former is the TCN, which has temporal convolutional capa-
bility, followed by the MLP, the LSTM with a relatively sim-
ple structure, and the HKAE. This result is also in line with
the current knowledge in the field of time series prediction.
That is, complex models are not necessarily more suitable for
time series prediction tasks (Zeng et al., 2023).

For Exp. 4679, with alternating fast and slow slips, and
Exp. 4581, with predominantly fast ruptures, the traditional
deep-learning methods appear to have poorer statistical met-
rics than the HKAE does after a certain number of steps
ahead. The R2 of the HKAE maintains a steady trend, which
benefits from the dynamic modelling ability of the HKAE.
According to the results of slip interval modelling, in the two
experiments with more slip characteristics, the HKAE also
shows robust results with increasing leading predictions. The
slow slip represented by Exp. 5198, with its relatively gen-
tle stress changes and more significant cyclic characteristics,
is not too difficult from the perspective of time series pre-
diction, so methods other than ARIMA obtain good metrics.
In addition, the TCN and LSTM methods outperform the
HKAE in terms of scores, and after analysing the results, we
infer that this difference is related to the complexity of the
slow-slip system. With an embedding time of 1, we set the
input length uniformly to 10 s, leading to a large embedding
dimension of the HKAE, but empirically, the system dimen-
sion of the slow-slip system is low (Gualandi et al., 2020,
2023). When we use a low embedding dimension, the mod-
elling effect of the HKAE significantly improves (as shown
in Fig. S3 in the Supplement).

In addition to evaluating the metrics for multistep lead pre-
diction, we validate the predicted shear stress accuracy in the
range of predicted 3 s. Figure 9 shows the final and future
lead predictions for the test set on the basis of the three ex-
periments. We compare the final lead predictions to demon-
strate the prediction stability. For each experiment, we select
two sections where the shear stress indicates typical increase
or decrease behaviour during slip. We choose LSTM, which
performs consistently in different experiments, for compari-
son with the HKAE method. In terms of the individual lead
prediction examples (right panels in Fig. 9), the HKAE and
LSTM have similar prediction scores, but the HKAE outputs
more accurate predictions during the stress release phase. In
addition, the HKAE models the rate of stress change better.
These findings suggest that the HKAE models the dynam-
ics of laboratory rupture activity better. We validate several
prediction examples for more difficult-to-predict fast-slip ex-
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Figure 7. Dynamic modelling steps and interpretation with the HKAE. The rows represent the different modelled experimental data. The
columns represent the dynamic modelling of the data through the different steps of the model. (a) Shear stress time series from the numerical
simulation and three laboratory experiments. (b–c) Attractor structure after delay embedding and the HKAE using the coordinates expanded
by the first three right singular vector modes. The black line illustrates the evolution of the system under three-dimensional projections.
(d) Eigen-decomposition of the learned Koopman operator, described by the real and imaginary parts of the complex eigenvalue. In (d), the
values are directly converted to amplitude and period formats.

Table 2. Learned Koopman operator eigenmodes. Only the eigenvalue with positive periods is shown because of the conjugation.

Exp. 4581 Exp. 4679 Exp. 5198

Eigenvalue no. Period(s) Amplitude Period(s) Amplitude Period(s) Amplitude

1 9.548719 1.001883 9.970778 0.999401 6.388905 0.994914
2 0.294214 −0.071703 5.378387 0.993912 0.349487 −0.13397
3 0.239758 −0.500562 0.258224 −0.34971 0.329522 −0.20161
4 Inf 0.967017 Inf 0.091451 0.276048 −0.195414
5 Inf 0.94443 Inf 0.193768 Inf 1.00072
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Figure 8. General evaluation for 3 s lead prediction using historical 10 s shear stress, with R2 and RMSE used as evaluation metrics (a–c) for
Exp. 4581, Exp. 4679, and Exp. 5198, respectively.

periments and find that the HKAE indeed models the stress
release phase better (Fig. S4 in the Supplement). Since the
stress release phase accounts for a relatively small portion of
the stress change, this feature of the HKAE is masked when
assessing the model performance through a sliding time win-
dow evaluation.

With respect to the timing of the slip beginning, the pre-
dictions in Exp. 4581 are less accurate; there is a notable
mismatch in the slip cycle and an “early release” of stresses
(Fig. 9a and b). This discrepancy may be attributed to the
absence of creep information (Laurenti et al., 2022), as the
rapid stress rupture in Exp. 4581 occurred immediately at
rupture onset, in contrast to the other two experiments, where
accelerated stress attenuation preceded a rapid stress drop.
The HKAE estimates the stress change rate in Exp. 4581
more accurately, whereas LSTM tends to predict a lower
stress release rate (corresponding to a longer stress release
time). Despite successfully modelling the rate of stress re-
lease, the HKAE tends to prematurely estimate the rupture
onset. For Exp. 4679, both the HKAE and LSTM stress rates

are more accurate than those for Exp. 4581. The HKAE is
more accurate in estimating stress release and recovery tim-
ing, but its numerical prediction results in the initial steps are
weaker than those of LSTM. Therefore, the evaluation scores
are relatively low in the first few lead scores (0–0.5 s leads in
Fig. 8b). In addition, although the overall trend is accurately
predicted using the HKAE, the numerical results are gener-
ally high. We infer that this is a manifestation of universal
operator driven modelling. We did not detrend the data, and
Exp. 4679 has stronger time-varying dynamic components
than the other two experiments do (Fig. S2). The HKAE uses
a global operator estimation strategy, and the presence of
time-variant dynamics or multiple invariant subspaces in the
theoretical linear evolving space could challenge the single
universal operator’s capacity to depict evolution accurately
(Lan and Mezić, 2013). For Exp. 5198, the HKAE and LSTM
yield similar predictions.
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Figure 9. 3 s leading prediction details during different phases of stress variation for different laboratory datasets. Panels (a), (c), and (e) show
the HKAE results, whereas panels (b), (d), and (f) show the LSTM results. The left panels (x-1) present the total 3 s leading predictions for
the test set. The right panels (x-2, x-3) illustrate the predictions in the 3 s horizon, with R2 and RMSE used as evaluation metrics. Predictions
with higher metrics are highlighted in red.
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3.3 Evaluation of the intercycle prediction settings

We then extend the input to 20 s and the prediction horizon to
10 s to test the ability of the model to model the seismic cycle.
This setting is the same as that used by Laurenti et al. (2022)
to test the modelling ability of slip events. Furthermore, to
assess the modelling of the event cycle more intuitively, we
introduce a new evaluation metric in this experiment, namely,
to assess the predictive effect of the predicted results with
respect to the moment of occurrence of the event.

Figure 10a-1 and b-1 illustrate the metrics variation with
the prediction leads arising. Compared with the “10–3 s” ex-
perimental settings (Fig. 8b), when the results are predicted
for the next 10 s, the slip interval scores of the HKAE predic-
tions are higher than those of the other methods (Fig. 10a-1
and b-1), which reflects the fact that the HKAE has a more
robust ability to capture slip system dynamics. Unlike the
decrease in accuracy with an increasing number of leading
steps that are evident in stress value predictions, the met-
rics for slip intervals do not demonstrate a steady decline.
This could be attributed to the periodicity of the slip activ-
ities. Moreover, the capacity of the HKAE model to model
slip behaviour more robustly indicates its ability to capture
long-term trends in the data. In terms of R2 scores, the
HKAE continuously models fast-slip systems, especially for
leading predictions after 4 s. The scores for the evaluation
of the event cycle similarly support this conclusion. Fast-
slip systems tend to have more complex dynamic system
characteristics and higher instantaneous dimensions (Gua-
landi et al., 2023), which demonstrates the HKAE’s abil-
ity to model complex dynamic system dynamics. For Exp.
4679, the HKAE does not consistently continue its dom-
inance when it is 1–3 s ahead of the forecast in terms of
R2 and RMSE scores. However, focusing on the event cy-
cle scores, which are more meaningful under long-term fore-
casts, the HKAE shows a steady advantage (Fig. 10b-1).

To further assess the ability of the prediction method to
model the event cycle, we counted the predictions for the
slip intervals in the prediction window in the sliding predic-
tion experiment and assessed the goodness of fit between the
predictions and the true intervals (Fig. 10a-2 and b-2). Con-
sidering the event cycle predictions over the entire prediction
window, the HKAE also has a advantage over the LSTM, as
demonstrated by the fact that its cycle predictions are closer
to the identity line. However, the R2 scores of slip inter-
vals are negative in Exp. 4581, which indicates that both the
HKAE and LSTM have a limited ability to capture the evo-
lutionary features of fast-slip systems.

For the slow slip represented by Exp. 5198, we find that the
HKAE has a more stable performance in event cycle mod-
elling (Fig. S5 in the Supplement). Owing to the relatively
weak performance of the starting leading window, similar to
the findings of the 10−3 s experiment described above, we
attribute this finding to the relatively low system dimension-
ality of the slow-slip system (Gualandi et al., 2020, 2023).

4 Discussion

Modelling and predicting the behaviour of fault slip is cru-
cial for understanding natural earthquakes. The study of nat-
ural earthquakes still presents various challenges, such as
indirect observations and insufficient sampling histories of
shorter fault activity cycles (Velasco Herrera et al., 2022),
whereas laboratory settings provide new insights in an easier,
more controllable, and observable manner. Machine learn-
ing methods have been effective for accurately predicting in-
stantaneous slip behaviour on the basis of near-term acoustic
emissions (Rouet-Leduc et al., 2017; Shokouhi et al., 2021;
Borate et al., 2023). However, attempts to forecast future be-
haviour have encountered temporal limits due to the high
non-linearity of the fault slip system in the laboratory.

To address these questions, informed by dynamic sys-
tem theories, we pioneered a dynamic informed method, the
HKAE, to predict the future shear stress of laboratory fault
slips. The HKAE model is designed on the basis of the de-
lay embedding theory and Koopman theory and leverages the
non-linear fitting capabilities of neural networks and the sys-
tematic perspective of dynamic theories. The advantages of
the HKAE include (1) multiscale modelling of laboratory slip
systems under limited observations and (2) evolution mode
and insights into laboratory slip from a dynamic systems per-
spective. The rationality of the HKAE architecture design
was further verified in the ablation experiments of the three
modules, especially the setup of the Koopman operator mod-
ule (Fig. S6 in the Supplement).

Here, we further discuss the dynamic modelling skills of
the HKAE by investigating the latent space. The HKAE cap-
tures lower-complexity, more predictable dynamic compo-
nents from stress observations of complex laboratory slip
systems through the Koopman theory, which can be visual-
ized directly via the encoded results (Fig. 11).

The scalar shear stress is reconstructed in high-
dimensional phase space and then encoded by the HKAE
for latent variables with dimensions equal to the approxi-
mated Koopman operator. Figure 11 illustrates different com-
ponents. Considering the conjugate nature of the Koopman
eigenvalues, we plot only the latent variables corresponding
to half of the eigenvalues shown in Table 2. The latent vari-
ables corresponding to stable feature modes are more pre-
dictable. This is also evident from the results of the linear
evolution, where the latent variables corresponding to sta-
ble modes (red line) match closely with the numerical values
of the latent variables (gray line) after evolution. Moreover,
there are always components such as residuals (red box in
Fig. 11), which, from the point of view of the HKAE, are
components that are still difficult to characterize with lin-
ear dynamics after further non-linear mapping. There could
be many reasons for these hard-to-predict components, and
we hypothesize that the most important reason is the lack
of observations despite the phase space reconstruction using
delayed embedding. The metastable characteristics of labo-
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Figure 10. General evaluation for 10 s lead prediction using historical 20 s shear stress, with R2, RMSE and R2 of event intervals (Eq. 18)
used as evaluation metrics. (a, b) for Exp. 4581 and Exp. 4679, respectively. Panels (a-1) and (b-1) illustrate the statistical metrics (R2 and
RMSE) variation with prediction leads. Panels (a-2) and (b-2) show the prediction results of the sliding prediction process for the sliding
intervals, which are were counted and compared with the real sliding intervals (Fig. 6b–d).

ratory slip systems are also a contributor (Jasperson et al.,
2021). In addition, we find a greater percentage of hard-to-
predict components in Exp. 4679, which is related to the un-
stable state of Exp. 4679. Additionally, the “residual-like”
latent variable prediction for Exp. 4679 is more challeng-
ing. Considering the absence of stable, long-period modes
in Exp. 4679 (Table 2), we suggest that, from the perspective
of HKAE modelling, the alternating fast-and-slow slippage
represented by Exp. 4679 represents a less stable state in
the laboratory slip system than that of pure fast or slow slip.
This conclusion is consistent with the understanding gener-

ated from laboratory experiments and numerical simulations,
which state that rapid and slow slip alternate at the critical
point of the stability transition (Mele Veedu et al., 2020). It
can also be noticed that the fast-slip system (Exp. 4581) has
the largest “residual-like” latent variable amplitude among
the three, which is ultimately reflected in its difficulty to cap-
ture its slip cycle variations by different prediction methods
when performing long-term prediction (Fig. 10a). This sug-
gests that long-term estimation of status of the fast-slip sys-
tems remains a challenging task in the presence of limited
data. In addition, we find that the dimension of delayed em-
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Figure 11. Visualization of linear evolution in the latent space for three experiments with different slip behaviours. Input shear stress series
(black), HAKE-encoded latent variables (grey), and latent variables after linear evolution (red). The red box represents the components in
the latent space that are still difficult to evolve linearly.

bedding affects the prediction performance and prediction
preference of the HKAE to a larger extent. For example,
in the slow-slip, low-system-dimension scenario, the over-
all prediction of the HKAE with low embedding dimension
is significantly better than that with high embedding dimen-
sion. For the fast–slow alternating slip and fast-slip scenarios,
the high embedding dimension tends to obtain long-term sta-
ble prediction results, while the low embedding dimension
is able to obtain more accurate short-term prediction results
(Fig. 3 in the Supplement). This suggests that the embedded
dimension of the HKAE need to be adjusted according to the
slip activity state in practical applications.

The mechanisms underlying the occurrence of earthquakes
caused by fast-slip events, as well as slow-slip events caused
by slow slip, under natural conditions are still unclear. Re-
cently, it was reported that slow-slip events (SSEs) may ex-
hibit a certain degree of numerical predictability (Gualandi
et al., 2020; Truttmann et al., 2024). We suggest that the
HKAE can achieve competitive modelling of seismic activ-
ity and diagnose the dynamic behaviour of regional seis-
mic systems by incorporating dynamic system theory. Cur-
rently there are two main challenges in the application of the
HKAE to actual tectonic conditions. One is that the stress
state changes of actual tectonic earthquakes may be complex.
In order to verify the modelling capability of the HKAE, we
tested it using a typical double-shear experiment represent-
ing fast-and-slow slip with alternation. It is shown that the

stress changes are more complex under rough fault viscous
slip experimental conditions (Dresen et al., 2020). Although
recent studies have shown that slip time to failure (TTFs) un-
der high roughness can be predicted using machine learning
(Karimpouli et al., 2023), slip dynamical system properties
under high roughness remain currently undiscussed, which
may affect the future predictive performance of the HKAE
under such more complex conditions of slip. In addition,
stress is not directly accessible under tectonic seismic envi-
ronmental conditions, which increases the difficulty of apply-
ing the HKAE under real conditions. However, recent studies
have shown that time series observations, such as GNSS and
seismometers, exhibit the feasibility of serving as a proxy
for the state change of stress in tectonic earthquakes, and
this relationship is similar to that between acoustic emission
signals and stress changes in laboratory earthquakes (John-
son et al., 2025; Johnson and Johnson, 2024). The HKAE
has advantages for data fusion due to its flexible neural net-
work architecture implementation. Therefore, the generaliz-
ability of the model can be improved by integrating external
data such as historical acoustic emissions or other measur-
able laboratory observations by means such as adding cod-
ing branches. From an algorithmic perspective, implement-
ing the Hankel alternative view of the Koopman (HAVOK)
framework (Brunton et al., 2017) and local dynamic mod-
elling strategy (Liu et al., 2023) might further enhance the
predictive capability of the HKAE.
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5 Conclusion

Drawing upon the delay embedding and Koopman theories,
we propose a dynamic informed machine learning method,
namely, the Hankel–Koopman autoencoder (HKAE), to
achieve future predictions in complex laboratory earthquake
systems. This model demonstrates competitive performance
in shear stress variation and slip event modelling compared
with other prediction models. To our knowledge, this is the
first instance of predicting laboratory slip behaviours from
a dynamic systems perspective. In addition to the mod-
elling performance, the analysis of the execution process of
the HKAE can provide dynamic diagnostics for the labo-
ratory slip system operating behind the shear stress obser-
vations, such as those of system trajectory behaviour, char-
acteristic dynamic modes, and system stability. HKAE pre-
diction results and dynamical system analyses show that
slip behaviour, especially the long-term future prediction of
fast-slip stress states, remains challenging. Furthermore, the
HKAE highlights the potential for simplifying and decom-
posing complex geophysical systems with a data-driven ap-
proach but combining a dynamic systems perspective. It also
provides a new approach for modelling, predicting, and un-
derstanding complex geophysical systems, especially those
with limited observations, showing great potential in seismi-
cally monitoring and modelling the physical mechanisms of
faults.
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