Articles | Volume 18, issue 17
https://doi.org/10.5194/gmd-18-5681-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-5681-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SWAT+MODFLOW: a new hydrologic model for simulating surface-subsurface flow in managed watersheds
Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80525, USA
Salam Abbas
Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80525, USA
Jeffrey G. Arnold
Grassland Soil and Water Research Laboratory, USDA-ARS, Tecmple, TX, 76502, USA
Michael J. White
Grassland Soil and Water Research Laboratory, USDA-ARS, Tecmple, TX, 76502, USA
Related authors
No articles found.
Hendrik Rathjens, Jens Kiesel, Jeffrey Arnold, Gerald Reinken, and Robin Sur
EGUsphere, https://doi.org/10.5194/egusphere-2025-877, https://doi.org/10.5194/egusphere-2025-877, 2025
Short summary
Short summary
We improved the widely used SWAT model to better predict how pesticides move through the environment. We added a new process that considers how plants take-up chemicals from the soil. Testing this updated model in two catchments showed very good prediction capabilities and a reduction of chemicals in river water by up to 17 % due to the plant uptake. The enhanced model offers a valuable tool for assessing the environmental impacts of agricultural management.
Celray James Chawanda, Ann van Griensven, Albert Nkwasa, Jose Pablo Teran Orsini, Jaehak Jeong, Soon-Kun Choi, Raghavan Srinivasan, and Jeffrey G. Arnold
EGUsphere, https://doi.org/10.5194/egusphere-2025-188, https://doi.org/10.5194/egusphere-2025-188, 2025
Short summary
Short summary
Water resources face more challenges from climate change and human activities. We improved global water modeling by developing a high-resolution system using SWAT+, using automated reproducible workflow. This approach simplifies tracking the progress of global impact assessment modelling efforts. The global model will further help assess water stress hotspots and inform sustainable water management as further improvements come.
Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White, Natalja Čerkasova, and Jungang Gao
Hydrol. Earth Syst. Sci., 28, 21–48, https://doi.org/10.5194/hess-28-21-2024, https://doi.org/10.5194/hess-28-21-2024, 2024
Short summary
Short summary
Research highlights.
1. Implemented groundwater module (gwflow) into SWAT+ for four watersheds with different unique hydrologic features across the United States.
2. Presented methods for sensitivity analysis, uncertainty analysis and parameter estimation for coupled models.
3. Sensitivity analysis for streamflow and groundwater head conducted using Morris method.
4. Uncertainty analysis and parameter estimation performed using an iterative ensemble smoother within the PEST framework.
Cited articles
Aliyari, F., Bailey, R. T., Tasdighi, A., Dozier, A., Arabi, M., and Zeiler, K.: Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins, Environ. Modell. Softw., 115, 200–210, https://doi.org/10.1016/j.envsoft.2019.02.014, 2019.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large Area Hydrologic Model Development and Assessment Part 1: Model Development, J. Am. Wat. Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Bailey, R.: SWAT+MODFLOW model: code and example models, Zenodo [data set and code], https://doi.org/10.5281/zenodo.14674981, 2025.
Bailey, R. and Alderfer, C.: Groundwater Data in Unconfined Aquifers – conterminous United States, Collection, figshare, https://doi.org/10.6084/m9.figshare.c.5918738.v2, 2022.
Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., and Ditty, J.: Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model, Hydrol. Process., 30, 4420–4433, https://doi.org/10.1002/hyp.10933, 2016.
Bailey, R. T., Park, S., Bieger, K., Arnold, J. G., and Allen, P. M.: Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines, Environ. Modell. Softw., 126, 104660, https://doi.org/10.1016/j.envsoft.2020.104660, 2020a.
Bailey, R. T., Bieger, K., Arnold, J. G., and Bosch, D. D.: A new physically-based spatially-distributed groundwater flow module for SWAT+, Hydrology, 7, 75, https://doi.org/10.3390/hydrology7040075, 2020b.
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., and Srinivasan, R.: Introduction to SWAT+, a completely restructured version of the soil and water assessment tool, J. Am. Water Resour. As., 53, 115–130, https://doi.org/10.1111/1752-1688.12482, 2017.
Cao, K., Liu, X., Fu, Q., Wang, Y., Liu, D., Li, T., and Li, M.: Dynamic and harmonious allocation of irrigation water resources under climate change: A SWAT-based multi-objective nonlinear framework, Sci. Total Environ., 905, 167221, https://doi.org/10.1016/j.scitotenv.2023.167221, 2023.
Chunn, D., Faramarzi, M., Smerdon, B., and Alessi, D. S.: Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater–surface water interactions in West-Central Alberta, Water, 11, 110, https://doi.org/10.3390/w11010110, 2019.
Dieter, C. A., Maupin, M. A., Caldwell, R. R., Harris, M. A., Ivahnenko, T. I., Lovelace, J. K., Barber, N. L., and Linsey, K. S.: Estimated use of water in the United States in 2015, in: Circular, Report 1441, Reston, VA, 76, https://doi.org/10.3133/cir1441, 2018.
Doherty, J.: PEST, Model-independent Parameter Estimation: User Manual, 7th edn., Watermark Numerical Computing, Brisbane, Australia, 3338–3349, 2020.
Duda, P. B., Hummel, P. R., Donigian Jr., A. S., and Imhoff, J. C.: BASINS/HSPF: Model use, calibration, and validation, T. ASABE, 55, 1523–1547, https://doi.org/10.13031/2013.42261, 2012.
Faunt, C. C., Traum, J. A., Boyce, S. E., Seymour, W. A., Jachens, E. R., Brandt, J. T., Sneed, M., Bond, S., and Marcelli, M. F.: Groundwater Sustainability and Land Subsidence in California's Central Valley, Water, 16, 1189, https://doi.org/10.3390/w16081189, 2024.
Gao, F., Feng, G., Han, M., Dash, P., Jenkins, J., and Liu, C.: Assessment of surface water resources in the big sunflower river watershed using coupled SWAT–MODFLOW model, Water, 11, 528, https://doi.org/10.3390/w11030528, 2019.
Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arnold, J. G., and Srinivasan, R.: A model integration framework for linking SWAT and MODFLOW, Environ. Modell. Softw., 73, 103–116, https://doi.org/10.1016/j.envsoft.2015.08.011, 2015.
Harbaugh, A. W.: MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process (Vol. 6), US Department of the Interior, US Geological Survey, Reston, VA, USA, 6, A16, 2005.
Horton, J. D., San Juan, C. A., and Stoeser, D .B.: The state geologic map compilation (SGMC) geodatabase of the conterminous United States: US Geol. Surv., No. 1052, Data Series 1052, 46 pp., https://doi.org/10.3133/ds1052, 2017.
Jasechko, S. and Perrone, D.: California's Central Valley groundwater wells run dry during recent drought, Earth's Future, 8, e2019EF001339, https://doi.org/10.1029/2019EF001339, 2020.
Kim, N. W., Chung, I. M., Won, Y. S., and Arnold, J. G.: Development and application of the integrated SWAT–MODFLOW model, J. Hydrol., 356, 1–16, https://doi.org/10.1016/j.jhydrol.2008.02.024, 2008.
Langevin, C. D., Hughes, J. D., Banta, E. R., Niswonger, R. G., Panday, S., and Provost, A. M.: Documentation for the MODFLOW 6 groundwater flow model, No. 6-A55, US Geological Survey, https://doi.org/10.3133/tm6A55, 2017.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
Liu, P. W., Famiglietti, J. S., Purdy, A. J., Adams, K. H., McEvoy, A. L., Reager, J. T., Bindlish, R., Wiese, D. N., David, C. H., and Rodell, M.: Groundwater depletion in California's Central Valley accelerates during megadrought, Nat. Commun., 13, 7825, https://doi.org/10.1038/s41467-022-35582-x, 2022.
Liu, W., Park, S., Bailey, R. T., Molina-Navarro, E., Andersen, H. E., Thodsen, H., Nielsen, A., Jeppesen, E., Jensen, J. S., Jensen, J. B., and Trolle, D.: Comparing SWAT with SWAT-MODFLOW hydrological simulations when assessing the impacts of groundwater abstractions for irrigation and drinking water, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2019-232, 2019.
Liu, Z., Herman, J. D., Huang, G., Kadir, T., and Dahlke, H. E.: Identifying climate change impacts on surface water supply in the southern Central Valley, California, Sci. Total Environ., 759, 143429, https://doi.org/10.1016/j.scitotenv.2020.143429, 2021.
Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., and Barlow, P. M.: GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005), US Geological Survey techniques and methods, 6, 240, https://pubs.usgs.gov/tm/tm6d1/, 2008.
Molina-Navarro, E., Bailey, R. T., Andersen, H. E., Thodsen, H., Nielsen, A., Park, S., Jensen, J. S., Jensen, J. B., and Trolle, D.: Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW, Hydrolog. Sci. J., 64, 434–454, https://doi.org/10.1080/02626667.2019.1590583, 2019.
Moore, R. B. and Dewald, T. G.: The Road to NHDPlus – Advancements in Digital Stream Networks and Associated Catchments, J. Am. Water Resour. As., 52, 890–900, https://doi.org/10.1111/1752-1688.12389, 2016.
Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161–174, 1991.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and water assessment tool theoretical documentation version 2009, Texas Water Resources Institute, TR-406, 2011.
Niswonger, R. G., Prudic, D. E., and Regan, R. S.: Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005, No. 6-A19, https://doi.org/10.3133/tm6A19, 2006.
Niswonger, R. G., Panday, S., and Ibaraki, M.: MODFLOW-NWT, a Newton formulation for MODFLOW-2005. US Geological Survey Techniques and Methods, No. 6-A37, 44, 2011.
Ojha, C., Shirzaei, M., Werth, S., Argus, D. F., and Farr, T. G.: Sustained groundwater loss in California's Central Valley exacerbated by intense drought periods, Water Resour. Res., 54, 4449–4460, https://doi.org/10.1029/2017WR022250, 2018.
Park, S., Nielsen, A., Bailey, R. T., Trolle, D., and Bieger, K.: A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models, Environ. Modell. Softw., 111, 493–497, https://doi.org/10.1016/j.envsoft.2018.10.017, 2019.
Perkins, S. P. and Sophocleous, M.: Development of a comprehensive watershed model applied to study stream yield under drought conditions, Groundwater, 37, 418–426, https://doi.org/10.1111/j.1745-6584.1999.tb01121.x, 1999.
QGIS Development Team: QGIS Geographic Information System, Open Source Geospatial Foundation Project, http://qgis.osgeo.org (last access: November 2024), 2018.
Schulz, E. Y., Morrison, R. R., Bailey, R. T., Raffae, M., Arnold, J. G., and White, M. J.: River corridor beads are important areas of floodplain-groundwater exchange within the Colorado River headwaters watershed, Hydrol. Process., 38, 15282, https://doi.org/10.1002/hyp.15282, 2024.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping the global depth to bedrock for land surface modeling, J. Adv. Model. Earth Sy., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017.
Skinner, K. D. and Maupin, M. A.: Point-source nutrient loads to streams of the conterminous United States, 2012, No. 1101, US Geological Survey, https://doi.org/10.3133/ds1101, 2019.
Soil Survey Staff: Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey, https://websoilsurvey.nrcs.usda.gov/ (last access: June 2021), 2014.
Tefera, G. W., Dile, Y. T., Srinivasan, R., Baker, T., and Ray, R. L.: Hydrological modeling and scenario analysis for water supply and water demand assessment of Addis Ababa city, Ethiopia, J. Hydrol. Reg. Stud., 46, 101341, https://doi.org/10.1016/j.ejrh.2023.101341, 2023.
Valayamkunnath, P., Barlage, M., Chen, F., Gochis, D. J., and Franz, K. J.: Mapping of 30-meter resolution tile-drained croplands using a geospatial modeling approach, Sci. Data, 7, 1–10, https://doi.org/10.1038/s41597-020-00596-x, 2020.
Vasco, D. W., Farr, T. G., Jeanne, P., Doughty, C., and Nico, P.: Satellite-based monitoring of groundwater depletion in California's Central Valley, Sci. Rep., 9, 16053, doi.org/10.1038/s41598-019-52371-7, 2019.
Wang, Y. and Chen, N.: Recent progress in coupled surface–ground water models and their potential in watershed hydro-biogeochemical studies: A review, Watershed Ecology and the Environment, 3, 17–29, https://doi.org/10.1016/j.wsee.2021.04.001, 2021.
Wei, X. and Bailey, R. T.: Evaluating nitrate and phosphorus remediation in intensively irrigated stream-aquifer systems using a coupled flow and reactive transport model, J. Hydrol., 598, 126304, https://doi.org/10.1016/j.jhydrol.2021.126304, 2021.
Wei, X., Bailey, R. T., Records, R. M., Wible, T. C., and Arabi, M.: Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model, Environ. Modell. Softw., 122, 104242, https://doi.org/10.1016/j.envsoft.2018.06.012, 2019.
White, J., Hunt, R., Fienen, M., and Doherty, J.: Approaches to Highly Parameterized Inversion: PEST Version 5, a Software Suite for Parameter Estimation, Uncertainty Analysis, Management Optimization and Sensitivity Analysis: U.S. Geological Survey Techniques and Methods 7C26, 52 pp., https://doi.org/10.3133/tm7C26, 2020.
Yan, L. and Roy, D. P.: Conterminous United States crop field size quantification from multi-temporal Landsat data, Remote Sens. Environ., 172, 67–86, https://doi.org/10.1016/j.rse.2015.10.034, 2016.
Yimer, E. A., Bailey, R. T., Van Schaeybroeck, B., Van De Vyver, H., Villani, L., Nossent, J., and van Griensven, A.: Regional evaluation of groundwater-surface water interactions using a coupled geohydrological model (SWAT+ gwflow), J. Hydrol. Reg. Stud., 50, 101532, https://doi.org/10.1016/j.ejrh.2023.101532, 2023.
Short summary
Water managers often make use of computer models to assess a region's water supply under future conditions and management scenarios. This article introduces a new computer model that combines a land surface model (SWAT+) and a groundwater model (MODFLOW) and shows how it can be applied to managed, irrigated watersheds. This new model can be used for regions that rely on both surface water and groundwater for drinking water, agriculture, and industry.
Water managers often make use of computer models to assess a region's water supply under future...