Articles | Volume 18, issue 14
https://doi.org/10.5194/gmd-18-4535-2025
https://doi.org/10.5194/gmd-18-4535-2025
Model description paper
 | Highlight paper
 | 
25 Jul 2025
Model description paper | Highlight paper |  | 25 Jul 2025

asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond

Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter

Related authors

Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022,https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary

Cited articles

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM T. Math. Softw., 40, 1–37, https://doi.org/10.1145/2566630, 2014. a
Amestoy, P., Duff, I. S., Koster, J., and L'Excellent, J.-Y.: A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, 23, 15–41, 2001. a
Amestoy, P., Buttari, A., L'Excellent, J.-Y., and Mary, T.: Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM T. Math. Softw., 45, 2:1–2:26, 2019. a
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc/TAO Users Manual, Tech. Rep. ANL-21/39 – Revision 3.21, Argonne National Laboratory, https://doi.org/10.2172/2205494, 2024. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Download
Executive editor
Parallelization is important for speeding up complex geoscientific models. In addition to spatial parallelization, several parallel-in-time (PinT) methods have been developed. This paper introduces the reader to PinT methods for hyperbolic and geophysical models, and it presents the asQ library which facilitates the implementation of diagonalization-based (ParaDiag) methods.
Short summary
Effectively using modern supercomputers requires massively parallel algorithms. Time-parallel algorithms calculate the system state (e.g. the atmosphere) at multiple times simultaneously and have exciting potential but are tricky to implement and still require development. We have developed software to simplify implementing and testing the ParaDiag algorithm on supercomputers. We show that for some atmospheric problems it can enable faster or more accurate solutions than traditional techniques.
Share