Articles | Volume 18, issue 14
https://doi.org/10.5194/gmd-18-4535-2025
https://doi.org/10.5194/gmd-18-4535-2025
Model description paper
 | Highlight paper
 | 
25 Jul 2025
Model description paper | Highlight paper |  | 25 Jul 2025

asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond

Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter

Related authors

Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022,https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Slate: extending Firedrake's domain-specific abstraction to hybridized solvers for geoscience and beyond
Thomas H. Gibson, Lawrence Mitchell, David A. Ham, and Colin J. Cotter
Geosci. Model Dev., 13, 735–761, https://doi.org/10.5194/gmd-13-735-2020,https://doi.org/10.5194/gmd-13-735-2020, 2020
Short summary
A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids
J. Thuburn, C. J. Cotter, and T. Dubos
Geosci. Model Dev., 7, 909–929, https://doi.org/10.5194/gmd-7-909-2014,https://doi.org/10.5194/gmd-7-909-2014, 2014
Automating the solution of PDEs on the sphere and other manifolds in FEniCS 1.2
M. E. Rognes, D. A. Ham, C. J. Cotter, and A. T. T. McRae
Geosci. Model Dev., 6, 2099–2119, https://doi.org/10.5194/gmd-6-2099-2013,https://doi.org/10.5194/gmd-6-2099-2013, 2013

Related subject area

Numerical methods
Optimized step size control within the Rosenbrock solvers for stiff chemical ordinary differential equation systems in KPP version 2.2.3_rs4
Raphael Dreger, Timo Kirfel, Andrea Pozzer, Simon Rosanka, Rolf Sander, and Domenico Taraborrelli
Geosci. Model Dev., 18, 4273–4291, https://doi.org/10.5194/gmd-18-4273-2025,https://doi.org/10.5194/gmd-18-4273-2025, 2025
Short summary
Potential-based thermodynamics with consistent conservative cascade transport for implicit large eddy simulation: PTerodaC3TILES version 1.0
John Thuburn
Geosci. Model Dev., 18, 3331–3357, https://doi.org/10.5194/gmd-18-3331-2025,https://doi.org/10.5194/gmd-18-3331-2025, 2025
Short summary
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary
Numerical simulations of ocean surface waves along the Australian coast with a focus on the Great Barrier Reef
Xianghui Dong, Qingxiang Liu, Stefan Zieger, Alberto Alberello, Ali Abdolali, Jian Sun, Kejian Wu, and Alexander V. Babanin
EGUsphere, https://doi.org/10.5194/egusphere-2025-698,https://doi.org/10.5194/egusphere-2025-698, 2025
Short summary
CLAQC v1.0 – Country Level Air Quality Calculator: an empirical modeling approach
Stefania Renna, Francesco Granella, Lara Aleluia Reis, and Paulina Schulz-Antipa
Geosci. Model Dev., 18, 2373–2408, https://doi.org/10.5194/gmd-18-2373-2025,https://doi.org/10.5194/gmd-18-2373-2025, 2025
Short summary

Cited articles

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM T. Math. Softw., 40, 1–37, https://doi.org/10.1145/2566630, 2014. a
Amestoy, P., Duff, I. S., Koster, J., and L'Excellent, J.-Y.: A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, 23, 15–41, 2001. a
Amestoy, P., Buttari, A., L'Excellent, J.-Y., and Mary, T.: Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM T. Math. Softw., 45, 2:1–2:26, 2019. a
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc/TAO Users Manual, Tech. Rep. ANL-21/39 – Revision 3.21, Argonne National Laboratory, https://doi.org/10.2172/2205494, 2024. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Download
Executive editor
Parallelization is important for speeding up complex geoscientific models. In addition to spatial parallelization, several parallel-in-time (PinT) methods have been developed. This paper introduces the reader to PinT methods for hyperbolic and geophysical models, and it presents the asQ library which facilitates the implementation of diagonalization-based (ParaDiag) methods.
Short summary
Effectively using modern supercomputers requires massively parallel algorithms. Time-parallel algorithms calculate the system state (e.g. the atmosphere) at multiple times simultaneously and have exciting potential but are tricky to implement and still require development. We have developed software to simplify implementing and testing the ParaDiag algorithm on supercomputers. We show that for some atmospheric problems it can enable faster or more accurate solutions than traditional techniques.
Share