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Abstract. Suspended in the atmosphere are millions of
tonnes of mineral dust that interact with weather and climate.
Accurate representation of mineral dust in weather models is
vital, yet it remains challenging. Large-scale weather mod-
els use supercomputers and take hours to complete fore-
casts. Such computational burdens allow them to include
only monthly climatological means of mineral dust as in-
put states, inhibiting their forecasting accuracy. Here, we
introduce DustNet, a simple, accurate, and fast forecasting
model for predictions 24 h in advance of aerosol optical depth
(AOD). DustNet is a custom-built 2D convolutional neural
network (CNN) equipped with transposed convolution lay-
ers. The model is trained on selected ERA5 meteorology
and past MODIS AOD observational data as inputs. Our de-
sign of DustNet ensures that the model trains in less than
8 min and creates predictions in 2.1 s on a desktop com-
puter, without the need to utilise any graphics processing
units (GPUs). Predictions created by DustNet outperform the
state-of-the-art physics-based model at coarse 1°×1° resolu-
tion at 95 % of grid locations when compared to ground truth
satellite data. The test results show that the daily mean AOD
over the entire Saharan desert area is highly correlated with
MODIS observational data, with Pearson’s r2

= 0.91. Our
results demonstrate DustNet’s potential for fast and accurate
AOD forecasting, which can easily be utilised by researchers
without access to supercomputers or GPUs.

1 Introduction

The Earth’s atmosphere is loaded with approximately 26×
106 t of mineral dust – an atmospheric aerosol that repre-
sents the vast majority of mass burden in the atmosphere
(Gliß et al., 2021; Kok et al., 2023). Each year, major sources
emit nearly 5000×106 t of dust globally (Kok et al., 2021a),
and, although the majority of this material sinks at the source,
a substantial portion is transported over vast distances (Van
Der Does et al., 2018). Once in the atmosphere, mineral dust
interacts with Earth systems and impacts weather, climate,
human health, and infrastructure, from fisheries to aviation
(Shao et al., 2011; Knippertz and Stuut, 2014; Highwood and
Ryder, 2014; Nenes et al., 2014; Miller et al., 2014; Jickells
et al., 2014; Morman and Plumlee, 2014; Kok et al., 2023).

Despite its importance, representing atmospheric dust
aerosols in weather and climate models is challenging (Para-
juli et al., 2022; Kok et al., 2023). For example, physics-
based numerical weather prediction (NWP) and climate
models struggle to fully represent the dust cycle with ad-
equate emission, transport, and generation (Evan et al.,
2014; Kok et al., 2021b; Gliß et al., 2021; Zhao et al.,
2022). Instead, the Integrated Forecasting System (IFS) of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) creates predictions that use aerosol optical depth
(AOD) based on monthly-mean climatological fields only
(Bozzo et al., 2017). A limitation in computational resources
is highlighted as one of the reasons for the lack of a dedi-
cated aerosol scheme, since such a development would sig-
nificantly increase the computational burden of the system
(Mulcahy et al., 2014). The monthly-mean AOD, developed
by the Copernicus Atmosphere Monitoring Service (CAMS),
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provides a reasonable trade-off in global weather forecast-
ing. However, a more accurate representation of the AOD
would have significant benefits, such as large improvements
in the representation of the summer monsoon circulation or
precipitation patterns in the Sahel region (Bozzo et al., 2020;
Balkanski et al., 2021).

Recent developments in the field of AI present a signif-
icant opportunity to overcome the computational burden of
a dedicated physics-based aerosol scheme. Models such as
GraphCast, Pangu-Weather, and FourCastNet can now skil-
fully predict the main ERA5 variables and in many cases out-
perform the state-of-the-art NWP models (Lam et al., 2023;
Bi et al., 2023; Pathak et al., 2022). To date, attempts to fore-
cast atmospheric aerosols with neural network architectures
have shown varying levels of success. “Satisfying” results
were reported (Kang et al., 2019; Daoud et al., 2021) when
applying long short-term memory (LSTM) architecture to lo-
cal AOD forecasts. The application of U-Net architecture re-
vealed a skilful detection of classified “dust events” at a 67 %
precision rate (Sarafian et al., 2023). A lack of comparisons
to current physics-based forecasts or inclusion of standard-
ised skill metrics makes direct comparison between AOD
forecasting models nearly impossible.

Here, we present a unique application of 2D convolutional
neural networks (CNNs) to forecast atmospheric aerosol lev-
els. We use our model (hereafter DustNet) to produce spatial
forecasts 24 h in advance of AOD over North Africa. The
computationally cheap DustNet runs on a modestly config-
ured laptop rather than on a high-power computer (HPC) –
requiring only a fraction of the computational power needed
by traditional NWP models. The model trains in less than
8 min and predicts in 2.1 s. We compare the predictions
of DustNet and the corresponding daily CAMS forecasts
against the satellite-derived data using standard evaluation
metrics, such as the root mean squared error (RMSE) and
an accuracy correlation coefficient, to facilitate easy com-
parison with future AI models. The advantage of a smaller
processing power requirement and the rapid speed of predic-
tion, combined with the accuracy of the forecast, makes our
model a valuable complement to traditional AOD forecasting
systems.

2 Methods

2.1 Study area

To effectively forecast dust aerosols, our study area encom-
passes the world’s principal dust generation source – the Sa-
hara – which is responsible for over 55 % of the 1536×
106 t of total global dust emitted annually (Ginoux et al.,
2012). The region covers an area from 0–31° N to 20° W–
31° E (51× 31 grid cells), with a longitudinal centre around
the Bodélé Depression (16.5° N, 16.5° E). Located in north-
ern Chad, this single location generates an estimated 6 %–

18 % of global dust emissions, which total to approximately
182(±65)× 106 t yr−1. The region is of major importance
in models that seek to capture dust generation (Todd et al.,
2007). To capture the seasonal southwestward dust transport
across the Sahara and towards the Atlantic Ocean, our region
includes additional grid cells to the south and west of the
Bodélé Depression.

This choice allowed us to gain a sufficient amount of
training data, with 51× 31 grid cells providing 1581 pixels
for each training day, thereby ensuring robust model perfor-
mance. By selecting this region, we were able to strike a bal-
ance between training efficiency, training speed, and predic-
tion accuracy, making it possible to achieve effective dust
aerosol forecasting. Furthermore, this approach enabled us
to train the model on a traditional desktop computer without
relying on cloud resources for data storage, making our ap-
proach more accessible and cost-effective. Additionally, the
study region effectively captures dust aerosol generation and
transport on selected features, which is essential for accu-
rate forecasting. Finally, by minimising the area to the Sa-
haran desert and, consequently, reducing the number of cho-
sen training features, we were able to avoid adding different
ocean and terrain processes, leading to reduced model com-
plexity without compromising performance.

2.2 Datasets

2.2.1 AOD data

We retrieved the AOD data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument located on
board both Aqua and Terra spacecraft. With the daily tempo-
ral resolution over a period of 20 years starting from 1 Jan-
uary 2003 to 31 December 2022, the AOD data yield 2×7305
files. We used quality-controlled Level-3 data for AOD at
550 nm. Choosing the combined mean of the Dark Target
and Deep Blue algorithms provided full coverage above
bright and dark surfaces at a horizontal resolution of 1° × 1°
(Hubanks et al., 2015). This choice provided good spatiotem-
poral coverage of AOD data above both land and ocean sur-
faces.

2.2.2 ERA5 data

Meteorological data come from the fifth generation of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis (ERA5) project and con-
sists of five parameters: the wind component u, the wind
component v, vertical velocity, temperature, and relative hu-
midity. Each parameter was retrieved at five pressure levels:
550, 750, 850, 950, and 1000 hPa. This choice provided us
with 35 distinctive features representing atmospheric con-
ditions from ground level to ≈ 5 km in vertical height. The
ERA5 data are available on an hourly basis, but here we
only chose the data representing conditions for midday
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(12:00 UTC). This allowed us to represent the mid-point in
atmospheric conditions between the Terra and Aqua satellite
overpasses above the Equator (10:30 and 13:30 UTC, respec-
tively). To further match the meteorological data with AOD,
we chose a daily temporal resolution between 2003 and 2022.
The horizontal resolution of ERA5 data is 0.25° × 0.25°. To
match this with the AOD resolution of 1° ×1°, the data were
regridded (see Sect. 2.3 for details).

2.2.3 Timestamps

We created timestamps using the NumPy package (version
1.23.0) in Python with a daily temporal resolution of over
20 years from 2003 to 2022 (7305 d). We then expanded the
array dimensions through replication to match the exact spa-
tial resolution of atmospheric variables, resulting in a cover-
age of 31× 51 grid cells for each day.

2.2.4 Elevation

We obtained global elevation data at a resolution of 1° × 1°
from the Joint Institute for the Study of the Atmosphere and
Ocean at the University of Washington (Mitchell, 2014) and
extracted grid locations for our study area. Similar to the
timestamp data (see Sect. 2.2.3), we expanded the terrain ar-
ray’s dimensions to match the temporal resolution of the at-
mospheric variables. This was achieved through replication,
resulting in an array shape of 7305× 31× 51× 1.

2.2.5 CAMS forecast

We obtained daily total aerosol optical depth at 550 nm fore-
cast data from CAMS global atmospheric composition fore-
casts. CAMS forms part of the ECMWF Integrated Forecast-
ing System (IFS) and is a sophisticated numerical weather
prediction (NWP) model (Bozzo et al., 2017). During the
AOD data assimilation process, CAMS utilises data from
MODIS, among other satellites, together with data from
ground-based observation stations. The model then uses
physics and chemistry principles to forecast hourly AOD val-
ues on a single level for up to 5 d (120 h) ahead (Morcrette
et al., 2009; Benedetti et al., 2009). For consistency, we only
chose forecasts representing 12:00 UTC to capture the mid-
point conditions between Aqua and Terra overpasses above
the Equator. The choice of temporal extent was also matched
to our predictions. Therefore, we initiated forecasts on mid-
day from 1 January 2020 until 30 December 2022 for 1095 d
of forecast between 2 January 2020 and 31 December 2022.
CAMS data are provided at a 0.4° × 0.4° spatial resolution.
To match our data, we therefore used the same approach as
for the ERA5 datasets to regrid to a 1°×1° resolution (details
in Sect. 2.3).

2.3 Data pre-processing

2.3.1 Data imputation

We combined data from the MODIS Aqua and Terra data
sources at each individual location and time by labelling
AOD data as missing whenever both sources were missing,
using available data from one source if the other was miss-
ing, and averaging both sources whenever both were avail-
able. This data combination step reduces the total fraction
of missing AOD values from 32.81 % in Aqua and 30.89 %
in Terra to 19.89 % in the combined dataset. The remain-
ing missing AOD values are imputed by spatial interpolation
(individually for each time step) using lattice kriging (Hart-
man and Hössjer, 2008; Rue and Held, 2005) on four nearest
neighbours with uniform weights. To validate the imputation
method, we randomly held out 10 % of the AOD data and
compared them to their imputed values. The mean squared
error (MSE) of the imputed values is 0.005, which is less than
5.30 % of the total variance of the AOD data. The MSE was
found to be insensitive to the choice of the Kriging hyperpa-
rameter, with relative differences of less than 0.0003 % over
a wide range of values (see Fig. S1 in the Supplement). See
the “Code and data availability” section for links containing
the pre-processed data and full Python code for imputation.

2.3.2 ERA5 regridding

The ERA5 data (Hersbach et al., 2018) are supplied with a
horizontal resolution of 0.25°×0.25° and thus needed regrid-
ding to match the AOD resolution. We processed all meteo-
rological data using Python version 3.8.13 and the Iris v3.2.1
package. We used nearest-neighbour interpolation from the
Iris package to convert each feature to a common 1°×1° res-
olution.

2.3.3 Feature engineering

To enhance the model’s predictive skill, we incorporated two
aspects of feature engineering: AOD lag and seasonal fea-
tures. To account for temporal dependences, we use 5 preced-
ing days of AOD data as features to predict AOD on a given
day. Hence, we had to remove the first five timestamps from
the database as these did not have complete features avail-
able, consequently reducing the total number of timestamps
to 7300. Additionally, we included trigonometric transforma-
tions of timestamps as seasonal features using the sine,

x
(42)
ij t = sin

(
2π

t

365.2425

)
, (1)

and similarly using the cosine,

x
(43)
ij t = cos

(
2π

t

365.2425

)
, (2)

where t represents the day of the year. Timestamps are con-
stant across space and allow the model to represent periodic
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variations on seasonal timescales. Thus, together with times-
tamps, our final total input consisted of 43 features.

2.3.4 Combining and normalising

We combined the meteorological data with AOD data into a
single 4D NumPy array of shape 7300, 51, 31, and 43, where
the first dimension represents time; the second and third di-
mensions are longitude and latitude, respectively; and fea-
tures are stored along the last dimension. Let x_ij t be the
value of feature x at grid point i,j and time t . We normalised
all features using min–max normalisation:

xij t,norm =
(xij t − xmin)

(xmax− xmin)
, (3)

where xmin and xmax are the overall minimum and maximum
of a feature x over all grid points and timestamps in the train-
ing data.

2.3.5 Training, validation, and test split of data

We split the data along the time dimension into 70 %, 15 %,
and 15 % for training, validation, and test sets, respectively.
Splitting data with consecutive time steps yielded better re-
sults than a random split. Therefore, the training set cov-
ered 5110 consecutive days from 6 January 2003 until 1 Jan-
uary 2017 (inclusive of both days). The use of consecutive
time steps ensures that each subset is composed of data points
that are temporally distinct. This method reduces the risk of
autocorrelation and improves the model’s ability to gener-
alise to new, unseen data (Rasp et al., 2020). The validation
set took 1095 consecutive days from 2 January 2017 to 1 Jan-
uary 2020. Finally, we set aside a test set, with 1095 d of
data from 2 January 2020 to 31 December 2022. We made
sure that the model never had access to the test set during the
training and validation processes, and only after these were
complete did we introduce the test data and run our model to
obtain predictions. All pre-processed data and code are avail-
able for download from a public repository (see the “Code
and data availability” section for links to both data and code).

2.4 Designing CNN models

To find the best forecast of the daily AOD, we designed
three CNN models based on Hinton et al. (1995), LeCun
et al. (2015), and Goroshin et al. (2015). We used the
end-to-end open-source machine learning platform Tensor-
Flow 2, together with the Keras high-level API (Abadi et al.,
2016; Chollet, 2015). Each model uses a different architec-
ture based on two-dimensional (2D) convolutions (hereafter
Conv2D). In general, the Conv2D neural network architec-
ture enables regression problems in image analysis to be ad-
dressed and is particularly effective at capturing spatial pat-
terns in 2D images. The efficiency of TensorFlow allows
training and inference to be run on traditional desktops or
laptops rather than requiring HPCs. All models described

hereafter were run using Python version 3.10.10 on a Mac-
Book Pro with an Apple M1 Pro and 32 GB RAM. Since the
models did not use any GPUs, they can be easily replicated
by users without access to a supercomputer.

We chose the Adam optimiser and the mean squared er-
ror (MSE) as a loss function. These options offered optimal
results in terms of training times and were used for further
analysis. For the Adam optimiser, we used a learning rate of
0.001 and an exponential decay rate of 0.9, which are default
settings, following Kingma and Ba (2014).

We determined the optimal size of the convolving win-
dow (kernel size) and the number of strides with a series
of diagnostic tests. The results of these tests are presented
in Table 1, with the optimal choice in bold based on min-
imising the mean squared error and the speed of the training
time. The final design included a kernel size of (2,2) with a
stride equal to 2, which produced the optimal MSE to train-
ing time ratio. We recognise that we have not tested every
possible combination; thus it may be possible to achieve a
better-performing design. Python codes for all three models
with accompanying training data are available for download
from a public repository (see “Data and code availability”
section for links).

We initially assigned 50 epochs to each training regime
and monitored the performance using the mean squared er-
ror of training to validation loss. We also configured each
model with early stopping and a patience of four epochs. This
setup halts the training time when there is no improvement in
validation loss after four consecutive iterations and prevents
the model from over-fitting to training data (see Supplement
Fig. S2). Our setup saved the optimal ratio of training time
versus validation loss and used the best performance to run
predictions. Below, each model’s architecture is described in
detail.

2.4.1 Conv2D model

For the first AOD prediction model, we adapted a classi-
cal design of CNN. The Conv2D architecture, inspired by
the visual system, applies filters (or convolutions) to capture
spatial patterns in 2D images (LeCun et al., 2015). The net-
work performs feature extraction and learns representations
at different scales. Such representations allow the network
to identify relevant information and thus make predictions.
Learning the complex representation is made possible by the
non-linearity provided to the model by a correctly chosen ac-
tivation function. Ramachandran et al. (2017) suggested an
improvement to the popular rectified linear unit or “ReLU”
activation function (Agarap, 2018; Nair and Hinton, 2010) by
proposing the Swish activation function. This method gained
popularity as it is capable of smoother output representation
and more consistent performance (Rasamoelina et al., 2020).
Since the Swish activation function proved to yield the best
performance, we used it with all five hidden layers. Each hid-
den layer in our Conv2D model was designed with a maxi-
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Table 1. Effects of choosing different kernel sizes on training time and MSE for two models: Conv2D and U-NET. For simplicity, this test
was run on a subset of data. The optimal choice is presented in bold font. Note that a small improvement in the MSE for a kernel size of
(3,3) was disregarded in favour of a much faster training time and time per step for a kernel size of (2,2).

Conv2D U-NET

Kernel size (5,5) (3,3) (2,2) (5,5) (3,3) (2,2)

Training time 42 min 23 min 3 min 1 h 41 min 1 h 7 min 23 min
Time per step 28 s 28 s 12 s 144 s 140 s 88 s
MSE 0.00174 0.00133 0.00134 0.00175 0.00148 0.00151

mum of 264 and a minimum of 16 filters, as well as a 2× 2
kernel size, which specifies the height and width of the 2D
convolution window (see Fig. A1 for model sketch). The fi-
nal output convolution used a single hidden layer with the
ReLU activation function. An architecture constructed in this
way provided 218 673 trainable parameters.

2.4.2 U-NET model

The architecture of our second model employed a U-NET-
like design, first proposed by Ronneberger et al. (2015) for
the purpose of biomedical image classification. The model is
characterised by its “U”-shape design, which employs both
contracting and expanding pathways to identify specific fea-
tures within images. Here, we follow the approach of Ayzel
et al. (2020) who, inspired by U-NET, designed their Rain-
Net model for precipitation nowcasting. Thus, we also di-
vided our model into two parts, encoder and decoder, and
utilised skip connections between both paths via concate-
nation layers – unique features of the U-NET model. The
U-NET model design sketch can be found in Fig. A2. The
encoder (or contracting) pathway of the model included six
Conv2D layers with Swish activation and a 2×2 kernel size,
as well as two MaxPooling2D layers with a pool size of 2×2.
The decoder (or expanding) pathway had five Conv2D layers
with two UpSampling2D and two concatenate layers. The in-
put layers were bordered with a ZeroPadding2D layer, which
was cropped to the original size of 31×51 with Cropping2D
in the output layer. Unlike the original U-NET network, our
design received 4D arrays of shape 7300× 31× 51× 43 and
generated an output image with a shape of 31× 51× 1 for
each prediction time step. The final U-NET model architec-
ture provided 847 937 trainable parameters.

2.4.3 DustNet model

The last model design was built upon the architecture of
Conv2D and U-NET. This unique design replaces the con-
catenation layers with transpose convolution layers, also
known as deconvolutional networks (Zeiler et al., 2010).
Schematically represented in Fig. 1, the input layer was first
padded with a border of zeros (ZeroPadding2D), which in-
creased the input shape from 31× 51× 43 to 40× 64× 43.
ZeroPadding2D enabled the convolution to produce the same

Figure 1. Schematic representation of the DustNet model. Each of
the 6205 inputs is first padded with a border of zeros using Ze-
roPadding2D (light blue arrow) to increase input shape and allow
the convolution windows to detect the borders. The features are then
extracted by the 2D convolution window (pink arrows), which de-
creases input shape while increasing the number of trainable pa-
rameters. Deconvolution is then applied (yellow arrow) by includ-
ing a 2D transpose network, which increases the size of the input
(dark blue arrows) while maintaining connectivity between the lay-
ers. The output is then cropped back to match the initial input size
(cyan arrow) and sent through a final 2D convolution (green arrow)
to produce a prediction 24 h in advance.

output size for multiple input sizes (Dumoulin and Visin,
2016). We then applied the 2D convolving windows (Fig. 1
– pink arrows), which moved over each padded input with
a 2× 2 kernel size and 2× 2 strides that allow upsampling.
The first six layers of the convolving (or contracting) path-
way consisted of double 64, 128, and 256 filters, where every
second layer included strides. This allowed the model to de-
crease the input size while increasing the number of channels
(5×8×256). The “deconvolution” (or expanding) pathways
were then applied by adding six Conv2D transpose layers
with a reversed order of filters to the contracting pathway.
An advantage of transposed convolution is its ability to effi-
ciently upscale input data by applying inverse convolutions.
This enables the network to increase the size compared to the
input and thus generates high-resolution images at finer spa-
tial scales (Zeiler et al., 2010). A 2D cropping layer was then
added to bring the width and height back to their initial input
size of 31×51, while the final convolution with a single filter
matched the output with the desired target size of 31×51×1.
This architectural design allowed the model to create a total
of 1 291 009 trainable parameters.
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2.4.4 Baseline models

We set the baselines as AOD climatological mean and persis-
tence. The climatological means were calculated separately
at each spatial location as the mean AOD over the training
period. The climatological benchmark is constant in time.
A time-varying baseline model is the persistence forecast,
which uses the most recent observation of AOD as the pre-
diction 24 h in advance. Here, we used the values from the
first day of calculated AOD lag from the reserved test set
(values unseen by the model) to represent persistence. Both
climatology and persistence act as null models, and a more
sophisticated forecasting scheme should be able to outper-
form both in order to be considered useful.

2.5 Training CNN models

To train the models, we used 17 years of daily data (2003–
2019). We initiated the training on the first 15 years (70 %) of
data, after which the models entered a self-validation mode,
for which we used the consecutive 2 years (15 %) of data
(see Sect. 2.3.5 for full details on the data-splitting regime).
The inputs included the value of the AOD over the previ-
ous 5 d and previous 1 d for each of the 35 meteorological
features (seven atmospheric variables at five pressure levels;
see Sect. 2.2.2). Regridded to a 1°× 1° resolution over 31°
of latitude by 51° of longitude, together with orography and
the sine and cosine values of timestamps, the data produced
a representative state consisting of 43 input features. Hence,
for each of the 6205 training and validation days the models
had access to 67 983 values.

2.6 Statistical analysis

2.6.1 Evaluation of CNN models

To evaluate the predictions 24 h in advance, we used 13 years
of daily data (2020–2022), which were unseen by the models.
Our initial baseline model included the climatological mean,
which is often used in meteorological forecasts as a sensi-
ble default (Bozzo et al., 2020). We evaluated each CNN
model’s performance by assessing the training time, infer-
ence time taken per time step, the MSE of predicted val-
ues in the test set, and the percentage improvement in the
MSE above the climatology and persistence baseline models.
We then used the best-performing model to visually evalu-
ate its output against (non-imputed) MODIS values. We ini-
tially inspected the model’s daily predictions for their ability
to represent AOD spatially by mapping 28 consecutive days
of predictions next to the corresponding data from MODIS
(see Supplement Fig. S3). We evaluated the model’s ability
to capture the main dust generation sources, represent con-
sistent AOD transport with prevailing winds, and correctly
distinguish AOD accumulation between the ocean and land
border.

To analyse the errors in the best-performing model, we re-
arranged Eq. (3) to reverse the normalisation of AOD predic-
tions from each model:

yij t,denorm = yij t,pred (ymax− ymin)+ ymin, (4)

where ypred are the values predicted by the model, and ymax
is the maximum and ymin the minimum AOD value from the
training set. In the same manner, we used Eq. (4) to reverse
the normalisation of the climatology and persistence predic-
tions. We then assessed each CNN model by calculating the
MSE between values predicted by the model using the de-
normalised AOD, denoted as Â, and the corresponding AOD
values from the test set (“true”), denoted as A. Here, we cal-
culated a mean value along an axis of latitude Nlat and longi-
tude Nlong of our spatial coordinates at each prediction time
step t , where Nlat = 31, Nlong = 51, and Nt = 1095, using
Eq. (5):

MSE=
1

NlatNlongNt

Nlat∑
i=1

Nlong∑
j=1

Nt∑
t=1
(Âij t −Aij t )

2. (5)

We used the same process as described above to obtain
the MSE for the climatology and persistence models. To en-
sure that model evaluation is only based on actually observed
AOD values, all imputed AOD values were excluded from
calculation of the MSE.

2.6.2 Validation of results

To validate our results, we fairly compared our predictions
with the ground truth (non-imputed) data from MODIS and
the physics-based model (CAMS). We calculated the follow-
ing metrics: the mean bias error (MBE), RMSE, difference
between RMSEs (1RMSE), and anomaly correlation coef-
ficient (ACC). The metrics, defined below, follow a com-
bination of notations from Bi et al. (2023) and Lam et al.
(2023) adapted to the spatial representation of temporally
averaged values for each prediction day t (Nt = 1095). All
prediction values were first denormalised using Eq. (4). Sub-
sequently, we compared the model predictions (Â) with raw
(non-imputed) MODIS data (mean of Aqua and Terra) de-
noted as A. The climatological mean, denoted as A′, corre-
sponds to the long-term average of AOD values from MODIS
(2003–2022). To allow for comparison with the physics-
based forecast, we tested 24 h lead times from CAMS us-
ing these skill metrics and compared them with the daily and
seasonal results produced by the best-performing model.

2.6.3 Spatial analysis

To analyse the spatial characteristics of the model’s perfor-
mance, we calculated the temporal mean of the model predic-
tions (Nt = 1095) at each location (lat, long). This allowed
us to calculate mean bias error (MBE) between the predicted
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AOD (Â) and MODIS ground truth (A) for both the best-
performing model and CAMS using Eq. (6).

MBEspatial,ij =
1
Nt

Nt∑
t=1
(Âij t −Aij t ) (6)

We also calculated the spatial root mean square error
(RMSEspatial) for each model using Eq. (7).

RMSEspatial,ij =

√√√√ 1
Nt

Nt∑
t=1
(Âij t −Aij t )

2 (7)

Calculating the differences between RMSEs (1RMSE)
using Eq. (8) allowed us to reveal specific locations at which
predictions from one model outperformed the other.

1RMSEspatial,ij = RMSE(CAMS)
spatial,ij −RMSE(CNN)

spatial,ij (8)

Additionally, we calculated the spatial distribution of the
ACC (Eq. 9). Let Â′ be the anomaly of predicted AOD values
(Â) and A′ the anomaly of observed (ground truth A) AOD
values, where the anomalies are the differences from MODIS
climatology values, then

ACCspatial,ij =∑Nt
t=1

[
(Â′ij t − Ā

′
ij t )× (A

′

ij t − Ā
′
ij t )
]

√[∑Nt
t=1(Â

′
ij t − Ā′ij t )2

]
×

[∑Nt
t=1(A

′

ij t − Ā
′
ij t )2

] . (9)

The ACC is a common measure of skill that assesses the
quality of prediction and highlights anomalies between fore-
cast and observed values. By subtracting the climatological
mean from both prediction and verification, the ACC mea-
sures the quality of prediction without giving misleadingly
high results caused by seasonal variations.

2.6.4 Temporal analysis

To analyse the model’s predictions across different times,
we calculated mean spatial AOD values for each predic-
tion day. We also computed Pearson’s correlation coefficients
(r), associated p values, and the coefficient of determina-
tion (r2) using the SciPy statistical package (v1.12) for each
prediction day (N = 1095) of spatially averaged data (Nlat,
Nlong = 31,51). Corresponding calculations were performed
for both the best-performing model and CAMS forecasts
with the MODIS ground truth data. We have also adapted
Eqs. (6) and (7) to temporal representation by using Eqs. (10)
and (11).

MBEtemporal,t =
1

NlatNlong

Nlat∑
i=1

Nlong∑
j=1

(Âij t −Aij t ) (10)

RMSEtemporal,t =

√√√√ 1
NlatNlong

Nlat∑
i=1

Nlong∑
j=1

(Âij t −Aij t )
2 (11)

Figure 2. Study area and the locations of selected grid points used
to assess the model’s predictive accuracy on a local scale (1° × 1°
resolution). The background image for the December view of Blue
Marble is available from NASA at https://visibleearth.nasa.gov/
collection/1484/blue-marble?page=4 (last access: 1 July 2023).

2.6.5 Justification of the selected points

In addition to spatial and temporal analyses, we focussed
on four point locations to assess the model’s performance
at the local scale. The locations, shown in Fig. 2, were se-
lected on the basis of a different aerosol type contributing to
the total AOD, as well as prevailing meteorological condi-
tions. We chose the region around the Bodélé Depression in
Chad (16.5° N, 16.5° E) for its dust generation capability and
the consistency of its high mineral dust loading (Washington
et al., 2003). Nouadhibou in Mauritania (20.5° N, 17° W) is
located at the edge of western Africa, where hot and dry Sa-
haran air meets cool and moist Atlantic air (Carlson and Pros-
pero, 1972). The temperature inversion creates a barrier for
low horizontal flow of atmospheric dust and instead forces an
uplift of over 1.5 km (Prospero and Carlson, 1972). From this
point atmospheric dust moves westward towards Central and
South America at higher altitudes between 1.5–5 km (Kauf-
man et al., 2005). To capture the transport of dust and fire
smoke with southwestward winds towards South America
(Kaufman et al., 2005), we chose a location over the Atlantic
Ocean in the Gulf of Guinea (4° N, 4° W). For the fourth lo-
cation, we chose the second-largest city in Nigeria and the
capital of Kano State (11.5° N, 8.5° E). The city of Kano is
located directly along a pathway of seasonal dust plumes,
known locally as the Harmattan season. During boreal win-
ter the wind direction shifts to the southwestward direction
and transports the sand storms generated from the Bodélé
Depression towards Kano, where they are associated with a
large increase in air pollution (Anuforom, 2007; Schwang-
hart and Schütt, 2008; Sunnu et al., 2008).
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2.6.6 Feature importance

We assessed feature importance using a perturbation-based
method, where individual input channels were systematically
altered to evaluate their contribution to model predictions.
Specifically, each feature was zeroed out in turn, and the
mean squared error (MSE) between the full prediction and
the prediction with the altered input was calculated. This ap-
proach quantifies the sensitivity of the model’s output to the
absence of each feature, with higher MSE indicating greater
importance. Perturbation-based methods, such as this one,
are widely used for assessing feature relevance in machine
learning models due to their simplicity and interpretability
(Covert et al., 2021; Molnar, 2022).

3 Results

3.1 Performance verification

The comparative results of the three CNN models, shown in
Table 2, demonstrate a clear advantage of the DustNet archi-
tecture in both computational efficiency and predictive accu-
racy. Developed in this study, DustNet achieves the shortest
training time at 7 min and 41 s, which is over a third less than
that of the U-NET model. It also outperforms both U-NET
and Conv2D in terms of MSE, achieving a value of 0.00153,
which corresponds to a 53.68 % improvement over the clima-
tology baseline. Furthermore, DustNet generates forecasts in
just 2.1 s, making it the fastest among the tested models. In
contrast, Conv2D and U-NET require over 13 and 25 min for
training, , respectively, while their resulting predictions show
less improvement over the climatological baseline. These
findings highlight that DustNet is both more efficient and
more accurate than the Conv2D and U-NET models, thereby
demonstrating its skill in deterministic AOD forecasting.

3.2 Performance of spatial forecast

We find that the DustNet model performs better in AOD
forecasts than the physics-based CAMS model (Fig. 3). At
nearly all spatial locations, DustNet predictions resulted in
lower (better) RMSE values than CAMS during 2020–2022
(Fig. 3a and b). The greatest source of errors for both models
was the most active dust source globally (Todd et al., 2007)
– the Bodélé Depression (16.5° N, 16.5° E). Although this
is the location of the highest error, here we show again that
DustNet’s RMSE is nearly 50 % lower than that produced
by CAMS (0.62 versus 1.24, respectively). The Bodélé De-
pression is of global importance for two main reasons: (i) it
is responsible for over 50 % of the dust generated from the
Sahara (Todd et al., 2007; Washington et al., 2009; Jew-
ell et al., 2021), and (ii) it has been identified as the main
source of minerals delivered seasonally to the Amazon Basin
(Koren et al., 2006; Jewell et al., 2021). A recent compar-
ison of 14 physics-based models reveals their tendency to

vastly underestimate the AOD forecast (ranging from−16 %
to−37 %) in comparison to ground-based observations (Gliß
et al., 2021). With nearly 40× 106 t of dust emitted annually
from the Bodélé Depression, lowering the forecasting error
at this location, as achieved by DustNet, has the potential to
vastly improve the forecasting of transported dust.

Overall, DustNet predictions outperformed CAMS fore-
casts at 95.26 % of grid locations when comparing predic-
tion errors (Fig. 3c). In Fig. 3c, grid cells in the darkest
brown colour indicate locations where the errors produced
by CAMS were over 0.45 AOD higher than those of Dust-
Net, with the maximum error difference reaching 1.24 AOD.
These locations represent central Saharan desert and arid re-
gions, indicating that the AOD was composed of mineral
dust and thereby showing the more skilful ability of Dust-
Net to capture dust generation. Moreover, DustNet captures
the high mean AOD over northern Nigeria (associated with
the seasonal Harmattan haze (Anuforom, 2007; Sunnu et al.,
2008; Schwanghart and Schütt, 2008) more skilfully than
CAMS (details in Sect. 3.3 and 3.4 below). However, there
are two locations at which CAMS forecasts performed bet-
ter than DustNet predictions (Fig. 3c). Both of these loca-
tions are adjacent to the boundaries (SE and NW corners),
beyond which DustNet was unable to obtain information on
the processes during training, while the data used to gener-
ate the CAMS forecast were extracted from a larger region
(see Sect. 2.2.5 for details). Thus, the lack of information
on processes at the boundaries may have affected the CAMS
forecasts less than it affected DustNet. This, however, might
be overcome by extending the study region for DustNet.

We also compare the ability of DustNet and CAMS to
detect anomalies using the ACC, a quantitative metric used
in previous similar studies (e.g. Lam et al., 2023; Bi et al.,
2023). Here, DustNet also displays more skilful results than
CAMS, with a better (higher) ACC at 92.28 % of grid cells,
shown in Fig. 3d and e. An ACC score above 60 % is con-
sidered to be of value for forecasting purposes. The Dust-
Net model surpasses this threshold at 79.89 % of locations
(white to yellow), indicating a better forecast value for a
wider range of locations than CAMS (which achieved an
ACC value above 60 % at only 29.10 % of the grid cells).
Skilful detection of anomalies, combined with a high forecast
value, indicates that the DustNet model could be a valuable
addition to Earth system models, where better representation
of Saharan dust events leads to more realistic forecasts of
precipitation and a better representation of the African mon-
soon (Anuforom, 2007; Düben et al., 2021; Balkanski et al.,
2021).

Furthermore, we performed a comparative analysis of cor-
relation coefficients between the forecasts and the ground
truth data. Figure 4 presents the daily correlation coefficients
for two sets of comparisons: panel (a) displays the correlation
between MODIS-derived AOD values and DustNet predic-
tions, while panel (b) shows the correlation between MODIS
and CAMS forecasts. Over the Saharan desert, where min-
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Table 2. Normalised test results for three unique model architectures. The climatology baseline MSE of predictions used to test the data
is presented below the table. The rows display results for total training time, time per iteration step, and MSE for each kernel size of each
model. The last column shows the percentage difference when compared to the climatological baseline.

Training Time MSE Prediction Baseline∗

CNN model time per step time improvement (%)

Conv2D 13 min 40 s 34 s 0.001895 4.1 s 42.63 %
U-NET 25 min 20 s 53 s 0.001691 4.9 s 48.80 %
DustNet 7 min 41 s 17 s 0.00153 2.1 s 53.68 %

∗ Baseline MSE of climatology: 0.003303.

eral dust is the dominant contributor to AOD, DustNet ex-
hibits a notably stronger correlation with MODIS (mean
r = 0.75), as indicated by the predominance of green shades.
In contrast, CAMS demonstrates weaker correlations across
the same region (mean r = 0.57), evident in the presence
of white to brown shades, which aligns with previously
identified dust generation zones (highlighted in Supplement
Fig. S3).

3.3 Performance of seasonal-mean forecast

Saharan dust aerosols are highly seasonal in emission and
transport directions (Anuforom, 2007; Schwanghart and
Schütt, 2008; Vandenbussche et al., 2020). Therefore, here
we additionally compared the annual and seasonal means
of DustNet predictions with MODIS and CAMS. Figure 5a
shows the annual mean AOD values of MODIS and the
model predictions. DustNet is capable of producing more re-
alistic predictions in comparison to MODIS and compared
to the mean annual forecasts from CAMS. This is also con-
firmed by a highly significant correlation of the spatial mean
AOD (DustNet: r2

= 0.91; CAMS: r2
= 0.71, in Appendix

Fig. B1). The DustNet model also captures the high AOD
generated from the dustiest spot on Earth, the Bodélé De-
pression, more precisely than CAMS in both annual and all
seasonal means (darkest colours in all panels of Fig. 5).

In Fig. 5, where the daily predictions were averaged to
annual (a) and quarterly (b–d) means, we show that Dust-
Net also captures the average seasonal displacement of AOD
more skilfully than CAMS. During Q1 (January–March)
(Fig. 5b), the influence of the Harmattan wind has a visi-
ble effect on the mean AOD, with a southwestward transport
of mineral dust from the main generation site of the Bodélé
Depression (dark blue). Comparisons of AOD in Fig. 5b, c,
and d indicate that DustNet captures this displacement more
skilfully than CAMS. The seasonal shift of Saharan dust by
≈ 10° in latitude is consistent with past observations and
studies (Prospero et al., 1981; Mbourou et al., 1997; Sunnu
et al., 2008; Schepanski et al., 2017; Vandenbussche et al.,
2020; Balkanski et al., 2021). Associated with a seasonal
change in wind direction and large plumes of transported
dust, this phenomenon is locally well known as the Harmat-
tan haze and is responsible for the high increase in air pollu-

tion, especially around Nigeria (Anuforom, 2007; Schwang-
hart and Schütt, 2008; Sunnu et al., 2008).

Previously noted mechanistic links between mineral dust
and large-scale precipitation patterns, like the position of
the Intertropical Convergence Zone (ITCZ) and the seasonal
shift in the position of the West African monsoon, add to the
importance of precise predictions of seasonal AOD displace-
ment (Sunnu et al., 2008; Janicot et al., 2008; N’Datchoh
et al., 2018; Balkanski et al., 2021). Additionally, seasonal
means of the daily AOD, extracted from short forecast lead
times of reanalysis models including CAMS, are used to val-
idate other models, including climate models (Zhao et al.,
2022; O’Sullivan et al., 2020; Wu et al., 2020). Thus, achiev-
ing higher accuracy in predictions of the seasonal mean of
daily AOD forecasts with DustNet could improve the perfor-
mance of current forecasting models.

Long-term comprehensive comparisons (Gliß et al., 2021)
show that the forecasts produced by physics-based models
tend to underestimate the AOD values compared to MODIS
ground truth observations. While this underestimation of
AOD is clear between 5 and 15° N, here we show that the
CAMS forecast additionally tends to overestimate the AOD
values around latitude 20° N over the Sahara during all the
seasons of the 2020–2022 period (Fig. 5a–d, rightmost panel
and Appendix Fig. B1b). This could be attributed to the lo-
cations of most of the ground observation stations, concen-
trated along latitude 10° N (Gliß et al., 2021).

The smoothness of predictions displayed by DustNet in
comparison to CAMS is a characteristic of the regression al-
gorithm used by deep learning models (explained in Bi et al.,
2023).

3.4 Comparison of local predictions

We also test the ability of DustNet to provide accurate pre-
dictions 24 h in advance at four specific locations indicative
of the main dust transport routes (see Sect. 2.6.5 for details
on selected grids and locations). At all four locations, Dust-
Net predictions align with satellite data (MODIS) better than
forecasts produced by CAMS (see Figs. 6 and D1 for cor-
relations). This is especially evident at the Bodélé Depres-
sion, despite the site producing the highest prediction errors
(see RMSE in Fig. 3a). The correlation between DustNet
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Figure 3. Metrics indicating model performance. Results for the predictions 24 h in advance of daily AOD values (mean across the daily
prediction time for 2020–2022, n= 1095) compared with the ground truth data from MODIS. The RMSE is shown for DustNet in (a) and
CAMS in (b), where the brighter the colour, the smaller the error. Note that the maximum error for DustNet is 0.62 AOD (medium green
shades), while the maximum RMSE for CAMS reaches above 1.2 AOD (dark blue). Panel (c) shows the difference in RMSE between CAMS
and DustNet, where all yellow to deep brown shades indicate the advantage of DustNet, while the blue shades indicate the advantage of
CAMS. The white grid cells indicate locations where both of the models performed equally when compared to the ground truth data. Note
the lack of deeper blue shades and the dominance of yellow and brown grid cells where DustNet outperformed CAMS. Panels (d) and (e)
show the ACC for DustNet and CAMS, respectively, where values above 0.6 (bright to white) indicate a valuable forecasting capability,
while lower values (green to dark blue) indicate little to no predictive value. The ACC values in the darkest blue shades indicate a misleading
forecast.

and MODIS at the Bodélé Depression is highly significant,
with r2

= 0.62, compared to CAMS, which had r2
= 0.01

(Figs. 6a and D1a). DustNet also skilfully detects the daily
and seasonal variability of the Bodélé Depression, demon-
strating the ability of our model to skilfully capture dust gen-
eration at this location. Similarly, DustNet predictions 24 h

in advance for Kano, the second-most populous city in Nige-
ria, align better with MODIS (r2

= 0.74) than forecasts from
CAMS (r2 = 0.12), whose predicted values stay close to the
climatological mean (Figs. 6b and D1b).

During the first quarter (day of year 0 to∼ 90), the highest
AOD values are present at the Bodélé Depression, in Kano,
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Figure 4. Daily correlation coefficients between MODIS AOD observations and model predictions are shown for (a) DustNet and (b) CAMS.
The maximum correlation for DustNet is 0.82, with a minimum of 0.16, while the maximum correlation for CAMS is 0.75, with a minimum
of −0.04. Values with weaker correlations (≤ 0.4) are represented in white to brown shades, whereas stronger correlations (> 0.4) are
depicted in green. The predominance of green shades, particularly over the Saharan region, highlights the advantage of DustNet predictions
over CAMS.

and in the Gulf of Guinea (Fig. 6c). In Kano, the AOD values
are just slightly lower than those at the Bodélé and slightly
lower in the Gulf of Guinea. Since both Kano and the Gulf
of Guinea are positioned southwest from the Bodélé, their
corresponding AOD values during the first quarter indicate
the Bodélé Depression as a generation source (Schepanski
et al., 2007; Jewell et al., 2021; Kok et al., 2021b). This also
shows the ability of DustNet to capture generation and trans-
port of AOD consistent with shifts in seasonal wind direction
indicated in past studies (Schepanski et al., 2017; Schwang-
hart and Schütt, 2008; Anuforom, 2007; Sunnu et al., 2008).
During the third quarter (DOY 180∼ 270), however, DustNet
struggles to correctly capture the highest peaks in Kano and
the Gulf of Guinea. The seasonal shift in meteorology and
especially wind direction at these locations leads to an AOD
composed of a mixture of aerosols, including sea salt, black
carbon from biomass burning, and industrial pollution (Anu-
forom, 2007; Mari et al., 2008; Knippertz et al., 2017). An
area of future research could include information on vegeta-
tion and land cover during the training process, which would
allow the model to distinguish between the ocean, the Sa-
hara, and central African forests. This would likely improve
predictions for these regions and other aerosol species in gen-
eral. The highest AOD values are also missed in Nouadhibou
(Fig. 6d) during the third quarter (DOY 180∼ 260). How-
ever, here the seasonal increase in AOD points to a more lo-
calised origin, since dust generation at the Bodélé Depres-
sion is at its lowest with a daily AOD≤ 1.0. This finding
is consistent with past analyses of boreal summertime dust
generation, which point towards western Sahara, Mauritania,
Algeria, and Mali as dust sources (Schepanski et al., 2007;
Friese et al., 2017; Jewell et al., 2021; Kok et al., 2021b).

3.5 Feature importance

Assessment of feature importance, shown in Fig. 7, reveals
that the “AOD 1 day lag” variable emerges as the single most
important feature, as removing it leads to the largest increase

in MSE (0.00343), emphasising DustNet’s strong reliance on
recent AOD state. Vertical velocity at 850 hPa follows closely
(MSE 0.00246), underscoring the role of mid-level atmo-
spheric motion in controlling aerosol transport. Other promi-
nent features include the v component of wind at 850 hPa and
wind speed at 1000 hPa, illustrating that both near-surface
and lower-tropospheric winds are vital for accurate model
prediction. Additionally, the significance of vertical veloc-
ity at 550 hPa and wind power at 1000 hPa highlights how
stronger vertical movements and more energetic surface-
level flows further amplify AOD generation processes. Fi-
nally, the “AOD 2 days lag” variable only comes seventh in
our feature importance, suggesting that while longer AOD
histories still add predictive value, the model prioritises more
immediate conditions.

The next most critical features among the top 15 include
temperature at both 550 and 1000 hPa, terrain height, and the
year sine and cosine signals. Notably, temperature at these
two pressure levels is more influential than at intermediate
levels, implying that near-surface heat fluxes and upper-level
thermal profiles strongly affect the DustNet model predic-
tions. Meanwhile, the prominence of terrain height under-
scores the importance of local topography for channelling
orographic flows or indicating primary aerosol source re-
gions – an effect that DustNet treats as more significant than
AOD beyond 2 d in the past. Similarly, the inclusion of sea-
sonal features (year sine and cosine) among the top 15 indi-
cates that periodic patterns contribute considerably to AOD
activity in this region. Together, these findings reveal that
immediate AOD conditions, vertical motions, surface-level
wind intensity, and broader seasonal cycles collectively gov-
ern short-term AOD forecasts of our DustNet model.

In contrast, the remaining features, such as relative humid-
ity and wind power at non-surface levels, show noticeably
less influence on day-to-day predictions (see Supplement
Fig. S5). Their lower importance indicates an overlap with
the dominant factors like vertical velocity or near-surface
wind fields, which effectively capture much of the variabil-
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Figure 5. Annual and quarterly means of daily AOD values for 2020–2022. All mean AOD values were calculated from daily predictions 24 h
in advance. The left column represents AOD values from MODIS observations, predictions from DustNet are in the middle, and forecasts
from CAMS are in the right column. Row (a) compares the 3-year annual mean AOD between the observations and models. In row (b), the
3-year mean of daily AOD for Q1 (January–March) is shown, noting the main generation site of the Bodélé Depression (dark blue) and the
southwestward transport of mineral dust. In row (c), the same means are shown but for Q2 (April–June). Row (d) shows that both models,
CAMS and DustNet, skilfully detected the northward shift of mean AOD transport during Q3 (July–September). In row (e), the seasonal
decrease in aerosol activity for Q4 (October–December) is skilfully captured by both models when compared to observations from MODIS.
Note here the change in the colour bar range.
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Figure 6. Local AOD predictions for each day of the year (2020–2022) for chosen point locations. Shown are daily means (2020–2022) of
AOD predictions from DustNet (golden line) and CAMS (light-sea-green line) as compared to MODIS (black line) and the climatological
mean (dotted line). At all four locations, predictions from DustNet are closer to MODIS values than to CAMS forecasts. An increase in AOD
can be seen in the first 90 d of the year in (a) the Bodélé Depression, with lower but still elevated values towards (b) Kano and (c) the Gulf of
Guinea. These elevated AOD values during the first quarter are not observed in (d) Nouadhibou, which is consistent with the southwestern
direction of the Harmattan wind. DustNet also predicts daily and seasonal AOD variability at each site more skilfully than CAMS, whose
forecasts tend to stay closer to or below the climatological mean. Both models struggle to fully capture the highest AOD peaks recorded by
MODIS at the westernmost location – Nouadhibou; however the DustNet model replicates these peaks better than CAMS.

ity in predicted AOD. Nonetheless, interpretation of feature-
ranking results requires caution, as perturbation-based meth-
ods evaluate each input independently and may overlook in-
tricate interactions among correlated features. Consequently,
certain features might appear less important if their effects
are partially hidden by the stronger predictors. Overall, these
results confirm that recent AOD states, low- to mid-level
atmospheric dynamics, terrain height, and seasonal signals

form the principal pillars of DustNet’s predictive skill for
AOD 24 h in advance .

4 Discussion and future developments

The fast and skilful short-term predictions with DustNet
present an opportunity for the forecasting community to in-
corporate a comprehensive aerosol scheme into future fore-
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Figure 7. Results of the feature importance analysis for the Dust-
Net model, based on mean squared error (MSE), highlighting the 15
most influential input features. Features yielding the highest MSE
when removed (zeroed out) are deemed the most critical for the
DustNet model’s predictions 24 h in advance. The bar chart shows
that omitting the “AOD 1 day lag” feature leads to the highest in-
crease in MSE, followed closely by vertical velocity at 850 hPa.
These findings indicate that the input channels associated with the
recent AOD information and mid-level atmospheric motion affect
DustNet’s forecast accuracy, underscoring their importance in pre-
dicting daily AOD over the region.

casts. The current coarse representation allows for quick test-
ing and replication by professionals and enthusiasts alike.
DustNet also skilfully captures aspects of atmospheric pro-
cesses, such as dust generation, transport, or seasonal vari-
ations, when compared to satellite data. Furthermore, skil-
ful representation of atmospheric aerosols at specific loca-
tions opens a possibility for DustNet integration into more
localised weather models.

The specific DustNet model architecture may be used to
predict other atmospheric particles or even other environ-
mental phenomena. However, this would require retraining
the model using input features that represent the chosen par-
ticle or phenomenon. For example, to capture aerosols due
to black carbon, features such as land cover types, vege-
tation, leaf area index, and forest fire locations should be
considered. Similarly, when aiming to capture atmospheric
aerosols due to sea-salt particles, features including wave
height, energy flux into waves, peak wave period, and ocean
surface stress should be taken into account. Moreover, the
DustNet model architecture may be used to predict other
spatio-temporal dynamics, such as phytoplankton concentra-
tions from satellite-derived chlorophyll-a data, by substitut-
ing input variables with relevant meteorological and ocean
state data.

While DustNet outperforms CAMS in short-term fore-
casts, it is not without limitations. Although the model is
trained on 43 features, only 1 – terrain – represented the
ground conditions. Thus, incorporating additional informa-
tion could be beneficial in capturing more nuanced or even
wider interactions. For example, the generation of dust de-
pends not only on atmospheric conditions, but also on soil
moisture, soil type, and the mineral composition from which
atmospheric dust is derived (Knippertz et al., 2017; Van

Der Does et al., 2018). Soil type and mineralogy impact
dust interactions with other atmospheric particles and wider
Earth systems by delivering essential minerals to oceans and
rainforests (Kok et al., 2023; Jickells et al., 2014; Koren
et al., 2006). Information on ground vegetation and cover can
also play a role in determining dust generation locations and
transport, especially over forests and in urban areas.

Additionally, DustNet’s predictions at the northern and
southeastern locations of the region boundaries are visibly
weaker than those at the centre (Fig. 3c and d). The predom-
inant wind and transport directions of the atmospheric dust
during this study are confirmed as west and southwest (Fig. 5,
especially panels b and c), which indicates that the northern
and southeastern areas may be governed by processes not in-
cluded in the feature selection of this study. This is not sur-
prising, since the Mediterranean Sea is directly to the north
of our study region, while the Congolian rainforest covers
grids directly to the south and southwest of the boundaries.
These indicate the potential for more skilful forecasts with a
broader study area, which, together with additional features,
could capture more nuanced processes above the oceans and
rainforests.

Likewise, the daily predictions of extreme AOD values at
point locations (especially in Nouadhibu, Fig. 6d) can fall
short of the values captured by the satellites. Together with
the deterministic nature of the model, DustNet’s predictions
lack the probability distribution and the length of the tail for
the extreme values.

Addressing these limitations is crucial for future advance-
ments. Rather than increasing the model’s training time or
epochs, we propose expanding the training data with diverse
geographical information. This approach would capture nu-
anced interactions of atmospheric dust with Earth’s systems.
The inclusion of data sources from broader environmental
disciplines, expansion of study locations, and extension of
lead-time predictions are important next steps. Thus, a mul-
tidisciplinary approach can further enhance DustNet’s capa-
bilities and contribute to a range of specialised AI models
with skilful predictions.

5 Conclusions

This study introduces a novel application of neural networks
to improve the prediction of aerosols over the Saharan desert,
the world’s most significant source of atmospheric dust. Dust
aerosols play a critical role in global climate systems, air
quality, and ecosystems, yet traditional models often strug-
gle with accuracy and speed due to the complex nature of
dust dynamics and computational burden.

The research employs machine learning to bridge these
gaps, offering a method that is both efficient and accurate.
By training the DustNet model on satellite-based and reanal-
ysis datasets, the research demonstrates significant improve-
ments in capturing spatial variability of dust emissions. The
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results show that the neural network can produce skilful pre-
dictions while requiring fewer computational resources than
conventional models.

Moreover, the framework is designed for accessibility and
reproducibility, utilising open-source tools and emphasising
transparency to facilitate broader adoption within the scien-
tific community. This work not only advances the predictive
capabilities for dust aerosols but also serves as a template
for applying machine learning to other challenging atmo-
spheric problems. Its potential implications span atmospheric
research and practical applications, such as air quality man-
agement.

Appendix A: CNN model schematics

Figure A1. Schematic representation of simple Conv2D model. From left: the input layer with shape (31,51,43) is represented in green.
Following this are the five hidden layers with the same widths and heights as the input layer but with different depths. The depths (number of
hidden connections) are set in decreasing order to 256, 128, 64, 32, and 16. The last 2D convolution with depth 1 creates the output, whose
shape matches our target AOD.
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Figure A2. Illustrative sketch of U-NET model architecture with individual blocks representing model layers. The input layer (31,51,43) is
first padded with a 2D zero layer, which increases the height and width of the input shape (40,64,43). The encoding pathway (blue arrows,
down) includes two successive layers of Conv2D, which increase the depth of the input size (40× 64× 64). Following this, the MaxPooling
layer decreases the first two dimensions, while Conv2D increases the third dimension (20× 32× 128). After the second MaxPooling and
double Conv2D, the input is reshaped to (10× 16× 128). The decoding pathway (green arrows, up) includes 2D upsampling and concate-
nation, which now increases the width, height, and depth to (20× 32× 384). The following two layers of Conv2D decrease the depth, while
upsampling and concatenation increase the shape to (40×64×192). The last two layers of Conv2D decrease the depth to (40, 64, 64), while
its final layer brings the depth down to (40×64×1). The last layer, Cropping2D, ensures the output matches the target size of (31×51×1).

Appendix B: Temporal analysis

When the data were spatially averaged over the study area
for each test day, both DustNet and CAMS revealed high
correlation with MODIS observations. However, DustNet’s
predictions exhibited stronger correlation with MODIS ob-
servations in comparison to CAMS, achieving r2

= 0.91 (see
Fig. B1a). This high correlation indicates that DustNet effec-
tively captures the daily variability of AOD across the Sa-
hara, however with a slight tendency to overestimate the high
AOD values. In contrast, CAMS forecasts, while still highly
correlated with MODIS (r2

= 0.71), display a more frequent
tendency to underestimate both low and high AOD values
(Fig. B1b) and overestimate middle AOD values more fre-
quently than DustNet. Both model results are highly signifi-
cant, with p values≤ 0.00001.

Figure B2 shows the comparison of mean RMSE and mean
bias errors (MBEs), which further underscores the advan-
tage of DustNet predictions over CAMS predictions. At all
time steps, DustNet consistently achieves lower RMSE val-
ues than CAMS, reflecting its improved predictive accuracy.
Moreover, the MBE of DustNet fluctuates closer to zero, in-
dicating a lower systematic bias compared to CAMS, which
tends to deviate more frequently from the true AOD values.
Together, these results confirm that DustNet provides more
skilful deterministic AOD forecasts, in terms of both overall
accuracy and reduced bias.
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Figure B1. Spatially averaged daily AOD (2020–2022, n= 1095) regressed between model predictions and MODIS data. Linear regressions
with the corresponding y equation, Pearson’s r2, and p values were calculated for daily spatial mean AOD over the Sahara for 2020–2022.
Panel (a) shows that the AOD prediction results from DustNet correspond well with those of MODIS data, with high r2

= 0.91, and have
only a slight tendency to overestimate higher AOD. In (b) the mean AOD forecasts from CAMS are shown to correspond well with MODIS
data, with r2

= 0.71, although with a more frequent tendency to underestimate both low and high AOD values. Results from both predictions
are highly significant with p < 0.0001.

Figure B2. Panel (a) presents the study area mean RMSE calculated from daily AOD values predicted by DustNet (yellow), CAMS (cyan),
and corresponding persistence (plum). At all time steps the DustNet model predictions show smaller (better) errors than those produced by
CAMS and persistence. Panel (b) shows the temporal mean bias errors (MBEs) from the DustNet predictions (yellow), CAMS (cyan), and
persistence (plum). Here, the DustNet bias fluctuates close to zero more often than the bias produced by CAMS and persistence.
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Appendix C: Spatial analysis

Results presented in Fig. C1 indicate that DustNet predic-
tions systematically show lower bias (lighter shade) than
CAMS forecasts.

Figure C1. Bias of daily predictions for (a) DustNet and (b) CAMS with respect to MODIS data (n= 1095). The lighter the shade, the lower
the bias. Note that the maximum bias produced by DustNet is 0.21, while the maximum bias for CAMS is 0.93. The areas of overpredicted
AOD in comparison to MODIS are shaded in yellow to brown, while underpredicted AOD is shaded in blue.
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Appendix D: Local predictions – daily temporal analysis

Figure D1. Scatter plot relationship between predicted mean AOD values (2020–2022) and MODIS data at four selected locations. Results
for DustNet (left column) and forecasts from CAMS (right column) at all four locations show better agreement of DustNet predictions with
MODIS data. (a) The Bodélé Depression, Chad – the highest source of dust in the Sahara, where DustNet is significantly better than CAMS;
(b) Kano – the second-most populous province in Nigeria; (c) the Gulf of Guinea – over the ocean; and (d) Nouadhibou, Mauritania – a
coastal location.
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Figure D2. Same as Fig. 6 but for daily data at each selected location. Note that the AOD at the Bodélé Depression (a) reaches a hard
maximum of 3.5 – an artefact of the Level-3 MODIS retrieval algorithm, which caps values beyond this threshold. Consequently, DustNet
predictions also never exceed 3.5 AOD at this location.
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Code and data availability. The full Python code for each model
(DustNet, U-NET, and Conv2D) with structured input data (Nowak
et al., 2024a) are deposited in Zenodo and are publicly available at
https://doi.org/10.5281/zenodo.10722953. The repository includes
all results from the DustNet model (output data) and Jupyter Note-
books with Python code to replicate all statistical analyses in or-
der to reproduce each figure included in this article. Pre-processed
ERA5 and AOD data (Nowak et al., 2024b) are deposited as
NumPy files in Zenodo together with Python imputation code at
https://doi.org/10.5281/zenodo.10593152.

Reanalysis of atmospheric features were downloaded from the
Copernicus Climate Data Store under the “ERA5 hourly data on
pressure levels from 1940 to present” collection. Unprocessed
datasets are available from the Copernicus Climate Change Ser-
vice (C3S) Climate Data Store at https://cds.climate.copernicus.eu/
cdsapp/ (Hersbach et al., 2018). Pre-processed ERA5 data are also
included in the aforementioned Zenodo repository.

The AOD at 550 nm Level-3 daily data for the combined
Dark Target and Deep Blue algorithms were retrieved from
the Moderate Resolution Imaging Spectroradiometer (MODIS)
on both Aqua and Terra spacecraft. Both datasets are avail-
able from NASA’s Atmosphere Archive and Distribution Sys-
tem (LAADS) Distributed Active Archive Center (DAAC).
Both MOD08_D3 and MYD08_D3 files can be retrieved from
https://doi.org/10.5067/MODIS/MOD08_D3.006 (Platnick et al.,
2015), https://doi.org/10.5067/MODIS/MYD08_D3.006 (Platnick
et al., 2015), and https://ladsweb.modaps.eosdis.nasa.gov/search/
(last access: 16 August 2023). Pre-processed AOD data are also in-
cluded in the aforementioned Zenodo repository.

The forecast of AOD was downloaded from the Atmosphere
Data Store of the Copernicus Atmosphere Monitoring Service
(CAMS). The total aerosol optical depth at 550 nm from the global
atmospheric composition forecast for midday, run with a 24 h
lead time, can be obtained from https://doi.org/10.24381/04a0b097
(Copernicus Atmosphere Monitoring Service, 2021) and https://ads.
atmosphere.copernicus.eu/#!/home (last access: 18 July 2023).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-3509-2025-supplement.
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