Articles | Volume 18, issue 15 
            
                
                    
            
            
            https://doi.org/10.5194/gmd-18-4877-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-4877-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Wave forecast investigations on downscaling, source terms, and tides for Aotearoa New Zealand
                                            National Institute of Water and Atmospheric Research, Coasts and Estuaries, Hamilton, Aotearoa New Zealand
                                        
                                    
                                            Department of Physics, The University of Auckland, Auckland 1010, Aotearoa New Zealand
                                        
                                    Richard Gorman
                                            Spectrum Oceanographic Ltd, Picton, Aotearoa New Zealand
                                        
                                    Emily Lane
                                            National Institute of Water and Atmospheric Research, Hydrodynamics, Christchurch, Aotearoa New Zealand
                                        
                                    Stuart Moore
                                            National Institute of Water and Atmospheric Research, Meteorology and Remote Sensing,  Wellington, Aotearoa New Zealand
                                        
                                    Cyprien Bosserelle
                                            National Institute of Water and Atmospheric Research, Hydrodynamics, Christchurch, Aotearoa New Zealand
                                        
                                    Glen Reeve
                                            National Institute of Water and Atmospheric Research, Coasts and Estuaries, Hamilton, Aotearoa New Zealand
                                        
                                    Christo Rautenbach
                                            National Institute of Water and Atmospheric Research, Coasts and Estuaries, Hamilton, Aotearoa New Zealand
                                        
                                    
                                            Institute for Coastal and Marine Research, Nelson Mandela University (NMU), Port Elizabeth, South Africa
                                        
                                    Related authors
Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
                                    Geosci. Model Dev., 16, 3675–3698, https://doi.org/10.5194/gmd-16-3675-2023, https://doi.org/10.5194/gmd-16-3675-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We show the importance of assimilating subsurface temperature and velocity data in a model of the East Auckland Current. Assimilation of velocity increased the representation of large oceanic vortexes. Assimilation of temperature is needed to correctly simulate temperatures around 100 m depth, which is the most difficult region to simulate in ocean models. Our simulations showed improved results in comparison to the US Navy global model and highlight the importance of regional models.
                                            
                                            
                                        Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
                                    Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
                                            
                                            
                                        Beata Bukosa, Sara Mikaloff-Fletcher, Gordon Brailsford, Dan Smale, Elizabeth D. Keller, W. Troy Baisden, Miko U. F. Kirschbaum, Donna L. Giltrap, Lìyǐn Liáng, Stuart Moore, Rowena Moss, Sylvia Nichol, Jocelyn Turnbull, Alex Geddes, Daemon Kennett, Dóra Hidy, Zoltán Barcza, Louis A. Schipper, Aaron M. Wall, Shin-Ichiro Nakaoka, Hitoshi Mukai, and Andrea Brandon
                                    Atmos. Chem. Phys., 25, 6445–6473, https://doi.org/10.5194/acp-25-6445-2025, https://doi.org/10.5194/acp-25-6445-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We used atmospheric measurements and inverse modelling to estimate New Zealand's carbon dioxide (CO2) emissions and removals from 2011 to 2020. Our study reveals that New Zealand's land absorbs more CO2 than previously estimated, particularly in areas dominated by indigenous forests. Our results highlight gaps in current national CO2 estimates and methods, suggesting a need for further research to improve emissions reports and refine approaches to track progress toward climate mitigation goals.
                                            
                                            
                                        Martin Nguyen, Matthew D. Wilson, Emily M. Lane, James Brasington, and Rose A. Pearson
                                        Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-356, https://doi.org/10.5194/hess-2024-356, 2024
                                    Preprint under review for HESS 
                                    Short summary
                                    Short summary
                                            
                                                River depth is crucial in flood modelling, yet often unavailable or costly to collect. Estimation methods can fill this gap but have errors affecting flood modelling. Our study quantified flood-prediction uncertainty due to these errors. Among parameters in Conceptual Multivariate Regression (CMR) and Uniform Flow (UF) methods, river width corresponds to the largest uncertainty, followed by flow and slope. Also, the UF-formula depths have higher uncertainty than the CMR-formula ones.
                                            
                                            
                                        Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
                                    Geosci. Model Dev., 16, 3675–3698, https://doi.org/10.5194/gmd-16-3675-2023, https://doi.org/10.5194/gmd-16-3675-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We show the importance of assimilating subsurface temperature and velocity data in a model of the East Auckland Current. Assimilation of velocity increased the representation of large oceanic vortexes. Assimilation of temperature is needed to correctly simulate temperatures around 100 m depth, which is the most difficult region to simulate in ocean models. Our simulations showed improved results in comparison to the US Navy global model and highlight the importance of regional models.
                                            
                                            
                                        Matthew W. Hayward, Emily M. Lane, Colin N. Whittaker, Graham S. Leonard, and William L. Power
                                    Nat. Hazards Earth Syst. Sci., 23, 955–971, https://doi.org/10.5194/nhess-23-955-2023, https://doi.org/10.5194/nhess-23-955-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                In this paper, 20 explosive volcanic eruption scenarios of differing location and magnitude are simulated to investigate tsunami generation in Lake Taupō, New Zealand. A non-hydrostatic multilayer numerical scheme resolves the highly dispersive generated wavefield. Inundation, hydrographic and related hazard outputs are produced, indicating that significant inundation around the lake shore begins above 5 on the volcanic explosivity index.
                                            
                                            
                                        Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
                                    Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
                                            
                                            
                                        Christo Rautenbach and Berill Blair
                                    Geosci. Commun., 4, 361–381, https://doi.org/10.5194/gc-4-361-2021, https://doi.org/10.5194/gc-4-361-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We aim to address a proposed disconnect between science and the public. In this case, it is imarine meteorological information and the users of these data. Here, the focus is not only on the perceptions, usability and uptake of extreme event forecasts but rather on general, everyday situations. A survey was conducted in two Southern Hemisphere countries, South Africa and New Zealand, and subgroups within the communities (recreational and commercial users) were identified and elucidated.
                                            
                                            
                                        Christo Rautenbach, Julia C. Mullarney, and Karin R. Bryan
                                    Geosci. Model Dev., 14, 4241–4247, https://doi.org/10.5194/gmd-14-4241-2021, https://doi.org/10.5194/gmd-14-4241-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The simulation of ocean waves is important for various reasons, e.g. ship route safety and coastal vulnerability assessments. SWAN is a popular tool with which ocean waves may be predicted. Simulations using this tool can be computationally expensive. The present study thus aimed to understand which typical parallel-computing SWAN model set-up will be most effective. There thus do exist configurations where these simulations are most time-saving and effective.
                                            
                                            
                                        Cited articles
                        
                        Albuquerque, J., Antolínez, J. A., Gorman, R. M., Méndez, F. J., and Coco, G.: Seas and swells throughout New Zealand: A new partitioned hindcast, Ocean Model., 168, 101897, https://doi.org/10.1016/j.ocemod.2021.101897, 2021. a, b
                    
                
                        
                        Albuquerque, J., Antolínez, J. A., Méndez, F. J., and Coco, G.: On the projected changes in New Zealand's wave climate and its main drivers, New Zeal. J. Mar. Fresh., 58, 89–126, 2024. a
                    
                
                        
                        Allis, M., Rautenbach, C., Gorman, R., Bosserelle, C., and Wadwha, S.: Coastal hazards and sea-level rise in Wellington City, Tech. rep., NIWA client report, https://wellington.govt.nz/-/media/your-council/plans-policies-and-bylaws/plans-and-policies/a-to-z/spatial-plan/sea-level-rise-projections---march-2021.pdf (last access: 7 August 2025), 2021. a
                    
                
                        
                        Altomare, C., Gironella, X., Suzuki, T., Viccione, G., and Saponieri, A.: Overtopping metrics and coastal safety: A case of study from the catalan coast, Journal of Marine Science and Engineering, 8, 556, https://doi.org/10.3390/jmse8080556, 2020. a
                    
                
                        
                        Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron, B., Gula, J., and Molemaker, J.: Small-scale open ocean currents have large effects on wind wave heights, J. Geophys. Res.-Oceans, 122, 4500–4517, 2017. a
                    
                
                        
                        Barnes, M. A. and Rautenbach, C.: Toward Operational Wave-Current Interactions Over the Agulhas Current System, J. Geophys. Res.-Oceans, 125, e2020JC016321, https://doi.org/10.1029/2020JC016321, 2020. a, b, c, d
                    
                
                        
                        Baschek, B.: Wave-current interaction in tidal fronts, in: Rogue Waves: Proc. 14th `Aha Huliko' a Hawaiian Winter Workshop, 131–138, Citeseer, Honolulu, HI, University of Hawai`i at Mānoa, http://www.soest.hawaii.edu/PubServices/2005pdfs/Baschek.pdf (last access: 7 August 2025), 2005. a
                    
                
                        
                        Bush, M., Allen, T., Bain, C., Boutle, I., Edwards, J., Finnenkoetter, A., Franklin, C., Hanley, K., Lean, H., Lock, A., Manners, J., Mittermaier, M., Morcrette, C., North, R., Petch, J., Short, C., Vosper, S., Walters, D., Webster, S., Weeks, M., Wilkinson, J., Wood, N., and Zerroukat, M.: The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1, Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020, 2020. a
                    
                
                        
                        Camus, P., Mendez, F. J., and Medina, R.: A hybrid efficient method to downscale wave climate to coastal areas, Coast. Eng., 58, 851–862, https://doi.org/10.1016/j.coastaleng.2011.05.007, 2011. a
                    
                
                        
                        Camus, P., Tomás, A., Díaz-Hernández, G., Rodríguez, B., Izaguirre, C., and Losada, I.: Probabilistic assessment of port operation downtimes under climate change, Coast. Eng., 147, 12–24, https://doi.org/10.1016/j.coastaleng.2019.01.007, 2019. a
                    
                
                        
                        Cattoën, C., Conway, J., Fedaeff, N., Lagrava, D., Blackett, P., Montgomery, K., Shankar, U., Carey-Smith, T., Moore, S., Mari, A., Steinmetz, T., and Dean, S.: A national flood awareness system for ungauged catchments in complex topography: The case of development, communication and evaluation in New Zealand, J. Flood Risk Manag., 15, e12864, https://doi.org/10.1111/jfr3.12864, 2022. a
                    
                
                        
                        CMEMS: Global Ocean L 4 Significant Wave Height From Nrt Satellite Measurements. E. U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS), https://doi.org/10.48670/moi-00180, 2024. a
                    
                
                        
                        Coppin, R., Rautenbach, C., Ponton, T. J., and Smit, A. J.: Investigating Waves and Temperature as Drivers of Kelp Morphology, Frontiers in Marine Science, 7, 567, https://doi.org/10.3389/fmars.2020.00567, 2020. a
                    
                
                        
                        Couvelard, X., Lemarié, F., Samson, G., Redelsperger, J.-L., Ardhuin, F., Benshila, R., and Madec, G.: Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration, Geosci. Model Dev., 13, 3067–3090, https://doi.org/10.5194/gmd-13-3067-2020, 2020. a
                    
                
                        
                        de Vos, M. and Rautenbach, C.: Investigating the connection between metocean conditions and coastal user safety: An analysis of search and rescue data, Safety Sci., 117, 217–228, https://doi.org/10.1016/j.ssci.2019.03.029, 2019. a
                    
                
                        
                        Diamond, H. and Renwick, J.: The climatological relationship between tropical cyclones in the southwest Pacific and the southern annular mode, Int. J. Climatol., 35, 613–623, 2015. a
                    
                
                        
                        Fanti, V., Ferreira, Ó., Kümmerer, V., and Loureiro, C.: Improved estimates of extreme wave conditions in coastal areas from calibrated global reanalyses, Commun. Earth Environ., 4, 151, https://doi.org/10.1038/s43247-023-00819-0, 2023. a
                    
                
                        
                        Fragkou, A. K., Old, C., Venugopal, V., and Angeloudis, A.: Benchmarking a two-way coupled coastal wave–current hydrodynamics model, Ocean Model., 183, 102193, https://doi.org/10.1016/j.ocemod.2023.102193, 2023. a
                    
                
                        
                        Goring, D. G. and Walters, R. A.: Ocean-tide loading and Earth tides around New Zealand, New Zeal. J. Mar. Fresh, 36, 299–309, 2002. a
                    
                
                        
                        Hannah, J.: An updated analysis of long-term sea level change in New Zealand, Geophys. Res. Lett., 31, L03307, https://doi.org/10.1029/2003GL019166, 2004. a
                    
                
                        
                        Hannah, J. and Bell, R. G.: Regional sea level trends in New Zealand, J. Geophys. Res.-Oceans, 117, C01004, https://doi.org/10.1029/2011JC007591, 2012. a
                    
                
                        
                        Hauer, M. E., Evans, J. M., and Mishra, D. R.: Millions projected to be at risk from sea-level rise in the continental United States, Nat. Clim. Change, 6, 691–695, 2016. a
                    
                
                        
                        Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
                    
                
                        
                        Hervouet, J.-M.: TELEMAC modelling system: an overview, Hydrol. Process., 14, 2209–2210, https://doi.org/10.1002/1099-1085(200009)14:13<2209::AID-HYP23>3.0.CO;2-6, 2000. a
                    
                
                        
                        Holthuijsen, L.: Waves in Oceanic and Coastal Waters, Waves in Oceanic and Coastal Waters, Cambridge University Press, 404 pp., https://doi.org/10.2277/0521860288, 2007. a
                    
                
                        
                        Holthuijsen, L., Booij, N., and Ris, R.: A spectral wave model for the coastal zone, in: Ocean wave measurement and analysis, ASCE, 630–641, https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0087343 (last access: 7 August 2025), 1993. a
                    
                
                        
                        Johnson, J.: The refraction of surface waves by currents, Eos T. Am. Geophys. Un., 28, 867–874, 1947. a
                    
                
                        
                        Kalourazi, M. Y., Siadatmousavi, S. M., Yeganeh-Bakhtiary, A., and Jose, F.: WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling: A case study of Hurricane Ivan, Oceanologia, 63, 194–213, 2021. a
                    
                
                        
                        Kamphuis, J. W.: Introduction to Coastal Engineering and Management, in: vol. 48, World Scientific, https://doi.org/10.1142/11491, 2020. a
                    
                
                        
                        Kroon, A., de Schipper, M. A., van Gelder, P. H., and Aarninkhof, S. G.: Ranking uncertainty: Wave climate variability versus model uncertainty in probabilistic assessment of coastline change, Coast. Eng., 158, 103673, https://doi.org/10.1016/j.coastaleng.2020.103673, 2020. a
                    
                
                        
                        Lane, E., Walters, R., Gillibrand, P., and Uddstrom, M.: Operational forecasting of sea level height using an unstructured grid ocean model, Ocean Model., 28, 88–96, 2009. a
                    
                
                        
                        Lane, E. M. and Walters, R. A.: Verification of RiCOM for storm surge forecasting, Mar. Geod., 32, 118–132, 2009. a
                    
                
                        
                        Law-Chune, S., Aouf, L., Dalphinet, A., Levier, B., Drillet, Y., and Drevillon, M.: WAVERYS: a CMEMS global wave reanalysis during the altimetry period, Ocean Dynam., 71, 357–378, 2021. a
                    
                
                        
                        Li, J.-G.: Hybrid multi-grid parallelisation of WAVEWATCH III model on spherical multiple-cell grids, J. Parallel Distr. Com., 167, 187–198, 2022. a
                    
                
                        
                        Lucio, D., Lara, J., Tomás, A., and Losada, I.: Projecting compound wave and sea-level events at a coastal structure site under climate change, Coast. Eng., 189, 104490, https://doi.org/10.1016/j.coastaleng.2024.104490, 2024. a
                    
                
                        
                        Maher, P. and Earnshaw, P.: The Flexible Modelling Framework for the Met Office Unified Model (Flex-UM, using UM 12.0 release), Geosci. Model Dev., 15, 1177–1194, https://doi.org/10.5194/gmd-15-1177-2022, 2022. a, b, c
                    
                
                        
                        Meucci, A., Young, I. R., Hemer, M., Trenham, C., and Watterson, I. G.: 140 years of global ocean wind-wave climate derived from CMIP6 ACCESS-CM2 and EC-Earth3 GCMs: Global trends, regional changes, and future projections, J. Climate, 36, 1605–1631, 2023a. a
                    
                
                        
                        Meucci, A., Young, I. R., Pepler, A., Rudeva, I., Ribal, A., Bidlot, J.-R., and Babanin, A. V.: Evaluation of Spectral Wave Models Physics as applied to a 100-Year Southern Hemisphere Extra-Tropical Cyclone Sea State, J. Geophys. Res.-Oceans, 128, e2023JC019751, https://doi.org/10.1029/2023JC019751, 2023b. a
                    
                
                        
                        Moore, S., Rautenbach, C., Cattoën-Gilbert, C., Carey-Smith, T., Turner, R., Miville, B., Sutherland, D., Andrews, P., Lane, E., Gorman, R., Reeve, G., O., H., and Uddstrom, M.: EcoConnect – a specialist environmental multi-hazard forecasting and information service, in: Proceedings of the International Conference on Example, EGU General Assembly, 23–27 May 2022, Vienna, Austria, EGU22-6832,, https://doi.org/10.5194/egusphere-egu22-6832, 2022. a
                    
                
                        
                        Moulinec, C., Denis, C., Pham, C.-T., Rougé, D., Hervouet, J.-M., Razafindrakoto, E., Barber, R., Emerson, D., and Gu, X.-J.: TELEMAC: An efficient hydrodynamics suite for massively parallel architectures, Comp. Fluids, 51, 30–34, 2011. a
                    
                
                        
                        Oliver, H. J., Shin, M., and Sanders, O.: Cylc: A workflow engine for cycling systems, J. Open Sour. Softw., 3, 737, https://doi.org/10.21105/joss.00737, 2018. a
                    
                
                        
                        Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, 2002. a
                    
                
                        
                        Phillips, O. M.: The Dynamics of the Upper Ocean, in: 2nd Edn., Cambridge University Press, 336 pp., ISBN 0-521-21421-1, https://doi.org/10.1002/zamm.19790590714, 1977. a
                    
                
                        
                        Reid, S.: Pressure gradients and winds in Cook Strait, Weather Forecast., 11, 476–488, 1996. a
                    
                
                        
                        Ris, R., Holthuijsen, L., and Booij, N.: A spectral model for waves in the near shore zone, in: Coastal Engineering 1994, ASCE Library, 68–78, https://doi.org/10.1061/9780784400890.006, 1995. a, b
                    
                
                        
                        Rogers, W. E., Babanin, A. V., and Wang, D. W.: Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations, J. Atmos. Ocean. Tech., 29, 1329–1346, 2012. a
                    
                
                        
                        Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP climate forecast system reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058, 2010. a
                    
                
                        
                        Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Pena Mendez, M., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP climate forecast system version 2, J. Climate, 27, 2185–2208, 2014. a
                    
                
                        
                        Staniforth, A. and Côté, J.: Semi-Lagrangian integration schemes for atmospheric models–A review, Mon. Weather Rev., 119, 2206–2223, 1991. a
                    
                
                        
                        Toimil, A., Losada, I. J., Nicholls, R. J., Dalrymple, R. A., and Stive, M. J.: Addressing the challenges of climate change risks and adaptation in coastal areas: A review, Coast. Eng., 156, 103611, https://doi.org/10.1016/j.coastaleng.2019.103611, 2020. a
                    
                
                        
                        Tolman, H. L., Balasubramaniyan, B., Burroughs, L. D., Chalikov, D. V., Chao, Y. Y., Chen, H. S., and Gerald, V. M.: Development and implementation of wind-generated ocean surface wave Modelsat NCEP, Weather Forecast., 17, 311–333, 2002. a
                    
                
                        
                        Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and Storlazzi, C. D.: Doubling of coastal flooding frequency within decades due to sea-level rise, Sci. Rep.-UK, 7, 1399, https://doi.org/10.1038/s41598-017-01362-7, 2017. a
                    
                
                        
                        Walsh, J.: Steep Head directional wave buoy annual report, Tech. rep., NIWA client report 2017020CH, https://ndhadeliver.natlib.govt.nz/delivery/DeliveryManagerServlet?dps_pid=IE41021457 (last access: 7 August 2025), 2017. a
                    
                
                        
                        Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017.  a
                    
                
                        
                        Walters, R. A.: Coastal ocean models: Two useful finite element methods, Cont. Shelf. Res., 25, 775–793, 2005. a
                    
                
                        
                        Walters, R. A.: Design considerations for a finite element coastal ocean model, Ocean Model., 15, 90–100, 2006. a
                    
                
                        
                        Walters, R. A., Lane, E., and Henry, R.: Semi-Lagrangian methods for a finite element coastal ocean model, Ocean Model., 19, 112–124, 2007. a
                    
                
                        
                        Walters, R. A., Lane, E. M., and Hanert, E.: Useful time-stepping methods for the Coriolis term in a shallow water model, Ocean Model., 28, 66–74, 2009. a
                    
                
                        
                        Walters, R. A., Gillibrand, P. A., Bell, R. G., and Lane, E. M.: A study of tides and currents in Cook Strait, New Zealand, Ocean Dynam., 60, 1559–1580, 2010. a
                    
                
                        
                        Wang, P. and Sheng, J.: Tidal modulation of surface gravity waves in the Gulf of Maine, J. Phys. Oceanogr., 48, 2305–2323, 2018. a
                    
                
                        
                        Webster, S., Uddstrom, M., Oliver, H., and Vosper, S.: A high-resolution modelling case study of a severe weather event over New Zealand, Atmos. Sci. Lett., 9, 119–128, 2008. a
                    
                
                        
                        Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations, Q. J. Roy. Meteor. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014. a
                    
                
                        
                        Wu, J.: Wind-stress coefficients over sea surface from breeze to hurricane, J. Geophys. Res.-Oceans, 87, 9704–9706, 1982. a
                    
                
                        
                        Zhang, X., Simons, R., Zheng, J., and Zhang, C.: A review of the state of research on wave-current interaction in nearshore areas, Ocean Eng., 243, 110202, https://doi.org/10.1016/j.oceaneng.2021.110202, 2022. a
                    
                
                        
                        Zieger, S., Babanin, A. V., Rogers, W. E., and Young, I. R.: Observation-based source terms in the third-generation wave model WAVEWATCH, Ocean Model., 96, 2–25, 2015. a
                    
                
                        
                        Zou, L., Liu, L., Wang, Z., and Chen, Y.: Evolution wave condition using WAVEWATCH III for island sheltered area in the South China Sea, J. Mar. Sci. Eng., 11, 1158, https://doi.org/10.3390/jmse11061158, 2023. a
                    
                Short summary
            This research explores improving wave forecasts in Aotearoa New Zealand, particularly at Banks Peninsula and Baring Head. We used detailed models and found that forecasts at Baring Head improved significantly due to its narrow geography, but changes at Banks Peninsula were minimal. The study demonstrates that local conditions greatly influence the effectiveness of wave prediction models, highlighting the need for tailored approaches in coastal forecasting to enhance accuracy in the predictions.
            This research explores improving wave forecasts in Aotearoa New Zealand, particularly at Banks...
            
         
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
            