Articles | Volume 18, issue 11
https://doi.org/10.5194/gmd-18-3509-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-3509-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DustNet (v1): skilful neural network predictions of dust aerosols over the Saharan desert
Trish E. Nowak
CORRESPONDING AUTHOR
Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 QH, UK
Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
Andy T. Augousti
Department of Mechanical Engineering, Kingston University, London, SW15 3DW, UK
Benno I. Simmons
Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
Stefan Siegert
CORRESPONDING AUTHOR
Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 QH, UK
Related authors
No articles found.
Paul Bell, Jennifer Catto, Anne Jones, and Stefan Siegert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4110, https://doi.org/10.5194/egusphere-2025-4110, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Precipitation weather generators are statistical models that simulate local precipitation for downscaling applications. This study develops a precipitation weather generator for the UK that uses a recent dataset of discrete storm types which assigns areas to be thunderstorms, cyclones or fronts. Results show this dataset improves the weather generator, with improvement quantified using proper scoring rules, which score the weather generator on how close its output is to observations.
Jacob William Maddison, Jennifer Louise Catto, Sandra Hansen, Ching Ho Justin Ng, and Stefan Siegert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2138, https://doi.org/10.5194/egusphere-2025-2138, 2025
Short summary
Short summary
Strong winds and heavy precipitation in extratropical cyclones can cause significant damage, and also considerable losses. Here, we estimate the worst case scenarios in terms of impacts that could occur in todays climate resulting from wind and precipitation in extratropical cyclones. We find impacts roughly 1.5 times more severe than any in the historical record for 14 countries considered in Northwestern/Central Europe. These damages would incur costs into the billions of pounds for insurers.
Jacob William Maddison, Jennifer Louise Catto, Sandra Hansen, Ching Ho Justin Ng, and Stefan Siegert
EGUsphere, https://doi.org/10.5194/egusphere-2024-686, https://doi.org/10.5194/egusphere-2024-686, 2024
Preprint archived
Short summary
Short summary
In this work we estimate the impact of the most extreme European windstorms that could occur in the current climate. Using a large dataset of windstorm footprints created seasonal forecast model output, we find windstorms that are more extreme than any previously observed for most of the countries considered. Impacts from these extreme windstorms are expected to be around 1.5 times stronger than the most extreme storm on record. This information is highly valuable in the insurance industry.
Cited articles
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: A system for large-scale machine learning, arXiv [preprint], https://doi.org/10.48550/arXiv.1605.0869, 2016. a
Agarap, A. F.: Deep learning using Rectified Linear Units (ReLu), arXiv [preprint], https://doi.org/10.48550/arXiv.1803.08375, 2018. a
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a
Balkanski, Y., Bonnet, R., Boucher, O., Checa-Garcia, R., and Servonnat, J.: Better representation of dust can improve climate models with too weak an African monsoon, Atmos. Chem. Phys., 21, 11423–11435, https://doi.org/10.5194/acp-21-11423-2021, 2021. a, b, c, d
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008jd011115, 2009. a
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. a, b, c, d
Bozzo, A., Remy, S., Benedetti, A., Flemming, J., Bechtold, P., Rodwell, M., and Morcrette, J.-J.: Implementation of a CAMS-based aerosol climatology in the IFS, Tech. rep., European Centre for Medium-Range Weather Forecasts Reading, UK, https://doi.org/10.21957/84ya94mls, 2017. a, b
Bozzo, A., Benedetti, A., Flemming, J., Kipling, Z., and Rémy, S.: An aerosol climatology for global models based on the tropospheric aerosol scheme in the Integrated Forecasting System of ECMWF, Geosci. Model Dev., 13, 1007–1034, https://doi.org/10.5194/gmd-13-1007-2020, 2020. a, b
Carlson, T. N. and Prospero, J. M.: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic, J. Appl. Meteorol. Clim., 11, 283–297, 1972. a
Chollet, F.: Keras, Github [code], https://github.com/fchollet/keras (last access: 23 June 2023), 2015. a
Copernicus Atmosphere Monitoring Service: CAMS global atmospheric composition forecasts, Copernicus Atmosphere Monitoring Service (CAMS) Atmosphere Data Store [data set], https://doi.org/10.24381/04a0b097, 2021. a
Covert, I., Lundberg, S., and Lee, S.-I.: Explaining by removing: A unified framework for model explanation, J. Mach. Learn. Res., 22, 1–90, 2021. a
Daoud, N., Eltahan, M., and Elhennawi, A.: Aerosol optical depth forecast over global dust belt based on LSTM, CNN-LSTM, CONV-LSTM and FFT algorithms, in: IEEE EUROCON 2021-19th International Conference on Smart Technologies, IEEE, 186–191, https://doi.org/10.1109/EUROCON52738.2021.9535571, 2021. a
Dumoulin, V. and Visin, F.: A guide to convolution arithmetic for deep learning, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.07285, 2016. a
Düben, P., Modigliani, U., Geer, A., Siemen, S., Pappenberger, F., Bauer, P., Brown, A., Palkovic, M., Raoult, B., Wedi, N., and Baousis, V.: Machine learning at ECMWF: A roadmap for the next 10 years, https://doi.org/10.21957/ge7ckgm, 2021. a
Evan, A. T., Flamant, C., Fiedler, S., and Doherty, O.: An analysis of aeolian dust in climate models, Geophys. Res. Lett., 41, 5996–6001, 2014. a
Friese, C. A., van Hateren, J. A., Vogt, C., Fischer, G., and Stuut, J.-B. W.: Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania, Atmos. Chem. Phys., 17, 10163–10193, https://doi.org/10.5194/acp-17-10163-2017, 2017. a
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50, 3, https://doi.org/10.1029/2012rg000388, 2012. a
Gliß, J., Mortier, A., Schulz, M., Andrews, E., Balkanski, Y., Bauer, S. E., Benedictow, A. M. K., Bian, H., Checa-Garcia, R., Chin, M., Ginoux, P., Griesfeller, J. J., Heckel, A., Kipling, Z., Kirkevåg, A., Kokkola, H., Laj, P., Le Sager, P., Lund, M. T., Lund Myhre, C., Matsui, H., Myhre, G., Neubauer, D., van Noije, T., North, P., Olivié, D. J. L., Rémy, S., Sogacheva, L., Takemura, T., Tsigaridis, K., and Tsyro, S. G.: AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations, Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, 2021. a, b, c, d, e
Goroshin, R., Bruna, J., Tompson, J., Eigen, D., and LeCun, Y.: Unsupervised Learning of Spatiotemporally Coherent Metrics, in: 2015 IEEE International Conference on Computer Vision (ICCV), 4086–4093, https://doi.org/10.1109/ICCV.2015.465, 2015. a
Hartman, L. and Hössjer, O.: Fast kriging of large data sets with Gaussian Markov random fields, Comput. Stat. Data An., 52, 2331–2349, 2008. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1979 to present, Climate Data Store [data set], https://doi.org/10.24381/cds.bd0915c6, 2018. a, b
Highwood, E. J. and Ryder, C. L.: Radiative Effects of Dust, Springer Netherlands, Dordrecht, 267–286, ISBN 9789401789783, https://doi.org/10.1007/978-94-017-8978-3_11, 2014. a
Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M.: The “wake-sleep” algorithm for unsupervised neural networks, Science, 268, 1158–1161, 1995. a
Hubanks, P., Platnick, S., King, M., and Ridgway, B.: MODIS Atmosphere L3 gridded product algorithm theoretical basis document (atbd) & users guide, ATBD reference number ATBD-MOD-30, NASA, 125, 585, https://eospso.gsfc.nasa.gov/atbd-category/47 (last access: 14 July 2023), 2015. a
Janicot, S., Thorncroft, C. D., Ali, A., Asencio, N., Berry, G., Bock, O., Bourles, B., Caniaux, G., Chauvin, F., Deme, A., Kergoat, L., Lafore, J.-P., Lavaysse, C., Lebel, T., Marticorena, B., Mounier, F., Nedelec, P., Redelsperger, J.-L., Ravegnani, F., Reeves, C. E., Roca, R., de Rosnay, P., Schlager, H., Sultan, B., Tomasini, M., Ulanovsky, A., and ACMAD forecasters team: Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006, Ann. Geophys., 26, 2569–2595, https://doi.org/10.5194/angeo-26-2569-2008, 2008. a
Jewell, A. M., Drake, N., Crocker, A. J., Bakker, N. L., Kunkelova, T., Bristow, C. S., Cooper, M. J., Milton, J. A., Breeze, P. S., and Wilson, P. A.: Three North African dust source areas and their geochemical fingerprint, Earth Planet. Sc. Lett., 554, 116645, https://doi.org/10.1016/j.epsl.2020.116645, 2021. a, b, c, d
Jickells, T., Boyd, P., and Hunter, K. A.: Biogeochemical Impacts of Dust on the Global Carbon Cycle, Springer Netherlands, Dordrecht, 359–384, ISBN 9789401789783, https://doi.org/10.1007/978-94-017-8978-3_14, 2014. a, b
Kang, S., Kim, N., and Lee, B.-D.: Fine dust forecast based on recurrent neural networks, in: 2019 21st International Conference on Advanced Communication Technology (ICACT), IEEE, 456–459, https://doi.org/10.23919/ICACT.2019.8701978, 2019. a
Kaufman, Y., Koren, I., Remer, L., Tanré, D., Ginoux, P., and Fan, S.: Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean, J. Geophys. Res.-Atmos., 110, D10S12, https://doi.org/10.1029/2003JD004436, 2005. a, b
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.6980, 2014. a
Knippertz, P. and Stuut, J.-B. W.: Mineral Dust: A key player in the Earth system, Springer Netherlands, Dordrecht, ISBN 9789401789783, https://doi.org/10.1007/978-94-017-8978-3_1, 2014. a
Knippertz, P., Fink, A. H., Deroubaix, A., Morris, E., Tocquer, F., Evans, M. J., Flamant, C., Gaetani, M., Lavaysse, C., Mari, C., Marsham, J. H., Meynadier, R., Affo-Dogo, A., Bahaga, T., Brosse, F., Deetz, K., Guebsi, R., Latifou, I., Maranan, M., Rosenberg, P. D., and Schlueter, A.: A meteorological and chemical overview of the DACCIWA field campaign in West Africa in June–July 2016, Atmos. Chem. Phys., 17, 10893–10918, https://doi.org/10.5194/acp-17-10893-2017, 2017. a, b
Kok, J. F., Adebiyi, A. A., Albani, S., Balkanski, Y., Checa-Garcia, R., Chin, M., Colarco, P. R., Hamilton, D. S., Huang, Y., Ito, A., Klose, M., Leung, D. M., Li, L., Mahowald, N. M., Miller, R. L., Obiso, V., Pérez García-Pando, C., Rocha-Lima, A., Wan, J. S., and Whicker, C. A.: Improved representation of the global dust cycle using observational constraints on dust properties and abundance, Atmos. Chem. Phys., 21, 8127–8167, https://doi.org/10.5194/acp-21-8127-2021, 2021a. a
Kok, J. F., Adebiyi, A. A., Albani, S., Balkanski, Y., Checa-Garcia, R., Chin, M., Colarco, P. R., Hamilton, D. S., Huang, Y., Ito, A., Klose, M., Li, L., Mahowald, N. M., Miller, R. L., Obiso, V., Pérez García-Pando, C., Rocha-Lima, A., and Wan, J. S.: Contribution of the world's main dust source regions to the global cycle of desert dust, Atmos. Chem. Phys., 21, 8169–8193, https://doi.org/10.5194/acp-21-8169-2021, 2021b. a, b, c
Kok, J. F., Storelvmo, T., Karydis, V. A., Adebiyi, A. A., Mahowald, N. M., Evan, A. T., He, C., and Leung, D. M.: Mineral dust aerosol impacts on global climate and climate change, Nat. Rev. Earth Environ., 4, 71–86, https://doi.org/10.1038/s43017-022-00379-5, 2023. a, b, c, d
Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Martins, J. V., and Rosenfeld, D.: The Bodélé Depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest, Environ. Res. Lett., 1, 014005, https://doi.org/10.1088/1748-9326/1/1/014005, 2006. a, b
Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.: Learning skillful medium-range global weather forecasting, Science, 382, 6677, https://doi.org/10.1126/science.adi2336, 2023. a, b, c
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a, b
Mari, C. H., Cailley, G., Corre, L., Saunois, M., Attié, J. L., Thouret, V., and Stohl, A.: Tracing biomass burning plumes from the Southern Hemisphere during the AMMA 2006 wet season experiment, Atmos. Chem. Phys., 8, 3951–3961, https://doi.org/10.5194/acp-8-3951-2008, 2008. a
Mbourou, G., Bertrand, J., and Nicholson, S.: The diurnal and seasonal cycles of wind-borne dust over Africa north of the equator, J. Appl. Meteorol. Clim., 36, 868–882, 1997. a
Miller, R. L., Knippertz, P., Pérez García-Pando, C., Perlwitz, J. P., and Tegen, I.: Impact of Dust Radiative Forcing upon Climate, Springer Netherlands, Dordrecht, 327–357, ISBN 9789401789783, https://doi.org/10.1007/978-94-017-8978-3_13, 2014. a
Mitchell, T.: Elevation Data in netCDF, http://research.jisao.washington.edu/data_sets/elevation/ (last access: 29 July 2023), 2014. a
Molnar, C.: Interpretable Machine Learning, Chapter 10: Neural Network Interpretation, 2nd edn., Github, https://christophm.github.io/interpretable-ml-book (last access: 18 December 2023), 2022. a
Morcrette, J.-J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars, A., Benedetti, A., Bonet, A., Kaiser, J. W., Razinger, M., Schulz, M., Serrar, S., Simmons, A. J., Sofiev, M., Suttie, M., Tompkins, A. M., and Untch, A.: Aerosol analysis and forecast in the European Centre for medium-range weather forecasts integrated forecast system: Forward modeling, J. Geophys. Res.-Atmos., 114, D06206, https://doi.org/10.1029/2008JD011235, 2009. a
Morman, S. A. and Plumlee, G. S.: Dust and Human Health, Springer Netherlands, Dordrecht, 385–409, ISBN 9789401789783, https://doi.org/10.1007/978-94-017-8978-3_15, 2014. a
Mulcahy, J. P., Walters, D. N., Bellouin, N., and Milton, S. F.: Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model, Atmos. Chem. Phys., 14, 4749–4778, https://doi.org/10.5194/acp-14-4749-2014, 2014. a
Nair, V. and Hinton, G. E.: Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th international conference on machine learning (ICML-10), 807–814, https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf (last access: 14 July 2023), 2010. a
N'Datchoh, E., Diallo, I., Konaré, A., Silué, S., Ogunjobi, K., Diedhiou, A., and Doumbia, M.: Dust induced changes on the West African summer monsoon features, Int. J. Climatol., 38, 452–466, 2018. a
Nenes, A., Murray, B., and Bougiatioti, A.: Mineral Dust and its Microphysical Interactions with Clouds, Springer Netherlands, Dordrecht, 287–325, ISBN 9789401789783, https://doi.org/10.1007/978-94-017-8978-3_12, 2014. a
Nowak, T. E., Augousti, A. T., Simmons, B. I., and Siegert, S.: DustNet – structured data and Python code to reproduce the model, statistical analysis and figures, Zenodo [code], https://doi.org/10.5281/zenodo.10631953, 2024a. a
Nowak, T. E., Augousti, A. T., Simmons, B. I., and Siegert, S.: Pre-processed daily ERA5 and MODIS AOD data (2003–2022) ready for use in AI/ML forecasting, Zenodo [data set], https://doi.org/10.5281/zenodo.10593151, 2024b. a
O'Sullivan, D., Marenco, F., Ryder, C. L., Pradhan, Y., Kipling, Z., Johnson, B., Benedetti, A., Brooks, M., McGill, M., Yorks, J., and Selmer, P.: Models transport Saharan dust too low in the atmosphere: a comparison of the MetUM and CAMS forecasts with observations, Atmos. Chem. Phys., 20, 12955–12982, https://doi.org/10.5194/acp-20-12955-2020, 2020. a
Parajuli, S. P., Jin, Q., and Francis, D.: Editorial: Atmospheric dust: How it affects climate, environment and life on Earth?, Front. Environ. Sci., 10, 1, https://doi.org/10.3389/fenvs.2022.1058052, 2022. a
Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., and Anandkumar, A.: FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators, ArXiv [preprint], https://doi.org/10.48550/arXiv.2202.11214, 2022. a
Platnick, S., King, M., and Hubanks, P.: MODIS Atmosphere L3 Daily Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center [data set], https://doi.org/10.5067/MODIS/MOD08_D3.006, 2015a. a
Platnick, S., King, M., and Hubanks, P.: MODIS Atmosphere L3 Daily Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center [data set], https://doi.org/10.5067/MODIS/MYD08_D3.006, 2015b. a
Prospero, J., Glaccum, R., and Nees, R.: Atmospheric transport of soil dust from Africa to South America, Nature, 289, 570–572, 1981. a
Prospero, J. M. and Carlson, T. N.: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean, J. Geophys. Res., 77, 5255–5265, 1972. a
Ramachandran, P., Zoph, B., and Le, Q. V.: Searching for activation functions, arXiv [preprint], https://doi.org/10.48550/arXiv.1710.05941, 2017. a
Rasamoelina, A. D., Adjailia, F., and Sinčák, P.: A review of activation function for artificial neural network, in: 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), IEEE, 281–286, https://doi.org/10.1109/SAMI48414.2020.9108717, 2020. a
Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., and Thuerey, N.: WeatherBench: a benchmark data set for data-driven weather forecasting, J. Adv. Model. Earth Sy., 12, e2020MS002203, https://doi.org/10.1029/2020MS002203, 2020. a
Ronneberger, O., Fischer, P., and Brox, T.: U-NET: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III, Springer, 18, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a
Rue, H. and Held, L.: Gaussian Markov random fields: theory and applications, Chapman and Hall/CRC press, New York, ISBN 9780429208829, https://doi.org/10.1201/9780203492024, 2005. a
Sarafian, R., Nissenbaum, D., Raveh-Rubin, S., Agrawal, V., and Rudich, Y.: Deep multi-task learning for early warnings of dust events implemented for the Middle East, npj Clim. Atmos. Sci., 6, 23, https://doi.org/10.1038/s41612-023-00348-9, 2023. a
Schepanski, K., Tegen, I., Laurent, B., Heinold, B., and Macke, A.: A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels, Geophys. Res. Lett., 34, L18803, https://doi.org/10.1029/2007GL030168, 2007. a, b
Schepanski, K., Heinold, B., and Tegen, I.: Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic, Atmos. Chem. Phys., 17, 10223–10243, https://doi.org/10.5194/acp-17-10223-2017, 2017. a, b
Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: An emerging core theme in Earth system science, Aeolian Res., 2, 181–204, 2011. a
Todd, M. C., Washington, R., Martins, J. V., Dubovik, O., Lizcano, G., M'bainayel, S., and Engelstaedter, S.: Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005, J. Geophys. Res.-Atmos., 112, D06207, https://doi.org/10.1029/2006JD007170, 2007. a, b, c
Van Der Does, M., Knippertz, P., Zschenderlein, P., Giles Harrison, R., and Stuut, J.-B. W.: The mysterious long-range transport of giant mineral dust particles, Sci. Adv., 4, eaau2768, https://doi.org/10.1126/sciadv.aau2768, 2018. a, b
Vandenbussche, S., Callewaert, S., Schepanski, K., and De Mazière, M.: North African mineral dust sources: new insights from a combined analysis based on 3D dust aerosol distributions, surface winds and ancillary soil parameters, Atmos. Chem. Phys., 20, 15127–15146, https://doi.org/10.5194/acp-20-15127-2020, 2020. a, b
Washington, R., Todd, M., Middleton, N. J., and Goudie, A. S.: Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations, Ann. Assoc. Am. Geograph., 93, 297–313, 2003. a
Washington, R., Bouet, C., Cautenet, G., Mackenzie, E., Ashpole, I., Engelstaedter, S., Lizcano, G., Henderson, G. M., Schepanski, K., and Tegen, I.: Dust as a tipping element: the Bodélé Depression, Chad, P. Natl. Acad. Sci. USA, 106, 20564–20571, 2009. a
Wu, C., Lin, Z., and Liu, X.: The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models, Atmos. Chem. Phys., 20, 10401–10425, https://doi.org/10.5194/acp-20-10401-2020, 2020. a
Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R.: Deconvolutional networks, in: 2010 IEEE Computer Society Conference on computer vision and pattern recognition, IEEE, 2528–2535, https://doi.org/10.1109/CVPR.2010.5539957, 2010. a, b
Zhao, A., Ryder, C. L., and Wilcox, L. J.: How well do the CMIP6 models simulate dust aerosols?, Atmos. Chem. Phys., 22, 2095–2119, https://doi.org/10.5194/acp-22-2095-2022, 2022. a, b
Short summary
The DustNet model uses deep neural networks to accurately predict Saharan mineral dust transport in the atmosphere. It offers fast and precise forecasts with predictions achieved in just 2.1 s on a standard computer. This innovative approach outperforms traditional models, which take hours to produce a forecast and use high-energy supercomputers. By making high-quality dust monitoring accessible and efficient, DustNet can improve weather, climate, and air quality forecasts.
The DustNet model uses deep neural networks to accurately predict Saharan mineral dust transport...