Articles | Volume 18, issue 2
https://doi.org/10.5194/gmd-18-319-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-319-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas
CORRESPONDING AUTHOR
Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France
Damien Sous
Université de Toulon, Aix-Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), 83957 La Garde, France
Université de Pau et des Pays de l’Adour, E2S UPPA, SIAME, 64600 Anglet, France
Vincent Marieu
Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France
Related authors
Betty John Kaimathuruthy, Isabel Jalón-Rojas, and Damien Sous
EGUsphere, https://doi.org/10.5194/egusphere-2025-529, https://doi.org/10.5194/egusphere-2025-529, 2025
Short summary
Short summary
Studies on plastic pollution have emerged as a rapidly growing field of research. Modelling microplastic transport in estuaries stems from their complex hydrodynamics and diverse particle behaviours affecting the dispersion and retention of microplastics. Our paper reviews key modelling approaches applied in estuaries analyzing their setups and parameterizations. We provide recommendations and future directions to improve the accuracy and modelling strategies for estuarine microplastic research.
Damien Sous, Marc Pézérat, Solène Déalbéra, Héloïse Michaud, and Denis Morichon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2285, https://doi.org/10.5194/egusphere-2025-2285, 2025
Short summary
Short summary
The circulation of nearshore water is of primary importance for the health of coastal ecosystems and the coastal hazards, such as erosion. The present study focuses on the role played by bottom friction, which is particularly important in rocky or coral reef areas. Using field observations and numerical simulations, we show that the waves are able to increase the bottom friction and therefore affect the whole circulation and water level dynamics.
Betty John Kaimathuruthy, Isabel Jalón-Rojas, and Damien Sous
EGUsphere, https://doi.org/10.5194/egusphere-2025-529, https://doi.org/10.5194/egusphere-2025-529, 2025
Short summary
Short summary
Studies on plastic pollution have emerged as a rapidly growing field of research. Modelling microplastic transport in estuaries stems from their complex hydrodynamics and diverse particle behaviours affecting the dispersion and retention of microplastics. Our paper reviews key modelling approaches applied in estuaries analyzing their setups and parameterizations. We provide recommendations and future directions to improve the accuracy and modelling strategies for estuarine microplastic research.
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025, https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary
Short summary
This study presents a new global wave model that improves predictions of sea states in tropical areas by using a high-resolution grid and corrected wind fields. The model is validated globally with satellite data and nearshore using in situ data. The model allows for the first time direct comparisons with in situ data collected at 10–30 m water depth, which is very close to shore due to the steep slope usually surrounding volcanic islands.
Cited articles
Alsina, J. M., Jongedijk, C. E., and van Sebille, E.: Laboratory Measurements of the Wave-Induced Motion of Plastic Particles: Influence of Wave Period, Plastic Size and Plastic Density, J. Geophys. Res.-Oceans, 125, e2020JC016294, https://doi.org/10.1029/2020JC016294, 2020. a, b, c
Baudena, A., Ser-Giacomi, E., Jalón-Rojas, I., Galgani, F., and Pedrotti, M. L.: The streaming of plastic in the Mediterranean Sea, Nat. Commun., 13, 2981, https://doi.org/10.1038/s41467-022-30572-5, 2022. a
Baudena, A., Kiko, R., Jalón-Rojas, I., and Pedrotti, M. L.: Low-Density Plastic Debris Dispersion beneath the Mediterranean Sea Surface, Environ. Sci. Technol., 57, 7503–7515, 2023. a
Bogucki, D. J., Jones, B. H., and Carr, M.-E.: Remote measurements of horizontal eddy diffusivity, J. Atmos. Ocean. Tech., 22, 1373–1380, 2005. a
Castelle, B. and Masselink, G.: Morphodynamics of wave-dominated beaches, Cambridge Prisms: Coastal Futures, 1, e1, https://doi.org/10.1017/cft.2022.2, 2023. a
Cheng, Z., Jalon-Rójas, I., Wang, X. H., and Liu, Y.: Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary, Estuarine, Coast. Shelf Sci., 242, 106861, https://doi.org/10.1016/j.ecss.2020.106861, 2020. a
Chubarenko, I., Esiukova, E., Bagaev, A., Isachenko, I., Demchenko, N., Zobkov, M., Efimova, I., Bagaeva, M., and Khatmullina, L.: Behavior of microplastics in coastal zones, in: Microplastic contamination in aquatic environments, Elsevier, 175–223, https://doi.org/10.1016/B978-0-12-813747-5.00006-0, 2018. a
d'Anna, M., Idier, D., Castelle, B., Rohmer, J., Cagigal, L., and Mendez, F. J.: Effects of stochastic wave forcing on probabilistic equilibrium shoreline response across the 21st century including sea-level rise, Coast. Eng., 175, 104149, https://doi.org/10.1016/j.coastaleng.2022.104149, 2022. a
De Leo, A. and Stocchino, A.: Dispersion of heavy particles under sea waves, Phys. Fluids, 34, 013305, https://doi.org/10.1063/5.0074760, 2022. a, b
De Leo, A., Cutroneo, L., Sous, D., and Stocchino, A.: Settling velocity of microplastics exposed to wave action, J. Mar. Sci. Eng., 9, 142, https://doi.org/10.3390/jmse9020142, 2021. a, b, c
Dellino, P., Mele, D., Bonasia, R., Braia, G., La Volpe, L., and Sulpizio, R.: The analysis of the influence of pumice shape on its terminal velocity, Geophys. Res. Lett., 32, L21306, https://doi.org/10.1029/2005GL023954, 2005. a
DiBenedetto, M. H., Koseff, J. R., and Ouellette, N. T.: Orientation dynamics of nonspherical particles under surface gravity waves, Phys. Rev. Fluid., 4, 034301, https://doi.org/10.1103/PhysRevFluids.4.034301, 2019. a, b
DiBenedetto, M. H., Clark, L. K., and Pujara, N.: Enhanced settling and dispersion of inertial particles in surface waves, J. Fluid Mech., 936, A38, https://doi.org/10.1017/jfm.2022.95, 2022. a, b
Diez, M., Bezerra, M., Mosso, C., Castilla, R., and Redondo, J. M.: Experimental measurements and diffusion in harbor and coastal zones, Il Nuovo Cimento C, 31, 843–859, 2008. a
Dobler, D., Huck, T., Maes, C., Grima, N., Blanke, B., Martinez, E., and Ardhuin, F.: Large impact of Stokes drift on the fate of surface floating debris in the South Indian Basin, Mar. Pollut. Bull., 148, 202–209, 2019. a
Feddersen, F.: Scaling surf zone turbulence, Geophys. Res. Lett., 39, L18613, https://doi.org/10.1029/2012GL052970, 2012. a, b
Fok, L. and Cheung, P. K.: Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution, Mar. Pollut. Bull., 99, 112–118, 2015. a
Grasso, F., Michallet, H., and Barthélemy, E.: Sediment transport associated with morphological beach changes forced by irregular asymmetric, skewed waves, J. Geophys. Res.-Oceans, 116, C03020, https://doi.org/10.1029/2010JC006550, 2011. a, b
Guler, H. G., Larsen, B. E., Quintana, O., Goral, K. D., Carstensen, S., Christensen, E. D., Kerpen, N. B., Schlurmann, T., and Fuhrman, D. R.: Experimental study of non-buoyant microplastic transport beneath breaking irregular waves on a live sediment bed, Mar. Pollut. Bull., 181, 113902, https://doi.org/10.1016/j.marpolbul.2022.113902, 2022. a, b, c
Jalón-Rojas, I. and Marieu, V.: IJalonRojas/TrackMPD: TrackMPD v2.3, Zenodo [code], https://doi.org/10.5281/zenodo.12514513, 2024. a
Jalón-Rojas, I., Sous, D., and Marieu, V.: Outputs from wave-resolving 2DV Lagrangian simulations of microplastic transport in a wave flume, SEANOE [data set], https://doi.org/10.17882/104404, 2024. a
Kerpen, N. B., Schlurmann, T., Schendel, A., Gundlach, J., Marquard, D., and Hüpgen, M.: Wave-induced distribution of microplastic in the surf zone, Front. Mar. Sci., 7, 590565, https://doi.org/10.3389/fmars.2020.590565, 2020. a, b, c, d
Khatmullina, L. and Chubarenko, I.: Transport of marine microplastic particles: why is it so difficult to predict?, Anthropocene Coasts, 2, 293–305, 2019. a
Kim, S. and Kim, D.-H.: Short-term buoyant microplastic transport patterns driven by wave evolution, breaking, and orbital motion in coast, Mar. Pollut. Bull., 201, 116248, https://doi.org/10.1016/j.marpolbul.2024.116248, 2024. a, b
Larsen, B. E., Al-Obaidi, M. A. A., Guler, H. G., Carstensen, S., Goral, K. D., Christensen, E. D., Kerpen, N. B., Schlurmann, T., and Fuhrman, D. R.: Experimental investigation on the nearshore transport of buoyant microplastic particles, Mar. Pollut. Bull., 187, 114610, https://doi.org/10.1016/j.marpolbul.2023.114610, 2023. a, b, c, d
Lefebvre, C., Rojas, I. J., Lasserre, J., Villette, S., Lecomte, S., Cachot, J., and Morin, B.: Stranded in the high tide line: Spatial and temporal variability of beached microplastics in a semi-enclosed embayment (Arcachon, France), Sci. Total Environ., 797, 149144, https://doi.org/10.1016/j.scitotenv.2021.149144, 2021. a
Lefebvre, C., Le Bihanic, F., Jalón-Rojas, I., Dusacre, E., Chassaigne, L., Bichon, J., Clérandeau, C., Morin, B., Lecomte, S., and Cachot, J.: Spatial distribution of anthropogenic particles and microplastics in a meso-tidal lagoon (Arcachon Bay, France): A multi-compartment approach, Sci. Total Environ., 898, 165460, https://doi.org/10.1016/j.scitotenv.2023.165460, 2023. a
Liu, S. and Stern, D. I.: A meta-analysis of contingent valuation studies in coastal and near-shore marine ecosystems, MPRA Paper 11608, University Library of Munich, Germany, 2008. a
Lobelle, D., Kooi, M., Koelmans, A. A., Laufkötter, C., Jongedijk, C. E., Kehl, C., and van Sebille, E.: Global modeled sinking characteristics of biofouled microplastic, J. Geophys. Res.-Oceans, 126, e2020JC017098, https://doi.org/10.1029/2020JC017098, 2021. a
Martins, K., Bonneton, P., Mouragues, A., and Castelle, B.: Non-hydrostatic, non-linear processes in the surf zone, J. Geophys. Res.-Oceans, 125, e2019JC015521, https://doi.org/10.1029/2019JC015521, 2020. a
McLachlan, A. and Defeo, O.: The ecology of sandy shores, Academic press, 2017. a
Núñez, P., Romano, A., García-Alba, J., Besio, G., and Medina, R.: Wave-induced cross-shore distribution of different densities, shapes, and sizes of plastic debris in coastal environments: A laboratory experiment, Mar. Pollut. Bull., 187, 114561, https://doi.org/10.1016/j.marpolbul.2022.114561, 2023. a, b, c, d
Pérez-Alvelo, K. M., Llegus, E. M., Forestier-Babilonia, J. M., Elías-Arroyo, C. V., Pagán-Malavé, K. N., Bird-Rivera, G. J., and Rodríguez-Sierra, C. J.: Microplastic pollution on sandy beaches of Puerto Rico, Mar. Pollut. Bull., 164, 112010, ttps://doi.org/10.1016/j.marpolbul.2021.112010, 2021. a
Rijnsdorp, D. P., Smit, P. B., and Zijlema, M.: Non-hydrostatic modelling of infragravity waves under laboratory conditions, Coast. Eng., 85, 30–42, 2014. a
Rippy, M., Franks, P., Feddersen, F., Guza, R., and Moore, D.: Physical dynamics controlling variability in nearshore fecal pollution: Fecal indicator bacteria as passive particles, Mar. Pollut. Bull., 66, 151–157, 2013. a
Ruessink, B.: Observations of turbulence within a natural surf zone, J. Phys. Oceanogr., 40, 2696–2712, 2010. a
Sous, D., Dodet, G., Bouchette, F., and Tissier, M.: Momentum balance across a barrier reef, J. Geophys. Res.-Oceans, 125, e2019JC015503, https://doi.org/10.1029/2019JC015503, 2020. a
Stocchino, A., De Leo, F., and Besio, G.: Sea waves transport of inertial micro-plastics: Mathematical model and applications, J. Mar. Sci. Eng., 7, 467, https://doi.org/10.3390/jmse7120467, 2019. a, b
Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., and Zijlema, M.: Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow foreshores using SWASH, Coast. Eng., 122, 108–123, 2017. a
Tata, T., Belabed, B. E., Bououdina, M., and Bellucci, S.: Occurrence and characterization of surface sediment microplastics and litter from North African coasts of Mediterranean Sea: Preliminary research and first evidence, Sci. Total Environ., 713, 136664, https://doi.org/10.1016/j.scitotenv.2020.136664, 2020. a
Turra, A., Manzano, A. B., Dias, R. J. S., Mahiques, M. M., Barbosa, L., Balthazar-Silva, D., and Moreira, F. T.: Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms, Sci. Rep., 4, 4435, https://doi.org/10.1038/srep04435, 2014. a
van den Bremer, T. S. and Breivik, Ø.: Stokes drift, Philos. T. Roy. Soc. A-Math., 376, 20170104, https://doi.org/10.1098/rsta.2017.0104, 2018. a
Waldschläger, K. and Schẗtrumpf, H.: Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions, Environ. Sci. Technol., 53, 1958–1966, 2019a. a
Zhang, H.: Transport of microplastics in coastal seas, Estuar. Coast. Shelf Sci., 199, 74–86, 2017. a
Zhang, R., Zijlema, M., and Stive, M. J.: Laboratory validation of SWASH longshore current modelling, Coast. Eng., 142, 95–105, 2018. a
Short summary
This study presents a novel modeling approach for understanding microplastic transport in coastal waters. The model accurately replicates experimental data and reveals key transport mechanisms. The findings enhance our knowledge of how microplastics move in nearshore environments, aiding in coastal management and efforts to combat plastic pollution globally.
This study presents a novel modeling approach for understanding microplastic transport in...