Cornes, R. C., Van Der Schrier, G., Van Den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E‐OBS Temperature and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 2031–2064, https://doi.org/10.1002/joc.1688, 2008.
De Pondeca, M. S. F. V., Manikin, G. S., DiMego, G., Benjamin, S. G., Parrish, D. F., Purser, R. J., Wu, W.-S., Horel, J. D., Myrick, D. T., Lin, Y., Aune, R. M., Keyser, D., Colman, B., Mann, G., and Vavra, J.: The Real-Time Mesoscale Analysis at NOAA's National Centers for Environmental Prediction: Current Status and Development, Weather Forecast., 26, 593–612, https://doi.org/10.1175/WAF-D-10-05037.1, 2011.
Deutsch, C.: Direct assessment of local accuracy and precision, Geostatistics Wollongong, 96, 115–125, 1997.
Doherty, C.: Code for revision of “A Method for Quantifying Uncertainty in Spatially Interpolated Meteorological Data with Application to Daily Maximum Air Temperature”, Zenodo [code], https://doi.org/10.5281/zenodo.14602669, 2024 (code also available at:
https://github.com/conordoherty/met-uncertainty-paper, last access: 5 May 2025).
Doherty, C. T., Johnson, L. F., Volk, J., Mauter, M. S., Bambach, N., McElrone, A. J., Alfieri, J. G., Hipps, L. E., Prueger, J. H., Castro, S. J., Alsina, M. M., Kustas, W. P., and Melton, F. S.: Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS, Irrig. Sci., 40, 515–530, https://doi.org/10.1007/s00271-022-00808-9, 2022.
Fioravanti, G., Martino, S., Cameletti, M., and Toreti, A.: Interpolating climate variables by using INLA and the SPDE approach, Int. J. Climatol., 43, 6866–6886, https://doi.org/10.1002/joc.8240, 2023.
Gómez-Hernández, J. J. and Journel, A. G.: Joint Sequential Simulation of MultiGaussian Fields, in: Geostatistics Tróia '92, vol. 5, edited by: Soares, A., Springer Netherlands, Dordrecht, 85–94, https://doi.org/10.1007/978-94-011-1739-5_8, 1993.
Goovaerts, P.: Geostatistics for Natural Resources Evaluation, Oxford University Press, https://doi.org/10.1093/oso/9780195115383.001.0001, 1997.
Goovaerts, P.: Geostatistical modelling of uncertainty in soil science, Geoderma, 103, 3–26, https://doi.org/10.1016/S0016-7061(01)00067-2, 2001.
Gutjahr, A., Bullard, B., and Hatch, S.: General joint conditional simulations using a fast fourier transform method, Math. Geol., 29, 361–389, https://doi.org/10.1007/BF02769641, 1997.
Hanser, S. E.: Elevation in the Western United States (90 meter DEM), USGS [data set],
https://www.sciencebase.gov/catalog/item/542aebf9e4b057766eed286a (last access: 19 September 2023), 2008.
Hart, Q. J., Brugnach, M., Temesgen, B., Rueda, C., Ustin, S. L., and Frame, K.: Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation, Civ. Eng. Environ. Syst., 26, 19–33, https://doi.org/10.1080/10286600802003500, 2009.
Hashimoto, H., Wang, W., Melton, F. S., Moreno, A. L., Ganguly, S., Michaelis, A. R., and Nemani, R. R.: High-resolution mapping of daily climate variables by aggregating multiple spatial data sets with the random forest algorithm over the conterminous United States, Int. J. Climatol., 39, 2964–2983, https://doi.org/10.1002/joc.5995, 2019.
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and Gräler, B.: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables, Peer J., 6, e5518, https://doi.org/10.7717/peerj.5518, 2018.
Hoffimann, J.: GeoStats.jl – High-performance geostatistics in Julia, J. Open Sour. Softw., 3, 692, https://doi.org/10.21105/joss.00692, 2018.
Hsiang, S. M., Burke, M., and Miguel, E.: Quantifying the Influence of Climate on Human Conflict, Science, 341, 1235367, https://doi.org/10.1126/science.1235367, 2013.
Hudson, G. and Wackernagel, H.: Mapping temperature using kriging with external drift: Theory and an example from scotland, Int. J. Climatol., 14, 77–91, https://doi.org/10.1002/joc.3370140107, 1994.
Kitanidis, P. K.: Introduction to Geostatistics: Applications in Hydrogeology, Cambridge University Press, ISBN 9780521587471, 1997.
Lobell, D. B., Thau, D., Seifert, C., Engle, E., and Little, B.: A scalable satellite-based crop yield mapper, Remote Sens. Environ., 164, 324–333, https://doi.org/10.1016/j.rse.2015.04.021, 2015.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Overview of the Global Historical Climatology Network-Daily Database, J. Atmos. Ocean. Tech., 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.
Milà, C., Ballester, J., Basagaña, X., Nieuwenhuijsen, M. J., and Tonne, C.: Estimating daily air temperature and pollution in Catalonia: A comprehensive spatiotemporal modelling of multiple exposures, Environ. Pollut., 337, 122501, https://doi.org/10.1016/j.envpol.2023.122501, 2023.
Morgan, M. G. and Henrion, M.: Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, https://doi.org/10.1017/CBO9780511840609, 1990.
Olea, R. A.: Geostatistics for Engineers and Earth Scientists, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4615-5001-3, 1999.
Pyrcz, M. and Deutsch, C. V.: Geostatistical Reservoir Modeling, in: 2nd Edn., Oxford University Press, New York, p. 448, ISBN 9780199731442, 2014.
Rasmussen, R. M., Chen, F., Liu, C. H., Ikeda, K., Prein, A., Kim, J., Schneider, T., Dai, A., Gochis, D., Dugger, A., Zhang, Y., Jaye, A., Dudhia, J., He, C., Harrold, M., Xue, L., Chen, S., Newman, A., Dougherty, E., Abolafia-Rosenzweig, R., Lybarger, N. D., Viger, R., Lesmes, D., Skalak, K., Brakebill, J., Cline, D., Dunne, K., Rasmussen, K., and Miguez-Macho, G.: CONUS404: The NCAR–USGS 4-km Long-Term Regional Hydroclimate Reanalysis over the CONUS, B. Am. Meteorol. Soc., 104, E1382–E1408, https://doi.org/10.1175/BAMS-D-21-0326.1, 2023.
Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S.-C., and Wilson, B. E.: Daymet: Station-Level Inputs and Cross-Validation for North America, Version 4 R1, ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/2132, 2022.
Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of daily meteorological variables over large regions of complex terrain, J. Hydrol., 190, 214–251, https://doi.org/10.1016/S0022-1694(96)03128-9, 1997.
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and Wilson, B. E.: Gridded daily weather data for North America with comprehensive uncertainty quantification, Sci. Data, 8, 190, https://doi.org/10.1038/s41597-021-00973-0, 2021.
Volk, J. M., Huntington, J. L., Melton, F. S., Allen, R., Anderson, M., Fisher, J. B., Kilic, A., Ruhoff, A., Senay, G. B., Minor, B., Morton, C., Ott, T., Johnson, L., Comini De Andrade, B., Carrara, W., Doherty, C. T., Dunkerly, C., Friedrichs, M., Guzman, A., Hain, C., Halverson, G., Kang, Y., Knipper, K., Laipelt, L., Ortega-Salazar, S., Pearson, C., Parrish, G. E. L., Purdy, A., ReVelle, P., Wang, T., and Yang, Y.: Assessing the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications, Nat. Water, 2, 193–205, https://doi.org/10.1038/s44221-023-00181-7, 2024.
White, M. A., Thornton, P. E., and Running, S. W.: A continental phenology model for monitoring vegetation responses to interannual climatic variability, Global Biogeochem. Cy., 11, 217–234, https://doi.org/10.1029/97GB00330, 1997.
Zeng, J., Matsunaga, T., Tan, Z.-H., Saigusa, N., Shirai, T., Tang, Y., Peng, S., and Fukuda, Y.: Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest, Sci. Data, 7, 313, https://doi.org/10.1038/s41597-020-00653-5, 2020.