Articles | Volume 18, issue 11
https://doi.org/10.5194/gmd-18-3509-2025
https://doi.org/10.5194/gmd-18-3509-2025
Development and technical paper
 | 
13 Jun 2025
Development and technical paper |  | 13 Jun 2025

DustNet (v1): skilful neural network predictions of dust aerosols over the Saharan desert

Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, and Stefan Siegert

Related authors

Using seasonal forecasts to enhance our understanding of extreme wind and precipitation impacts from extratropical cyclones
Jacob William Maddison, Jennifer Louise Catto, Sandra Hansen, Ching Ho Justin Ng, and Stefan Siegert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2138,https://doi.org/10.5194/egusphere-2025-2138, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Using seasonal forecasts to enhance our understanding of extreme European windstorm impacts
Jacob William Maddison, Jennifer Louise Catto, Sandra Hansen, Ching Ho Justin Ng, and Stefan Siegert
EGUsphere, https://doi.org/10.5194/egusphere-2024-686,https://doi.org/10.5194/egusphere-2024-686, 2024
Preprint archived
Short summary

Related subject area

Earth and space science informatics
RiverBedDynamics v1.0: a Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025,https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary
The Earth System Grid Federation (ESGF) Virtual Aggregation (CMIP6 v20240125)
Ezequiel Cimadevilla, Bryan N. Lawrence, and Antonio S. Cofiño
Geosci. Model Dev., 18, 2461–2478, https://doi.org/10.5194/gmd-18-2461-2025,https://doi.org/10.5194/gmd-18-2461-2025, 2025
Short summary
Can AI be enabled to perform dynamical downscaling? A latent diffusion model to mimic kilometer-scale COSMO5.0_CLM9 simulations
Elena Tomasi, Gabriele Franch, and Marco Cristoforetti
Geosci. Model Dev., 18, 2051–2078, https://doi.org/10.5194/gmd-18-2051-2025,https://doi.org/10.5194/gmd-18-2051-2025, 2025
Short summary
DNS (v1.0): An open source ray-tracing tool for space geodetic techniques
Florian Zus, Kyriakos Balidakis, Ali Hasan Dogan, Rohith Thundathil, Galina Dick, and Jens Wickert
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-237,https://doi.org/10.5194/gmd-2024-237, 2025
Revised manuscript accepted for GMD
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: A system for large-scale machine learning, arXiv [preprint], https://doi.org/10.48550/arXiv.1605.0869, 2016. a
Agarap, A. F.: Deep learning using Rectified Linear Units (ReLu), arXiv [preprint], https://doi.org/10.48550/arXiv.1803.08375, 2018. a
Anuforom, A. C.: Spatial distribution and temporal variability of Harmattan dust haze in sub-Sahel West Africa, Atmos. Environ., 41, 9079–9090, 2007. a, b, c, d, e, f, g
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a
Balkanski, Y., Bonnet, R., Boucher, O., Checa-Garcia, R., and Servonnat, J.: Better representation of dust can improve climate models with too weak an African monsoon, Atmos. Chem. Phys., 21, 11423–11435, https://doi.org/10.5194/acp-21-11423-2021, 2021. a, b, c, d
Download
Short summary
The DustNet model uses deep neural networks to accurately predict Saharan mineral dust transport in the atmosphere. It offers fast and precise forecasts with predictions achieved in just 2.1 s on a standard computer. This innovative approach outperforms traditional models, which take hours to produce a forecast and use high-energy supercomputers. By making high-quality dust monitoring accessible and efficient, DustNet can improve weather, climate, and air quality forecasts.
Share