Articles | Volume 18, issue 11
https://doi.org/10.5194/gmd-18-3427-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-3427-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
RiverBedDynamics v1.0: a Landlab component for computing two-dimensional sediment transport and river bed evolution
Center for Ecohydraulics Research, Department of Civil and Environmental Engineering, University of Idaho, Boise, ID, USA
Samuel R. Anderson
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA
Nicole M. Gasparini
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA
Elowyn M. Yager
Center for Ecohydraulics Research, Department of Civil and Environmental Engineering, University of Idaho, Boise, ID, USA
Related authors
Angel Monsalve and Oscar Link
EGUsphere, https://doi.org/10.5194/egusphere-2025-4327, https://doi.org/10.5194/egusphere-2025-4327, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Mountain rivers create fast-flowing water that behaves differently around obstacles compared to slower flows. We used computer simulations and digital bed representation to study how rough riverbeds affect water flow. Our research shows individual grains completely change water movement, creating chaotic patterns instead of organized flows. This makes forces on riverbeds much more variable than previously thought, important for understanding how mountain rivers shape landscapes.
Angel Monsalve and Oscar Link
EGUsphere, https://doi.org/10.5194/egusphere-2025-4327, https://doi.org/10.5194/egusphere-2025-4327, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Mountain rivers create fast-flowing water that behaves differently around obstacles compared to slower flows. We used computer simulations and digital bed representation to study how rough riverbeds affect water flow. Our research shows individual grains completely change water movement, creating chaotic patterns instead of organized flows. This makes forces on riverbeds much more variable than previously thought, important for understanding how mountain rivers shape landscapes.
Laurent O. Roberge, Nicole M. Gasparini, Benjamin Campforts, and Gregory E. Tucker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2445, https://doi.org/10.5194/egusphere-2025-2445, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Landscape evolution models compute the movement of sediment across landscapes. However, few account for the storage, fate, and transport of sediment properties, such as lithology or geochemistry. We present new Landlab model components that track such properties. Our unit-agnostic approach allows users to define the sediment properties for a wide range of applications (for example, mass of magnetite, volume of quartz, number of zircons, number of 10Be atoms, "equivalent dose" of luminescence).
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024, https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Short summary
The time it takes for a landscape to adjust to new environmental conditions is critical for understanding the impacts of past and future environmental changes. We used different computational models and methods and found that predicted times for a landscape to reach a stable condition vary greatly. Our results illustrate that reporting how timescales are measured is important. Modelers should ensure that the measurement technique addresses the question.
Sam Anderson, Nicole Gasparini, and Joel Johnson
Earth Surf. Dynam., 11, 995–1011, https://doi.org/10.5194/esurf-11-995-2023, https://doi.org/10.5194/esurf-11-995-2023, 2023
Short summary
Short summary
We measured rock strength and amount of fracturing in the two different rock types, sandstones and carbonates, in Last Chance Canyon, New Mexico, USA. Where there is more carbonate bedrock, hills and channels steepen in Last Chance Canyon. This is because the carbonate-type bedrock tends to be more thickly bedded, is less fractured, and is stronger. The carbonate bedrock produces larger boulders than the sandstone bedrock, which can protect the more fractured sandstone bedrock from erosion.
Cited articles
Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 OverlandFlow component: A Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, 2017.
Attal, M., Cowie, P. A., Whittaker, A. C., Hobley, D., Tucker, G. E., and Roberts, G. P.: Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy, J. Geophys. Res.-Earth, 116, 2010JF001875, https://doi.org/10.1029/2010JF001875, 2011.
Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.: Terrainbento 1.0: A Python package for multi-model analysis in long-term drainage basin evolution, Geosci. Model Dev., 12, 1267–1297, https://doi.org/10.5194/gmd-12-1267-2019, 2019.
Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020.
Barry, J. J., Buffington, J. M., and King, J. G.: A general power equation for predicting bed load transport rates in gravel bed rivers, Water Resour. Res., 40, 1–22, https://doi.org/10.1029/2004WR003190, 2004.
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180–181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.
Campforts, B., Schwanghart, W., and Govers, G.: Accurate simulation of transient landscape evolution by eliminating numerical diffusion: the TTLEM 1.0 model, Earth Surf. Dynam., 5, 47–66, https://doi.org/10.5194/esurf-5-47-2017, 2017.
Cao, Z., Day, R., and Egashira, S.: Coupled and decoupled numerical modeling of flow and morphological evolution in alluvial rivers, J. Hydraul. Eng., 128, 306–321, https://doi.org/10.1061/(asce)0733-9429(2002)128:3(306), 2002.
Carretier, S., Regard, V., Abdelhafiz, Y., and Plazolles, B.: Modelling detrital cosmogenic nuclide concentrations during landscape evolution in Cidre v2.0, Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023, 2023.
Cheng, Z., Hsu, T. J., and Calantoni, J.: SedFoam: A multi-dimensional Eulerian two-phase model for sediment transport and its application to momentary bed failure, Coast. Eng., 119, 32–50, https://doi.org/10.1016/j.coastaleng.2016.08.007, 2017.
Colombini, M. and Stocchino, A.: Coupling or decoupling bed and flow dynamics: Fast and slow sediment waves at high Froude numbers, Phys. Fluids, 17, 036602, https://doi.org/10.1063/1.1848731, 2005.
Coulthard, T. J.: Landscape evolution models: a software review, Hydrol. Process., 15, 165–173, https://doi.org/10.1002/hyp.426, 2001.
Coulthard, T. J., Macklin, M. G., and Kirkby, M. J.: A cellular model of Holocene upland river basin and alluvial fan evolution, Earth Surf. Proc. Land., 27, 269–288, https://doi.org/10.1002/esp.318, 2002.
Davy, P., Croissant, T., and Lague, D.: A precipiton method to calculate river hydrodynamics, with applications to flood prediction, landscape evolution models, and braiding instabilities, J. Geophys. Res.-Earth, 122, 1491–1512, https://doi.org/10.1002/2016JF004156, 2017.
de Almeida, G. A. M., Bates, P., Freer, J. E., and Souvignet, M.: Improving the stability of a simple formulation of the shallow water equations for 2-D flood modeling, Water Resour. Res., 48, 1–14, https://doi.org/10.1029/2011WR011570, 2012.
Fernandez Luque, R. and Van Beek, R.: Erosion And transport of bed-load sediment, J. Hydraul. Res., 14, 127–144, https://doi.org/10.1080/00221687609499677, 1976.
Forte, A. M., Yanites, B. J., and Whipple, K. X.: Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength, Earth Surf. Proc. Land., 41, 1736–1757, https://doi.org/10.1002/esp.3947, 2016.
Furbish, D. J., Fathel, S. L., and Schmeeckle, M. W.: Particle motions and bedload theory, in: Gravel-Bed Rivers, edited by: Tsuusumi, D. and Laronne, J. B., Wiley, 97–120, https://doi.org/10.1002/9781118971437.ch4, 2017a.
Furbish, D. J., Fathel, S. L., Schmeeckle, M. W., Jerolmack, D. J., and Schumer, R.: The elements and richness of particle diffusion during sediment transport at small timescales, Earth Surf. Proc. Land., 42, 214–237, https://doi.org/10.1002/esp.4084, 2017b.
Gasparini, N. M., Tucker, G. E., and Bras, R. L.: Network-scale dynamics of grain-size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphology, Earth Surf. Proc. Land., 29, 401–421, https://doi.org/10.1002/esp.1031, 2004.
Ghimire, B. and Deng, Z.-Q.: Event flow hydrograph-based method for shear velocity estimation, J. Hydraul. Res., 49, 272–275, https://doi.org/10.1080/00221686.2011.552463, 2011.
Goren, L., Willett, S. D., Herman, F., and Braun, J.: Coupled numerical–analytical approach to landscape evolution modeling, Earth Surf. Proc. Land., 39, 522–545, https://doi.org/10.1002/esp.3514, 2014.
Hobley, D. E. J., Adams, J. M., Siddhartha Nudurupati, S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.
Huang, H. Q.: Reformulation of the bed load equation of Meyer-Peter and Müller in light of the linearity theory for alluvial channel flow, Water Resour. Res., 46, 2009WR008974, https://doi.org/10.1029/2009WR008974, 2010.
Johnson, J. P. L.: Gravel threshold of motion: A state function of sediment transport disequilibrium?, Earth Surf. Dynam., 4, 685–703, https://doi.org/10.5194/esurf-4-685-2016, 2016.
Juez, C., Ferrer-Boix, C., Murillo, J., Hassan, M. A., and García-Navarro, P.: A model based on Hirano-Exner equations for two-dimensional transient flows over heterogeneous erodible beds, Adv. Water Resour., 87, 1–18, https://doi.org/10.1016/j.advwatres.2015.10.013, 2016.
Lamb, M. P., Dietrich, W. E., and Venditti, J. G.: Is the critical shields stress for incipient sediment motion dependent on channel-bed slope?, J. Geophys. Res.-Earth, 113, F02008, https://doi.org/10.1029/2007JF000831, 2008.
Langston, A. L. and Tucker, G. E.: Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models, Earth Surf. Dynam., 6, 1–27, https://doi.org/10.5194/esurf-6-1-2018, 2018.
Lei, Y., Hassan, M. A., Viparelli, E., Chartrand, S. M., An, C., Fu, X., and Hu, C.: The Effect of Sediment Supply on Pool-Riffle Morphology, Water Resour. Res., 59, e2023WR035983, https://doi.org/10.1029/2023WR035983, 2023.
Le Minor, M., Davy, P., Howarth, J., and Lague, D.: Multi Grain-Size Total Sediment Load Model Based on the Disequilibrium Length, J. Geophys. Res.-Earth, 127, e2021JF006546, https://doi.org/10.1029/2021JF006546, 2022.
Li, Q., Gasparini, N. M., and Straub, K. M.: Some signals are not the same as they appear: How do erosional landscapes transform tectonic history into sediment flux records?, Geology, 46, 407–410, https://doi.org/10.1130/G40026.1, 2018.
Limerinos, J. T.: Determination of the Manning coefficient from measured bed roughness in natural channels Roughness in Natural Channels, US Geological Survey, Washington, D.C., https://doi.org/10.3133/wsp1898B, 1970.
Mao, L., Uyttendaele, G. P., Iroumé, A., and Lenzi, M. A.: Field based analysis of sediment entrainment in two high gradient streams located in Alpine and Andine environments, Geomorphology, 93, 368–383, https://doi.org/10.1016/j.geomorph.2007.03.008, 2008.
Meyer-Peter, E. and Müller, R.: Formulas for bed-load transport, in: Proceedings of the 2nd Meeting of the International Association of Hydraulic Research, 7–9 June 1948, Stockholm, 39–64, http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7 (last access: 1 March 2025), 1948.
Mitchell, N. and Forte, A. M.: Tectonic advection of contacts enhances landscape transience, Earth Surf. Proc. Land., 48, 1450–1469, doi10.1002/esp.5559, 2023.
Monsalve, A.: RiverBedDynamics v1.0: A Landlab component for computing two-dimensional sediment transport and river bed evolution – Source Code (Version V1), Zenodo [code], https://doi.org/10.5281/zenodo.14159914, 2024a.
Monsalve, A.: RiverBedDynamics v1.0: A Landlab component for computing two-dimensional sediment transport and river bed evolution – Test Cases (Version V1), Zenodo [data set], https://doi.org/10.5281/zenodo.14159904, 2024b.
Morgan, J. A., Kumar, N., Horner-Devine, A. R., Ahrendt, S., Istanbullouglu, E., and Bandaragoda, C.: The use of a morphological acceleration factor in the simulation of large-scale fluvial morphodynamics, Geomorphology, 356, 107088, https://doi.org/10.1016/j.geomorph.2020.107088, 2020.
Mueller, E. R., Pitlick, J., and Nelson, J. M.: Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers, Water Resour. Res., 41, 1–10, https://doi.org/10.1029/2004WR003692, 2005.
Paola, C. and Voller, V. R.: A generalized Exner equation for sediment mass balance, J. Geophys. Res.-Earth, 110, 1–8, https://doi.org/10.1029/2004JF000274, 2005.
Parker, G.: Surface-based bedload transport relation for gravel rivers, J. Hydraul. Res., 28, 417–436, https://doi.org/10.1080/00221689009499058, 1990.
Parker, G.: Selective Sorting and abrasion of river gravel. I: Theory, J. Hydraul. Eng., 117, 131–147, 1991.
Parker, G.: 1D Sediment Transport Morphodynamics with Applications to Rivers and Turbidity Currents, http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm (last access: 1 March 2025), 2004.
Parker, G., Paola, C., and Leclair, S.: Probabilistic Exner Sediment Continuity Equation for Mixtures with no Active Layer, J. Hydraul. Eng., 126, 818–826, https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(818), 2000.
Pfeiffer, A., Barnhart, K., Czuba, J., and Hutton, E.: NetworkSedimentTransporter: A Landlab component for bed material transport through river networks, J. Open Source Softw., 5, 2341, https://doi.org/10.21105/joss.02341, 2020.
Sanchez, A. and Wu, W.: A non-equilibrium sediment transport model for coastal inlets and navigationChannels, J. Coast. Res., 2011, 39–48, https://doi.org/10.2112/SI59-005.1, 2011.
Schneider, J. M., Rickenmann, D., Turowski, J. M., Bunte, K., and Kirchner, J. W.: Applicability of bed load transport models for mixed-size sediments in steep streams considering macro-roughness, Water Resour. Res., 51, 5260–5283, https://doi.org/10.1002/2014WR016417, 2015.
Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0 model: A Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution, Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, 2017.
Smith, H. E. J., Monsalve, A. D., Turowski, J. M., Rickenmann, D., and Yager, E. M.: Controls of local grain size distribution, bed structure and flow conditions on sediment mobility, Earth Surf. Proc. Land., 48, 1990–2004, https://doi.org/10.1002/esp.5599, 2023.
Song, Y., Xu, Y., and Liu, X.: Physically based sand slide method in scour models based on slope-limited diffusion, J. Hydraul. Eng., 146, 1–11, https://doi.org/10.1061/(asce)hy.1943-7900.0001814, 2020.
Temme, A. J. A. M., Armitage, J., Attal, M., van Gorp, W., Coulthard, T. J., and Schoorl, J. M.: Developing, choosing and using landscape evolution models to inform field-based landscape reconstruction studies, Earth Surf. Proc. Land., 42, 2167–2183, https://doi.org/10.1002/esp.4162, 2017.
Toro-Escobar, C. M., Paola, C., and Parker, G.: Transfer function for the deposition of poorly sorted gravel in response to streambed aggradation, J. Hydraul. Res., 34, 35–53, https://doi.org/10.1080/00221689609498763, 1996.
Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surf. Proc. Land., 35, 28–50, https://doi.org/10.1002/esp.1952, 2010.
Tucker, G. E. and Slingerland, R. L.: Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study, J. Geophys. Res., 99, 12229–12243, https://doi.org/10.1029/94jb00320, 1994.
Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., and Rybarczyk, S. M.: An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks, Comput. Geosci., 27, 959–973, https://doi.org/10.1016/S0098-3004(00)00134-5, 2001.
Tucker, G. E., Hutton, E. W. H., Piper, M. D., Campforts, B., Gan, T., Barnhart, K. R., Kettner, A. J., Overeem, I., Peckham, S. D., McCready, L., and Syvitski, J.: CSDMS: A community platform for numerical modeling of Earth surface processes, Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, 2022.
Van De Wiel, M. J., Coulthard, T. J., Macklin, M. G., and Lewin, J.: Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model, Geomorphology, 90, 283–301, https://doi.org/10.1016/j.geomorph.2006.10.024, 2007.
Whipple, K. X. and Tucker, G. E.: Implications of sediment-flux-dependent river incision models for landscape evolution, J. Geophys. Res.-Solid, 107, ETG 3-1–ETG 3-20,, https://doi.org/10.1029/2000JB000044, 2002.
Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., and Ouimet, W. B.: Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution, J. Geophys. Res.-Earth, 122, 248–273, https://doi.org/10.1002/2016JF003973, 2017.
Wilcock, P. R. and Crowe, J. C.: Surface-based transport model for mixed-size sediment, J. Hydraul. Eng., 129, 120–128, https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(120), 2003.
Wong, M. and Parker, G.: Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database, J. Hydraul. Eng., 132, 1159–1168, https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159), 2006.
Yager, E. M., Kirchner, J. W., and Dietrich, W. E.: Calculating bed load transport in steep boulder bed channels, Water Resour. Res., 43, W07418, https://doi.org/10.1029/2006WR005432, 2007.
Yager, E. M., Dietrich, W. E., Kirchner, J. W., and McArdell, B. W.: Prediction of sediment transport in step-pool channels, Water Resour. Res., 48, W01541, https://doi.org/10.1029/2011WR010829, 2012.
Short summary
Rivers shape landscapes by moving sediments and changing their beds, but existing computer models oversimplify these processes by only considering erosion. We developed new software that simulates how rivers transport sediments and change over time through both erosion and deposition. This helps scientists and engineers better predict river behavior for water management, flood prevention, and ecosystem protection.
Rivers shape landscapes by moving sediments and changing their beds, but existing computer...