Articles | Volume 18, issue 17
https://doi.org/10.5194/gmd-18-5801-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-5801-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical simulations of ocean surface waves along the Australian coast with a focus on the Great Barrier Reef
Xianghui Dong
State Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, 266100, China
Department of Infrastructure Engineering, University of Melbourne, 3010 Melbourne, Australia
State Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, 266100, China
Department of Infrastructure Engineering, University of Melbourne, 3010 Melbourne, Australia
Stefan Zieger
Bureau of Meteorology, 3008 Melbourne, Australia
Alberto Alberello
School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK
Ali Abdolali
US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS 39180, United States
Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD 20740, United States
Jian Sun
State Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, 266100, China
Kejian Wu
State Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, 266100, China
Alexander V. Babanin
Department of Infrastructure Engineering, University of Melbourne, 3010 Melbourne, Australia
Related authors
No articles found.
Joey J. Voermans, Alexander D. Fraser, Jill Brouwer, Michael H. Meylan, Qingxiang Liu, and Alexander V. Babanin
The Cryosphere, 19, 3381–3395, https://doi.org/10.5194/tc-19-3381-2025, https://doi.org/10.5194/tc-19-3381-2025, 2025
Short summary
Short summary
Limited measurements of waves in sea ice exist, preventing our understanding of wave attenuation in sea ice under a wide range of ice conditions. Using satellite observations from ICESat-2, we observe an overall linear increase in the wave attenuation rate with distance into the marginal ice zone. While attenuation may vary greatly locally, this finding may provide opportunities for the modeling of waves in sea ice at global and climate scales when such fine detail may not be needed.
Rutger Marquart, Alberto Alberello, Alfred Bogaers, Francesca De Santi, and Marcello Vichi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2184, https://doi.org/10.5194/egusphere-2025-2184, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study developed a kilometre-scale sea-ice model in OpenFOAM that couples dynamic and thermodynamic processes for two types of ice, solid-like ice floes and fluid-like grease ice, under wave forcing. This model can help to improve data input for large-scale sea-ice models. Results show a linear relationship between the proportion of ice floes in the field and the overall viscosity. Additionally, we found that viscosity responds nonlinearly to the inclusion of thermodynamic sea-ice growth.
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025, https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Short summary
The GREAT v1.0 software introduces a novel tsunami warning technology for global real-time analysis. It leverages acoustic signals generated by tsunamis, which propagate faster than the tsunami itself, enabling real-time detection and assessment. Integrating various models, the software provides reliable and rapid assessment, maps risk areas, and estimates tsunami amplitude. This advancement reduces false alarms and enhances global tsunami warning systems' accuracy and efficiency.
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024, https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. Our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic marginal ice zone were affected by the balance between atmospheric and oceanic forcing and the local ice.
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023, https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary
Short summary
Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958, https://doi.org/10.5194/tc-17-939-2023, https://doi.org/10.5194/tc-17-939-2023, 2023
Short summary
Short summary
We have tried to develop some new wave–ice interaction models by considering two different types of forces, one of which emerges in the ice and the other of which emerges in the water. We have checked the ability of the models in the reconstruction of wave–ice interaction in a step-wise manner. The accuracy level of the models is acceptable, and it will be interesting to check whether they can be used in wave climate models or not.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021, https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary
Short summary
We have shown through field experiments that the amount of wave energy dissipated in landfast ice, sea ice attached to land, is much larger than in broken ice. By comparing our measurements against predictions of contemporary wave–ice interaction models, we determined which models can explain our observations and which cannot. Our results will improve our understanding of how waves and ice interact and how we can model such interactions to better forecast waves and ice in the polar regions.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Marzieh H. Derkani, Alberto Alberello, Filippo Nelli, Luke G. Bennetts, Katrin G. Hessner, Keith MacHutchon, Konny Reichert, Lotfi Aouf, Salman Khan, and Alessandro Toffoli
Earth Syst. Sci. Data, 13, 1189–1209, https://doi.org/10.5194/essd-13-1189-2021, https://doi.org/10.5194/essd-13-1189-2021, 2021
Short summary
Short summary
The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air–sea interface. The scarcity of observations in this remote region hampers the comprehension of fundamental physics, the accuracy of satellite sensors, and the capabilities of prediction models. To fill this gap, a unique data set of simultaneous observations of winds, surface currents, and ocean waves in the Southern Ocean is presented.
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278, https://doi.org/10.5194/tc-14-4265-2020, https://doi.org/10.5194/tc-14-4265-2020, 2020
Short summary
Short summary
In this work we demonstrate the existence of an observational threshold which identifies when waves are most likely to break sea ice. This threshold is based on information from two recent field campaigns, supplemented with existing observations of sea ice break-up. We show that both field and laboratory observations tend to converge to a single quantitative threshold at which the wave-induced sea ice break-up takes place, which opens a promising avenue for operational forecasting models.
Huaming Yu, Yuhang Shen, Ryan M. Kelly, Xin Qi, Kejian Wu, Songlin Li, Haiqing Yu, and Xianwen Bao
Nat. Hazards Earth Syst. Sci., 20, 2447–2462, https://doi.org/10.5194/nhess-20-2447-2020, https://doi.org/10.5194/nhess-20-2447-2020, 2020
Short summary
Short summary
This study establishes an indicator system for social vulnerability evaluation of storm surges for coastal cities. The indicator system is applied to Shenzhen, China, and socioeconomic impacts are discovered in the results. Exposure, sensitivity, and resilience all show an increasing trend from 1986 to 2016, as resilience accounts for the largest increase and is connected to a decreasing social vulnerability trend.
Cited articles
Abdolali, A., Pringle, W., and Roland, A.: Assessment of global wave models on unstructured domains, ESS Open Archive, https://doi.org/10.1002/essoar.10505107.1, 2 December 2020a.
Abdolali, A., Roland, A., van der Westhuysen, A., Meixner, J., Chawla, A., Hesser, T. J., Smith, J. M., and Sikiric, M. D.: Large-scale hurricane modeling using domain decomposition parallelization and implicit scheme implemented in WAVEWATCH III wave model, Coast. Eng., 157, 103656, https://doi.org/10.1016/j.coastaleng.2020.103656, 2020b.
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F. O., Magne, R., Roland, A., Lefevre, J.-M., Aouf, L., and Collard, F.: Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation, J. Phys. Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1, 2010.
Babanin, A. V.: On a wave-induced turbulence and a wave-mixed upper ocean layer, Geophys. Res. Lett., 33, L20605, https://doi.org/10.1029/2006GL027308, 2006.
Babanin, A. V.: Breaking and dissipation of ocean surface waves, Cambridge University Press, https://doi.org/10.1017/CBO9780511736162, 2011.
Battjes, J. A. and Janssen, P. A. E. M.: Energy Loss and Set-Up Due to Breaking of Random Waves, in: Proceedings of 16th international conference on coastal engineering, 569–587, https://doi.org/10.1061/9780872621909.034, 1978.
Belcher, S. E., Grant, A. L. M., Hanley, K. E., Fox-Kemper, B., Roekel, L. V., Sullivan, P. P., Large, W. G., Brown, A., Hines, A., Calvert, D., Rutgersson, A., Pettersson, H., Bidlot, J.-R., Janssen, P. A. E. M., and Polton, J. A.: A global perspective on Langmuir turbulence in the ocean surface boundary layer, Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932, 2012.
Burchard, H., Craig, P. D., Gemmrich, J. R., Van Haren, H., Mathieu, P.-P., Meier, H. E. M., Smith, W. A. M. N., Prandke, H., Rippeth, T. P., Skyllingstad, E. D., Smyth, W. D., Welsh, D. J. S., and Wijesekera, H. W.: Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing, Prog. Oceanogr., 76, 399–442, https://doi.org/10.1016/j.pocean.2007.09.005, 2008.
Caires, S. and Sterl, A.: Validation of ocean wind and wave data using triple collocation, J. Geophys. Res.-Oceans, 108, 3098, https://doi.org/10.1029/2002JC001491, 2003.
Cancet, M., Lyard, F., Griffin, D., Carrere, L., and Picot, N.: Assessment of the FES2014 tidal currents on the shelves around Australia, in: 10th Coastal Altimetry Workshop,Florence, Italy, https://www.researchgate.net/publication/322331188_Assessment_of_the_FES2014_Tidal_Currents_on_the_shelves_around_Australia (last access: 1 September 2025), 2017.
Carrere, L., Lyard, F., Cancet, M., and Guillot, A.: FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region, in: EGU General Assembly Conference Abstracts, p. 5481, https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.5481C/abstract (last access: 1 September 2025), 2015.
Cavaleri, L., Fox-Kemper, B., and Hemer, M.: Wind Waves in the Coupled Climate System, B. Am. Meteorol. Soc., 93, 1651–1661, https://doi.org/10.1175/BAMS-D-11-00170.1, 2012.
Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.-R., Breivik, Ø., Carniel, S., Jensen, R. E., Portilla-Yandun, J., Rogers, W. E., Roland, A., Sanchez-Arcilla, A., Smith, J. M., Staneva, J., Toledo, Y., van Vledder, G. Ph., and van der Westhuysen, A. J.: Wave modelling in coastal and inner seas, Prog. Oceanogr., 167, 164–233, https://doi.org/10.1016/j.pocean.2018.03.010, 2018.
Chawla, A., Spindler, D. M., and Tolman, H. L.: Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds, Ocean Model., 70, 189–206, https://doi.org/10.1016/j.ocemod.2012.07.005, 2013.
Donelan, M. A., Curcic, M., Chen, S. S., and Magnusson, A. K.: Modeling waves and wind stress, J. Geophys. Res.-Oceans, 117, C00J23, https://doi.org/10.1029/2011JC007787, 2012.
Dong, X., Liu, Q., Zieger, S., Alberello, A., Abdolali, A., Sun, J., Wu, K., and Babanin, A. V.: Numerical simulations of ocean surface waves along the Australian coast with a focus on the Great Barrier Reef: Configuration and Code files, Zenodo [code], https://doi.org/10.5281/zenodo.15171745, 2025a.
Dong, X., Liu, Q., Zieger, S., Alberello, A., Abdolali, A., Sun, J., Wu, K., and Babanin, A. V.: Numerical simulations of ocean surface waves along the Australian coast with a focus on the Great Barrier Reef: Dataset [Data set], Zenodo [data set], https://doi.org/10.5281/zenodo.15179446, 2025b.
Gaffet, A., Bertin, X., Sous, D., Michaud, H., Roland, A., and Cordier, E.: A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14, Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025, 2025.
Gallop, S. L., Young, I. R., Ranasinghe, R., Durrant, T. H., and Haigh, I. D.: The large-scale influence of the Great Barrier Reef matrix on wave attenuation, Coral Reefs, 33, 1167–1178, https://doi.org/10.1007/s00338-014-1205-7, 2014.
Hardy, T. A. and Young, I. R.: Field study of wave attenuation on an offshore coral reef, J. Geophys. Res.-Oceans, 101, 14311–14326, https://doi.org/10.1029/96JC00202, 1996.
Hardy, T. A., Mason, L. B., and McConochie, J. D.: A wave model for the Great Barrier Reef, Ocean Eng., 28, 45–70, https://doi.org/10.1016/S0029-8018(99)00057-8, 2000.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, A., Hasselmann, D. E., Kruseman, P.,Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H.: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A, https://hdl.handle.net/21.11116/0000-0007-DD3C-E (last access: 1 September 2025), 1973.
Hasselmann, S., Hasselmann, K., Allender, J. H., and Barnett, T. P.: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models, J. Phys. Oceanogr., 15, 1378–1392, https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2, 1985.
Hemer, M. A., Zieger, S., Durrant, T., O'Grady, J., Hoeke, R. K., McInnes, K. L., and Rosebrock, U.: A revised assessment of Australia's national wave energy resource, Renew. Energy, 114, 85–107, https://doi.org/10.1016/j.renene.2016.08.039, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Holthuijsen, L. H.: Waves in Oceanic and Coastal Waters, Cambridge University Press, ISBN 9781139462525, 2007.
Hopley, D., Smithers, S. G., and Parnell, K.: The geomorphology of the Great Barrier Reef: development, diversity, and change, Cambridge University Press, ISBN 9781139463928, 2007.
Hwang, P. A.: A note on the ocean surface roughness spectrum, J. Atmos. Ocean. Tech., 28, 436–443, https://doi.org/10.1175/2010JTECHO812.1, 2011.
Janssen, P. A. E. M.: Progress in ocean wave forecasting, J. Comput. Phys., 227, 3572–3594, https://doi.org/10.1016/j.jcp.2007.04.029, 2008.
Kiss, A. E., Hogg, A. McC., Hannah, N., Boeira Dias, F., Brassington, G. B., Chamberlain, M. A., Chapman, C., Dobrohotoff, P., Domingues, C. M., Duran, E. R., England, M. H., Fiedler, R., Griffies, S. M., Heerdegen, A., Heil, P., Holmes, R. M., Klocker, A., Marsland, S. J., Morrison, A. K., Munroe, J., Nikurashin, M., Oke, P. R., Pilo, G. S., Richet, O., Savita, A., Spence, P., Stewart, K. D., Ward, M. L., Wu, F., and Zhang, X.: ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions, Geosci. Model Dev., 13, 401–442, https://doi.org/10.5194/gmd-13-401-2020, 2020.
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.: Dynamics and modelling of ocean waves, Cambridge University Press, ISBN 9780521577816, 1994.
Liu, J., Meucci, A., Liu, Q., Babanin, A. V., Ierodiaconou, D., and Young, I. R.: The wave climate of Bass Strait and South-East Australia, Ocean Model., 172, 101980, https://doi.org/10.1016/j.ocemod.2022.101980, 2022.
Liu, Q. and Babanin, A.: Product user guide for the WW3-ST6 global wave hindcasts, Version 0.3, Zenodo, https://doi.org/10.5281/zenodo.4497717, 2021.
Liu, Q., Babanin, A. V., Guan, C., Zieger, S., Sun, J., and Jia, Y.: Calibration and Validation of HY-2 Altimeter Wave Height, J. Atmos. Ocean. Tech., 33, 919–936, https://doi.org/10.1175/JTECH-D-15-0219.1, 2016.
Liu, Q., Rogers, W. E., Babanin, A. V., Young, I. R., Romero, L., Zieger, S., Qiao, F., and Guan, C.: Observation-Based Source Terms in the Third-Generation Wave Model WAVEWATCH III: Updates and Verification, J. Phys. Oceanogr., 49, 489–517, https://doi.org/10.1175/JPO-D-18-0137.1, 2019.
Liu, Q., Babanin, A. V., Rogers, W. E., Zieger, S., Young, I. R., Bidlot, J., Durrant, T., Ewans, K., Guan, C., Kirezci, C., Lemos, G., MacHutchon, K., Moon, I.-J., Rapizo, H., Ribal, A., Semedo, A., and Wang, J.: Global Wave Hindcasts Using the Observation-Based Source Terms: Description and Validation, J. Adv. Model. Earth Sy., 13, e2021MS002493, https://doi.org/10.1029/2021MS002493, 2021.
Liu, Q., Young, I. R., Zieger, S., Ribal, A., Long, S. M., Dong, X., Song, Z., Guan, C., and Babanin, A. V.: On global wave height climatology and trends from multiplatform altimeter measurements and wave hindcast, Ocean Model., 186, 102264, https://doi.org/10.1016/j.ocemod.2023.102264, 2023.
Lowe, R. J. and Falter, J. L.: Oceanic Forcing of Coral Reefs, Annu. Rev. Mar. Sci., 7, 43–66, https://doi.org/10.1146/annurev-marine-010814-015834, 2015.
Lowe, R. J., Falter, J. L., Bandet, M. D., Pawlak, G., Atkinson, M. J., Monismith, S. G., and Koseff, J. R.: Spectral wave dissipation over a barrier reef, J. Geophys. Res.-Oceans, 110, C04001, https://doi.org/10.1029/2004JC002711, 2005.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415, https://doi.org/10.1007/s10236-006-0086-x, 2006.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Massel, S. R. and Gourlay, M. R.: On the modelling of wave breaking and set-up on coral reefs, Coast. Eng., 39, 1–27, https://doi.org/10.1016/S0378-3839(99)00052-6, 2000.
Mentaschi, L., Pérez, J., Besio, G., Mendez, F. J., and Menendez, M.: Parameterization of unresolved obstacles in wave modelling: A source term approach, Ocean Model., 96, 93–102, https://doi.org/10.1016/j.ocemod.2015.05.004, 2015.
Mentaschi, L., Kakoulaki, G., Vousdoukas, M., Voukouvalas, E., Feyen, L., and Besio, G.: Parameterizing unresolved obstacles with source terms in wave modeling: A real-world application, Ocean Model., 126, 77–84, https://doi.org/10.1016/j.ocemod.2018.04.003, 2018.
Mentaschi, L., Vousdoukas, M., Besio, G., and Feyen, L.: alphaBetaLab: Automatic estimation of subscale transparencies for the Unresolved Obstacles Source Term in ocean wave modelling, SoftwareX, 9, 1–6, https://doi.org/10.1016/j.softx.2018.11.006, 2019.
Moghimi, S., van der Westhuysen, A., Abdolali, A., Myers, E., Vinogradov, S., Ma, Z., Liu, F., Mehra, A., and Kurkowski, N.: Development of an ESMF based flexible coupling application of ADCIRC and WAVEWATCH III for high fidelity coastal inundation studies, J. Mar. Sci. Eng., 8, 308, https://doi.org/10.3390/jmse8050308, 2020.
Monismith, S. G., Rogers, J. S., Koweek, D., and Dunbar, R. B.: Frictional wave dissipation on a remarkably rough reef, Geophys. Res. Lett., 42, 4063–4071, https://doi.org/10.1002/2015GL063804, 2015.
Peregrine, D. H.: Interaction of water waves and currents, in: Advances in Applied Mechanics, vol. 16, Elsevier, 9–117, https://doi.org/10.1016/S0065-2156(08)70087-5, 1976.
Rapizo, H., Babanin, A. V., Schulz, E., Hemer, M. A., and Durrant, T. H.: Observation of wind-waves from a moored buoy in the Southern Ocean, Ocean Dynam., 65, 1275–1288, https://doi.org/10.1007/s10236-015-0873-3, 2015.
Rapizo, H., Babanin, A. V., Provis, D., and Rogers, W. E.: Current-induced dissipation in spectral wave models, J. Geophys. Res.-Oceans, 122, 2205–2225, https://doi.org/10.1002/2016JC012367, 2017.
Ribal, A. and Young, I. R.: 33 years of globally calibrated wave height and wind speed data based on altimeter observations, Sci. Data, 6, 77, https://doi.org/10.1038/s41597-019-0083-9, 2019.
Roberts, K. J., Pringle, W. J., and Westerink, J. J.: OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling, Geosci. Model Dev., 12, 1847–1868, https://doi.org/10.5194/gmd-12-1847-2019, 2019.
Rogers, W. E., Babanin, A. V., and Wang, D. W.: Observation-Consistent Input and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves: Description and Simple Calculations, J. Atmos. Ocean. Tech., 29, 1329–1346, https://doi.org/10.1175/JTECH-D-11-00092.1, 2012.
Roland, A.: Entwicklung von WWM II (Wind Wellen Model II): zur Seegangsmodellierung auf unregelmäßigen Gitternetzen: spectral wave modelling on unstructured meshes = Development of the WWM II (Wind Wave Model II), Inst. für Wasserbau und Wasserwirtschaft, Darmstadt, Germany, 211 pp., ISBN 3-936146-26-3, 2009.
Roland, A. and Ardhuin, F.: On the developments of spectral wave models: numerics and parameterizations for the coastal ocean, Ocean Dynam., 64, 833–846, https://doi.org/10.1007/s10236-014-0711-z, 2014.
Romero, L.: Distribution of Surface Wave Breaking Fronts, Geophys. Res. Lett., 46, 10463–10474, https://doi.org/10.1029/2019GL083408, 2019.
Romero, L., Lenain, L., and Melville, W. K.: Observations of Surface Wave–Current Interaction, J. Phys. Oceanogr., 47, 615–632, https://doi.org/10.1175/JPO-D-16-0108.1, 2017.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast System Version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Seifi, F., Deng, X., and Baltazar Andersen, O.: Assessment of the accuracy of recent empirical and assimilated tidal models for the Great Barrier Reef, Australia, using satellite and coastal data, Remote Sens., 11, 1211, https://doi.org/10.3390/rs11101211, 2019.
Smith, C., Vila-Concejo, A. and Salles, T: Offshore wave climate of the Great Barrier Reef, Coral Reefs, 42, 661–676, https://doi.org/10.1007/s00338-023-02377-5, 2023.
Squire, V. A.: Ocean Wave Interactions with Sea Ice: A Reappraisal, Annu. Rev. Fluid Mech., 52, 37–60, https://doi.org/10.1146/annurev-fluid-010719-060301, 2020.
Su, C.-H., Eizenberg, N., Steinle, P., Jakob, D., Fox-Hughes, P., White, C. J., Rennie, S., Franklin, C., Dharssi, I., and Zhu, H.: BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, Geosci. Model Dev., 12, 2049–2068, https://doi.org/10.5194/gmd-12-2049-2019, 2019.
The WAVEWATCH III® Development Group (WW3DG): User manual and system documentation of WAVEWATCH III® version 6.07, Tech. Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 465 pp. + Appendices, https://github.com/NOAA-EMC/WW3/tree/main/manual (last access: 1 September 2025), 2019.
Tolman, H. L.: Subgrid modeling of moveable-bed bottom friction in wind wave models, Coast. Eng., 26, 57–75, https://doi.org/10.1016/0378-3839(95)00016-0, 1995.
Tolman, H. L.: A generalized multiple discrete interaction approximation for resonant four-wave interactions in wind wave models, Ocean Model., 70, 11–24, https://doi.org/10.1016/j.ocemod.2013.02.005, 2013.
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P.: Global Bathymetry and Topography at 15 Arc Sec: SRTM15+, Earth Space Sci., 6, 1847–1864, https://doi.org/10.1029/2019EA000658, 2019.
UNEP-WCMC, WorldFish Centre, WRI, and TNC: Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project, Version 4.0, UNEP World Conservation Monitoring Centre, Cambridge, UK, http://data.unep-wcmc.org/datasets/1 (last access: 22 March 2024), 2010.
van der Westhuysen, A. J.: Wave–Current Interaction, Encyclopedia of Maritime and Offshore Engineering, 1–18, https://doi.org/10.1002/9781118476406.emoe085, 2017.
van Vledder, G. Ph., C. Hulst, S. Th., and McConochie, J. D.: Source term balance in a severe storm in the Southern North Sea, Ocean Dynam., 66, 1681–1697, https://doi.org/10.1007/s10236-016-0998-z, 2016.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Whitham, G. B.: Non-linear dispersive waves, P. Roy. Soc. Lond. A, 283, 238–261, https://doi.org/10.1098/rspa.1965.0019, 1965.
Young, I. R.: Wave transformation over coral reefs, J. Geophys. Res., 94, 9779, https://doi.org/10.1029/JC094iC07p09779, 1989.
Young, I. R. and Hardy, T. A.: Measurement and modelling of tropical cyclone waves in the Great Barrier Reef, Coral Reefs, 12, 85–95, https://doi.org/10.1007/BF00302108, 1993.
Young, I. R. and Ribal, A.: Can Multi-Mission Altimeter Datasets Accurately Measure Long-Term Trends in Wave Height?, Remote Sens., 14, 974, https://doi.org/10.3390/rs14040974, 2022.
Zieger, S. and Peach, L.: Towards Improved Operational Wave Modelling at the Bureau of Meteorology, in: Australasian Coasts & Ports 2023 Conference: Working together – 50 Years of Coasts and Ports, Sunshine Coast, 15–18 August 2023, Engineers Australia, Queensland, 294–300, ISBN 9781925627800, 2023.
Zieger, S., Stieglitz, T., and Kininmonth, S.: Mapping reef features from multibeam sonar data using multiscale morphometric analysis, Mar. Geol., 264, 209–217, https://doi.org/10.1016/j.margeo.2009.06.002, 2009.
Zieger, S., Babanin, A. V., Erick Rogers, W., and Young, I. R.: Observation-based source terms in the third-generation wave model WAVEWATCH, Ocean Model., 96, 2–25, https://doi.org/10.1016/j.ocemod.2015.07.014, 2015.
Zieger, S., Greenslade, D. J. M., Aijaz, S., Kepert, J. D., and Burton, A.: Hindcasting of tropical cyclone winds and waves, Ocean Dynam., 71, 559–588, https://doi.org/10.1007/s10236-021-01443-2, 2021.
Zieger, S., Greenslade, D., Harley, M., Turner, I., Splinter, K., Hansen, J., Lowe, R., Kinsela, M., and Cuttler, M.: Variable-resolution wave modelling for coastal applications, in Australasian Coasts and Ports 2019 Conference: Future directions from 40° S and beyond, Hobart, 10–13 September 2019, Engineers Australia, Hobart, 1262–1266, ISBN 9781925627237, 2019.
Zijlema, M., Van Vledder, G. P., and Holthuijsen, L. H.: Bottom friction and wind drag for wave models, Coast. Eng., 65, 19–26, https://doi.org/10.1016/j.coastaleng.2012.03.002, 2012.
Short summary
Ocean surface wave research is vital for coastal management, marine ecology, and ocean engineering. This study simulates waves along the Australian coast using advanced physical and numerical schemes. Model verification with altimeter and buoy data shows good performance. A two-step parameterization improves accuracy in the complex Great Barrier Reef. This study will help us better understand coastal wave climates and assess sea states, enabling us to better develop, protect, and use the sea.
Ocean surface wave research is vital for coastal management, marine ecology, and ocean...