Articles | Volume 18, issue 10
https://doi.org/10.5194/gmd-18-3003-2025
https://doi.org/10.5194/gmd-18-3003-2025
Development and technical paper
 | 
26 May 2025
Development and technical paper |  | 26 May 2025

A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature

Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan

Related authors

Subsets of geostationary satellite data over international observing network sites for studying the diurnal dynamics of energy, carbon, and water cycles
Hirofumi Hashimoto, Weile Wang, Taejin Park, Sepideh Khajehei, Kazuhito Ichii, Andrew Michaelis, Alberto Guzman, Ramakrishna Nemani, Margaret Torn, Koong Yi, and Ian Brosnan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-33,https://doi.org/10.5194/essd-2025-33, 2025
Preprint under review for ESSD
Short summary
A GeoNEX-based high-spatiotemporal-resolution product of land surface downward shortwave radiation and photosynthetically active radiation
Ruohan Li, Dongdong Wang, Weile Wang, and Ramakrishna Nemani
Earth Syst. Sci. Data, 15, 1419–1436, https://doi.org/10.5194/essd-15-1419-2023,https://doi.org/10.5194/essd-15-1419-2023, 2023
Short summary
Technical Note: The impact of spatial scale in bias correction of climate model output for hydrologic impact studies
E. P. Maurer, D. L. Ficklin, and W. Wang
Hydrol. Earth Syst. Sci., 20, 685–696, https://doi.org/10.5194/hess-20-685-2016,https://doi.org/10.5194/hess-20-685-2016, 2016
Short summary
Dynamics of global atmospheric CO2 concentration from 1850 to 2010: a linear approximation
W. Wang and R. Nemani
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-13957-2014,https://doi.org/10.5194/bgd-11-13957-2014, 2014
Revised manuscript not accepted

Related subject area

Climate and Earth system modeling
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025,https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025,https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025,https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025,https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary

Cited articles

Alabert, F.: The practice of fast conditional simulations through the LU decomposition of the covariance matrix, Math. Geol., 19, 369–386, https://doi.org/10.1007/BF00897191, 1987. 
Anderes, E. B.: Kriging, in: Encyclopedia of Environmetrics, edited by: El-Shaarawi, A. H. and Piegorsch, W. W., Wiley, https://doi.org/10.1002/9780470057339.vak003.pub2, 2012. 
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM Rev., 59, 65–98, 2017. 
Burke, M., Hsiang, S. M., and Miguel, E.: Global non-linear effect of temperature on economic production, Nature, 527, 235–239, https://doi.org/10.1038/nature15725, 2015. 
Download
Short summary
We present, analyze, and validate a methodology for quantifying uncertainty in gridded meteorological data products produced by spatial interpolation. In a validation case study using daily maximum near-surface air temperature (Tmax), the method works well and produces predictive distributions with closely matching theoretical versus actual coverage levels. Application of the method reveals that the magnitude of uncertainty in interpolated Tmax varies significantly in both space and time.
Share