Articles | Volume 18, issue 17
https://doi.org/10.5194/gmd-18-5527-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-5527-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A flexible Regional Ocean Modeling System-based hybrid coupled model for El Niño–Southern Oscillation studies – model formulation and performance evaluation
Yang Yu
Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Department of Land, Air and Water Resources, University of California-Davis, Davis, CA, USA
Yin-Nan Li
Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
State Key Laboratory of Climate System Prediction and Risk Management/School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China
Laoshan Laboratory, Qingdao, China
Shu-Hua Chen
Department of Land, Air and Water Resources, University of California-Davis, Davis, CA, USA
Yu-Heng Tseng
Institute of Oceanography, National Taiwan University, Taipei, Taiwan
Wenzhe Zhang
Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Hongna Wang
Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Laoshan Laboratory, Qingdao, China
Cited articles
Barnett, T. P.: Interaction of the Monsoon and Pacific Trade Wind System at Interannual Time Scales Part I: The Equatorial Zone, Mon. Weather Rev., 111, 756–773, https://doi.org/10.1175/1520-0493(1983)111<0756:IOTMAP>2.0.CO;2, 1983.
Barnett, T. P.: The Interaction of Multiple Time Scales in the Tropical Climate System, J. Climate, 4, 269–285, https://doi.org/10.1175/1520-0442(1991)004<0269:TIOMTS>2.0.CO;2, 1991.
Barnett, T. P., Graham, N., Pazan, S., White, W., Latif, M., and Flügel, M.: ENSO and ENSO-related Predictability. Part I: Prediction of Equatorial Pacific Sea Surface Temperature with a Hybrid Coupled Ocean–Atmosphere Model, J. Climate, 6, 1545–1566, https://doi.org/10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO;2, 1993.
Battisti, D. S. and Hirst, A. C.: Interannual Variability in a Tropical Atmosphere–Ocean Model: Influence of the Basic State, Ocean Geometry and Nonlinearity, J. Atmos. Sci., 46, 1687–1712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2, 1989.
Bjerknes, J.: Atmospheric teleconnections from the equatorial pacific, Mon. Weather Rev., 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2, 1969.
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate Reanalysis, J. Climate, 31, 6967–6983, https://doi.org/10.1175/JCLI-D-18-0149.1, 2018.
Chen, D., Rothstein, L. M., and Busalacchi, A. J.: A Hybrid Vertical Mixing Scheme and Its Application to Tropical Ocean Models, J. Phys. Oceanogr., 24, 2156–2179, https://doi.org/10.1175/1520-0485(1994)024<2156:AHVMSA>2.0.CO;2, 1994.
Ding, R., Li, J., Tseng, Y., Sun, C., and Xie, F.: Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events, J. Geophys. Res.-Atmos., 122, 279–298, https://doi.org/10.1002/2016JD025502, 2017.
Ding, R., Tseng, Y., Li, J., Sun, C., Xie, F., and Hou, Z.: Relative Contributions of North and South Pacific Sea Surface Temperature Anomalies to ENSO, J. Geophys. Res.-Atmos., 124, 6222–6237, https://doi.org/10.1029/2018JD030181, 2019.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996.
Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., Berry, D. I., Brohan, P., Eastman, R., Gates, L., Gloeden, W., Ji, Z., Lawrimore, J., Rayner, N. A., Rosenhagen, G., and Smith, S. R.: ICOADS Release 3.0: a major update to the historical marine climate record, Int. J. Climatol., 37, 2211–2232, https://doi.org/10.1002/joc.4775, 2017.
Gao, C., Zhang, R.-H., Karnauskas, K. B., Zhang, L., and Tian, F.: Separating freshwater flux effects on ENSO in a hybrid coupled model of the tropical Pacific, Clim. Dynam., 54, 4605–4626, https://doi.org/10.1007/s00382-020-05245-y, 2020.
Gent, P. R. and Cane, M. A.: A reduced gravity, primitive equation model of the upper equatorial ocean, J. Comput. Phys., 81, 444–480, 1989.
Graham, N. E., Michaelsen, J., and Barnett, T. P.: An investigation of the El Niño-Southern Oscillation cycle With statistical models: 1. Predictor field characteristics, J. Geophys. Res.-Oceans, 92, 14251–14270, https://doi.org/10.1029/JC092iC13p14251, 1987a.
Graham, N. E., Michaelsen, J., and Barnett, T. P.: An investigation of the El Niño-Southern Oscillation cycle With statistical models: 2. Model results, J. Geophys. Res.-Oceans, 92, 14271–14289, https://doi.org/10.1029/JC092iC13p14271, 1987b.
Gu, D. and Philander, S. G. H.: Interdecadal Climate Fluctuations That Depend on Exchanges Between the Tropics and Extratropics, Science, 275, 805–807, hhttps://doi.org/10.1126/science.275.5301.805, 1997.
Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning for multi-year ENSO forecasts, Nature, 573, 568–572, https://doi.org/10.1038/s41586-019-1559-7, 2019.
Ham, Y.-G., Kim, J.-H., Kim, E.-S., and On, K.-W.: Unified deep learning model for El Niño/Southern Oscillation forecasts by incorporating seasonality in climate data, Sci. Bull., 66, 1358–1366, https://doi.org/10.1016/j.scib.2021.03.009, 2021.
Hasselmann, K.: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns, J. Geophys. Res.-Atmos., 93, 11015–11021, https://doi.org/10.1029/JD093iD09p11015, 1988.
Hu, D., Wu, L., Cai, W., Gupta, A. Sen, Ganachaud, A., Qiu, B., Gordon, A. L., Lin, X., Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T., Kashino, Y., Wang, F., and Kessler, W. S.: Pacific western boundary currents and their roles in climate, Nature, 522, 299–308, https://doi.org/10.1038/nature14504, 2015.
Hu, J., Weng, B., Huang, T., Gao, J., Ye, F., and You, L.: Deep Residual Convolutional Neural Network Combining Dropout and Transfer Learning for ENSO Forecasting, Geophys. Res. Lett., 48, 1–9, https://doi.org/10.1029/2021GL093531, 2021.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: NOAA extended reconstructed sea surface temperature (ERSST), version 5, NOAA Natl. Centers Environ. Inf., https://doi.org/10.7289/V5T72FNM, 2017.
Jin, F., Lin, L., Timmermann, A., and Zhao, J.: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL027372, 2007.
Jin, F.-F.: An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model, J. Atmos. Sci., 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2, 1997a.
Jin, F.-F.: An Equatorial Ocean Recharge Paradigm for ENSO. Part II: A Stripped-Down Coupled Model, J. Atmos. Sci., 54, 830–847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2, 1997b.
Jin, F.-F. and Neelin, D.: Modes of Interannual Tropical Ocean–Atmosphere Interaction – a Unified View. Part III: Analytical Results in Fully Coupled Cases, J. Atmos. Sci., 50, 3523–3540, https://doi.org/10.1175/1520-0469(1993)050<3523:MOITOI>2.0.CO;2, 1993a.
Jin, F.-F. and Neelin, J. D.: Modes of Interannual Tropical Ocean–Atmosphere Interaction – a Unified View. Part I: Numerical Results, J. Atmos. Sci., 50, 3477–3503, https://doi.org/10.1175/1520-0469(1993)050<3477:MOITOI>2.0.CO;2, 1993b.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., and Woollen, J.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472, 1996.
Kang, X., Huang, R., Wang, Z., and Zhang, R.-H.: Sensitivity of ENSO variability to Pacific freshwater flux adjustment in the Community Earth System Model, Adv. Atmos. Sci., 31, 1009–1021, https://doi.org/10.1007/s00376-014-3232-2, 2014.
Kleeman, R., McCreary, J. P., and Klinger, B. A.: A mechanism for generating ENSO decadal variability, Geophys. Res. Lett., 26, 1743–1746, https://doi.org/10.1029/1999GL900352, 1999.
Kuo, Y.-C., Yu, Y., and Tseng, Y.-H.: Interannual changes of the summer circulation and hydrology in the East China Sea: A modeling study from 1981 to 2015, Ocean Model., 181, 102156, https://doi.org/10.1016/j.ocemod.2022.102156, 2023.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air – Sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Latif, M., Barnett, T. P., Cane, M. A., Flügel, M., Graham, N. E., von Storch, H., Xu, J. S., and Zebiak, S. E.: A review of ENSO prediction studies, Clim. Dynam., 9, 167–179, https://doi.org/10.1007/BF00208250, 1994.
Lindzen, R. S. and Nigam, S.: On the Role of Sea Surface Temperature Gradients in Forcing Low-Level Winds and Convergence in the Tropics, J. Atmos. Sci., 44, 2418–2436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2, 1987.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Reagan, J. R., Boyer, T. P., Seidov, D., Wang, Z., Garcia, H. E., Bouchard, C., Cross, S. L., Paver, C. R., and Dukhovskoy, D.: World Ocean Atlas 2023, in: Volume 1: Temperature, NOAA Atlas NESDIS 89, edited by: Mishonov, A., NOAA, https://doi.org/10.25923/54bh-1613, 2023.
McCreary, J. P. and Anderson, D. L. T.: An overview of coupled ocean-atmosphere models of El Niño and the Southern Oscillation, J. Geophys. Res.-Oceans, 96, 3125–3150, https://doi.org/10.1029/90JC01979, 1991.
McCreary, J. P. and Lu, P.: Interaction between the Subtropical and Equatorial Ocean Circulations: The Subtropical Cell, J. Phys. Oceanogr., 24, 466–497, https://doi.org/10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2, 1994.
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an Integrating Concept in Earth Science, Science, 314, 1740–1745, https://doi.org/10.1126/science.1132588, 2006.
Moore, A. M. and Kleeman, R.: Stochastic Forcing of ENSO by the Intraseasonal Oscillation, J. Climate, 12, 1199–1220, https://doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2, 1999.
Mu, B., Qin, B., and Yuan, S.: ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler, Geosci. Model Dev., 14, 6977–6999, https://doi.org/10.5194/gmd-14-6977-2021, 2021.
NCAR: COREv2 air–sea surface fluxes, https://climatedataguide.ucar.edu/climate-data/corev2-air-sea-surface-fluxes, last access: 25 August 2025.
Neelin, J. D.: A Hybrid Coupled General Circulation Model for El Niño Studies, J. Atmos. Sci., 47, 674–693, https://doi.org/10.1175/1520-0469(1990)047<0674:AHCGCM>2.0.CO;2, 1990.
Neelin, J. D., Latif, M., Allaart, M. A. F., Cane, M. A., Cubasch, U., Gates, W. L., Gent, P. R., Ghil, M., Gordon, C., Lau, N. C., Mechoso, C. R., Meehl, G. A., Oberhuber, J. M., Philander, S. G. H., Schopf, P. S., Sperber, K. R., Sterl, K. R., Tokioka, T., Tribbia, J., and Zebiak, S. E.: Tropical air-sea interaction in general circulation models, Clim. Dynam., 7, 73–104, https://doi.org/10.1007/BF00209610, 1992.
Newman, M., Shin, S.-I., and Alexander, M. A.: Natural variation in ENSO flavors, Geophys. Res. Lett., 38, L14705, https://doi.org/10.1029/2011GL047658, 2011.
NOAA: International Comprehensive Ocean–Atmosphere Data Set (ICOADS), https://icoads.noaa.gov, last access: 25 August 2025.
NOAA National Centers for Environmental Information: Optimum Interpolation Sea Surface Temperature (OISST), version 2.1, https://www.ncei.noaa.gov/products/optimum-interpolation-sst, last access: 25 August 2025.
Paulson, C. A. and Simpson, J. J.: Irradiance measurements in the upper ocean, J. Phys. Oceanogr., 7, 953–956, 1977.
Penland, C. and Sardeshmukh, P. D.: The Optimal Growth of Tropical Sea Surface Temperature Anomalies, J. Climate, 8, 1999–2024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2, 1995.
Picaut, J., Masia, F., and du Penhoat, Y.: An Advective-Reflective Conceptual Model for the Oscillatory Nature of the ENSO, Science, 277, 663–666, https://doi.org/10.1126/science.277.5326.663, 1997.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Giorgetta, M. A., Schlese, U., and Schulzweida, U.: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate, Max-Planck-Institut für Meteorologie Report Series, 218, 1996.
Shchepetkin, A. F. and Mcwilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 347–404, 2005.
Shchepetkin, A. F. and Mcwilliams, J. C.: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624, J. Comput. Phys., 228, 8985–9000, 2009.
Shi, Q., Zhang, R.-H., and Tian, F.: Impact of the Deep Chlorophyll Maximum in the Equatorial Pacific as Revealed in a Coupled Ocean GCM-Ecosystem Model, J. Geophys. Res.-Oceans, 128, 1–24, https://doi.org/10.1029/2022JC018631, 2023.
Smagorinsky, J.: General circulation experiments with the primitive equations, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963.
Suarez, M. J. and Schopf, P. S.: A Delayed Action Oscillator for ENSO, J. Atmos. Sci., 45, 3283–3287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2, 1988.
Syu, H.-H., Neelin, J. D., and Gutzler, D.: Seasonal and Interannual Variability in a Hybrid Coupled GCM, J. Climate, 8, 2121–2143, https://doi.org/10.1175/1520-0442(1995)008<2121:SAIVIA>2.0.CO;2, 1995.
Tian, F., Zhang, R.-H., and Wang, X.: A Positive Feedback Onto ENSO Due to Tropical Instability Wave (TIW)-Induced Chlorophyll Effects in the Pacific, Geophys. Res. Lett., 46, 889–897, https://doi.org/10.1029/2018GL081275, 2019.
Tian, F., Zhang, R.-H., and Wang, X.: Effects on Ocean Biology Induced by El Niño-Accompanied Positive Freshwater Flux Anomalies in the Tropical Pacific, J. Geophys. Res.-Oceans, 125, e2019JC015790, https://doi.org/10.1029/2019JC015790, 2020.
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K. M., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y.-G., Hayashi, M., Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J., McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., Santoso, A., Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.-H., Yeh, S.-W., Yoon, J., Zeller, E., and Zhang, X.: El Niño–Southern Oscillation complexity, Nature, 559, 535–545, https://doi.org/10.1038/s41586-018-0252-6, 2018.
UMD Ocean Climate Lab: Simple Ocean Data Assimilation version 3 (SODA3) reanalysis datasets, https://soda.umd.edu/, last access: 25 August 2025.
von Storch, H., Bruns, T., Fischer-Bruns, I., and Hasselmann, K.: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere, J. Geophys. Res.-Atmos., 93, 11022–11036, https://doi.org/10.1029/JD093iD09p11022, 1988.
Wang, C.: A Unified Oscillator Model for the El Niño–Southern Oscillation, J. Climate, 14, 98–115, https://doi.org/10.1175/1520-0442(2001)014<0098:AUOMFT>2.0.CO;2, 2001.
Wang, C., Weisberg, R. H., and Virmani, J. I.: Western Pacific interannual variability associated with the El Niño-Southern Oscillation, J. Geophys. Res.-Oceans, 104, 5131–5149, https://doi.org/10.1029/1998JC900090, 1999.
Weisberg, R. H. and Wang, C.: A Western Pacific Oscillator Paradigm for the El Niño-Southern Oscillation, Geophys. Res. Lett., 24, 779–782, https://doi.org/10.1029/97GL00689, 1997.
Yeh, S., Cai, W., Min, S., McPhaden, M. J., Dommenget, D., Dewitte, B., Collins, M., Ashok, K., An, S., Yim, B., and Kug, J.: ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing, Rev. Geophys., 56, 185–206, https://doi.org/10.1002/2017RG000568, 2018.
Yu, Y.: ROMS-based Hybrid Coupled Model (HCM) v1.0 (ROMS-HCM_v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.14184175, 2024 (code also available at: https://github.com/clarkyuchina/ROMS-HCM, last access: 19 Novemebr 2024).
Yu, Y., Gao, H., and Shi, J.: Impacts of Diurnal Forcing on Temperature Simulation in the Shelf Seas of China, Period. Ocean Univ. China, 47, 106–113, https://doi.org/10.16441/j.cnki.hdxb.20160138, 2017.
Yu, Y., Chen, S.-H., Tseng, Y.-H., Guo, X., Shi, J., Liu, G., Zhang, C., Xu, Y., and Gao, H.: Importance of Diurnal Forcing on the Summer Salinity Variability in the East China Sea, J. Phys. Oceanogr., 50, 633–653, https://doi.org/10.1175/JPO-D-19-0200.1, 2020.
Yu, Y., Chen, S.-H., Tseng, Y.-H., Foltz, G. R., Zhang, R.-H., and Gao, H.: Impacts of model resolution and ocean coupling on mean and eddy momentum transfer during the rapid intensification of super-typhoon Muifa (2011), Q. J. Roy. Meteorol. Soc., 148, 3639–3659, https://doi.org/10.1002/qj.4379, 2022.
Yu, Y., Li, Y., Zhang, R.-H., Chen, S.-H., Tseng, Y.-H., Zhang, W., and Wang, H.: A flexible Regional Ocean Modeling System-based hybrid coupled model for El Niño–Southern Oscillation studies. Part 2: freshwater flux effects, in preparation, 2025.
Zebiak, S. E. and Cane, M. A.: A model El Niño/ Southern Oscillation, Mon. Weather Rev., 115, 2262–2278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2, 1987.
Zhang, R.-H.: A hybrid coupled model for the pacific ocean-atmosphere system. Part I: Description and basic performance, Adv. Atmos. Sci., 32, 301–318, https://doi.org/10.1007/s00376-014-3266-5, 2015.
Zhang, R.-H.: A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific, J. Geophys. Res.-Oceans, 121, 7326–7353, https://doi.org/10.1002/2015JC011567, 2016.
Zhang, R.-H. and Gao, C.: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event, Sci. Bull., 61, 1061–1070, https://doi.org/10.1007/s11434-016-1064-4, 2016.
Zhang, R.-H., Rothstein, L. M., and Busalacchi, A. J.: Origin of upper-ocean warming and El Nino change on decadal scales in the tropical Pacific Ocean, Nature, 391, 879–883, https://doi.org/10.1038/36081, 1998.
Zhang, R.-H., Zebiak, S. E., Kleeman, R., and Keenlyside, N.: A new intermediate coupled model for El Niño simulation and prediction, Geophys. Res. Lett., 30, 3–6, https://doi.org/10.1029/2003GL018010, 2003.
Zhang, R.-H., Busalacchi, A. J., and DeWitt, D. G.: The Roles of Atmospheric Stochastic Forcing (SF) and Oceanic Entrainment Temperature (Te) in Decadal Modulation of ENSO, J. Climate, 21, 674–704, https://doi.org/10.1175/2007JCLI1665.1, 2008.
Zhang, R.-H., Zheng, F., Zhu, J., Pei, Y., Zheng, Q., and Wang, Z.: Modulation of El Niño-Southern Oscillation by freshwater flux and salinity variability in the tropical Pacific, Adv. Atmos. Sci., 29, 647–660, https://doi.org/10.1007/s00376-012-1235-4, 2012.
Zhang, R.-H., Tian, F., and Wang, X.: A New Hybrid Coupled Model of Atmosphere, Ocean Physics, and Ocean Biogeochemistry to Represent Biogeophysical Feedback Effects in the Tropical Pacific, J. Adv. Model. Earth Syst., 10, 1901–1923, https://doi.org/10.1029/2017MS001250, 2018a.
Zhang, R.-H., Tian, F., and Wang, X.: Ocean Chlorophyll-Induced Heating Feedbacks on ENSO in a Coupled Ocean Physics–Biology Model Forced by Prescribed Wind Anomalies, J. Climate, 31, 1811–1832, https://doi.org/10.1175/JCLI-D-17-0505.1, 2018b.
Zhang, R.-H., Yu, Y., Song, Z., Ren, H. L., Tang, Y., Qiao, F., Wu, T., Gao, C., Hu, J., Tian, F., Zhu, Y., Chen, L., Liu, H., Lin, P., Wu, F., and Wang, L.: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China, J. Oceanol. Limnol., 38, 930–961, https://doi.org/10.1007/s00343-020-0157-8, 2020.
Zhang, R.-H., Tian, F., Shi, Q., Wang, X., and Wu, T.: Counteracting effects on ENSO induced by ocean chlorophyll interannual variability and tropical instability wave-scale perturbations in the tropical Pacific, Sci. China Earth Sci., 67, 387–404, https://doi.org/10.1007/s11430-023-1217-8, 2024.
Zhou, G. and Zhang, R.-H.: Structure and Evolution of Decadal Spiciness Variability in the North Pacific during 2004–20, Revealed from Argo Observations, Adv. Atmos. Sci., 39, 953–966, https://doi.org/10.1007/s00376-021-1358-6, 2022a.
Zhou, L. and Zhang, R.-H.: A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses, Adv. Atmos. Sci., 39, 889–902, https://doi.org/10.1007/s00376-021-1368-4, 2022b.
Zhou, L. and Zhang, R.-H.: A self-attention–based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions, Sci. Adv., 9, 1–12, https://doi.org/10.1126/sciadv.adf2827, 2023.
Short summary
In this paper, we develop a new flexible hybrid coupled model (HCM) by incorporating the Regional Ocean Modeling System (ROMS) into a statistical atmospheric model. The model performance is evaluated for its ability to simulate processes related to El Niño–Southern Oscillation (ENSO). The newly developed HCMROMS is expected to become an effective modeling tool for studying the multiscale and multisphere interactions associated with ENSO in the tropical Pacific.
In this paper, we develop a new flexible hybrid coupled model (HCM) by incorporating the...