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Abstract. Uncertainty is inherent in gridded meteorological
data, but this fact is often overlooked when data products
do not provide a quantitative description of prediction uncer-
tainty. This paper describes, applies, and evaluates a method
for quantifying prediction uncertainty in spatially interpo-
lated estimates of meteorological variables. The approach
presented here, which we will refer to as DNK for “detrend,
normal score, krige”, uses established methods from geo-
statistics to produce not only point estimates (i.e., a single
number) but also predictive distributions for each location.
Predictive distributions quantitatively describe uncertainty
in a manner suitable for propagation into physical models
that take meteorological variables as inputs. We apply the
method to interpolate daily maximum near-surface air tem-
perature (Tmax) and then validate the uncertainty quantifica-
tion by comparing theoretical versus actual coverage of pre-
diction intervals computed at locations where measurement
data were held out from the estimation procedure. We find
that, for most days, the predictive distributions accurately
quantify uncertainty and that theoretical versus actual cov-
erage levels of prediction intervals closely match one an-
other. Even for days with the worst agreement, the predic-
tive distributions meaningfully convey the relative certainty
of predictions for different locations in space. After validat-
ing the methodology, we demonstrate how the magnitude of
prediction uncertainty varies significantly in both space and
time. Finally, we examine spatial correlation in predictions
and errors using conditional Gaussian simulation to sample
from the joint spatial predictive distribution. In summary, this
work demonstrates the efficacy and value of describing un-

certainty in gridded meteorological data products using pre-
dictive distributions.

1 Introduction

Interpolated meteorological data products are widely used in
the geosciences, but relatively little attention is paid to the
errors they contain. For example, when studying terrestrial
fluxes of carbon, water, and energy over a large spatial do-
main (e.g., ≥ 100 km2), it is necessary to work with gridded
meteorological data. Ground-based weather stations may be
sparse or only cover a small fraction of the study area, so
gridded estimates, rather than station measurements, of me-
teorological variables are used by models of land surface
processes (Zeng et al., 2020; Volk et al., 2024). In many
gridded data products, the values are point estimates (i.e.,
a single number rather than a range or distribution). When
given only point estimates, data users do not know and can-
not propagate the uncertainty in the meteorological inputs to
their model. While users may refer to point estimate accu-
racy statistics for the data product, these statistics only cap-
ture errors at locations where measurements are available.
For applications that are particularly sensitive to meteoro-
logical inputs, such as evapotranspiration modeling, uncer-
tainty in gridded data can contribute significantly to down-
stream model errors (Doherty et al., 2022). While geostatis-
tical uncertainty quantification is standard practice in other
domains like mining (Rossi and Deutsch, 2014), oil and gas
exploration (Pyrcz and Deutsch, 2014), and hydrogeology
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(Kitanidis, 1997), these methods are not as widely used in
popular near-surface meteorological data products. Under-
standing uncertainty in gridded meteorological data is nec-
essary to evaluate the robustness of scientific findings, espe-
cially when designing and implementing public policy based
on those findings (Morgan and Henrion, 1990).

One approach to producing gridded near-surface meteo-
rological data is statistical interpolation, where gridded val-
ues are estimated by interpolating between measurements at
ground-based weather stations. For North America, Daymet
(Thornton et al., 1997; Thornton et al., 2021) and PRISM
(Daly et al., 2008), which produce estimates of several
meteorological variables on fine spatial grids (∼ 1 km2),
are widely used statistical interpolation products. A related
product, NEX-GDM (Hashimoto et al., 2019), uses ma-
chine learning and a wide range of inputs to produce high-
resolution gridded meteorological values. For Europe, E-
OBS (Cornes et al., 2018) is an interpolated data product
with 12 km spatial resolution. Regarding uncertainty, Daly et
al. (2008) describe a method for creating prediction intervals,
but the resulting maps are not publicly distributed. Thornton
et al. (2021) include an extensive accuracy assessment us-
ing cross-validation, but the methodology does not produce
spatially resolved uncertainty estimates. The E-OBS method-
ology is the most similar to this work in terms of modeling
the data as a Gaussian random field and producing predictive
distributions for each grid cell. However, there are important
differences in the data processing, the effects of which may
explain some of the results in Cornes et al. (2018). We ad-
dress this topic in the discussion. Spatial machine learning
methods including quantile random forest (QRF) can also
be used to produce prediction intervals for uncertainty quan-
tification (Hengl et al., 2018; Milà et al., 2023). However,
this approach does not take into account spatial correlation
and is sometimes combined with other geostatistical meth-
ods that do (Milà et al., 2023). Finally, Bayesian methods
using a Gaussian Markov random field (GMRF) model have
also been used to perform probabilistic interpolation of mete-
orological data. For example, Fioravanti et al. (2023) applied
these methods to air temperature (but did not quantitatively
validate the uncertainty quantification) and Ingebrigtsen et
al. (2014) applied them to precipitation data. In future work,
it would be instructive to compare predictive distributions
produced using QRF and Bayesian GMRF-based methods
with those produced using the more classical geostatistical
methods described in this work.

Another class of approaches to producing gridded data
products is data assimilation, which combines dynamic phys-
ical models with data-driven adjustments. This work is fo-
cused on statistical interpolation rather than data assimila-
tion, but we give a brief overview of the latter for context. A
wide range of data assimilation products are available includ-
ing regional products like RTMA (De Pondeca et al., 2011)
and CONUS404 (Rasmussen et al., 2023) and global ones
like MERRA-2 (Gelaro et al., 2017) and ERA5 (Hersbach et

al., 2020; Bell et al., 2021). Some assimilation products, like
ERA5, express uncertainty using an ensemble of model runs,
where a greater magnitude of spread in the ensemble is taken
to indicate greater uncertainty. However, the computational
expense of large-scale climate simulations generally means
that the resulting data products have relatively coarse spatial
resolution (31 km horizontal resolution for ERA5) and that
ensembles are not large enough (tens of ensemble members)
to characterize stable empirical distributions. In contrast, the
approach described in this work is computationally efficient
enough to be run at fine spatial resolution over large areas
while also giving a robust description of the predictive distri-
bution.

In this paper we present and analyze a statistical method
to produce a spatially and temporally resolved uncertainty
quantification and apply it to the interpolation of daily max-
imum near-surface air temperature (Tmax). We will refer to
the approach for estimation and uncertainty quantification
as DNK for “detrend, normal score, krige”. The basic ap-
proach of DNK is well-established in geostatistics, appear-
ing in textbooks such as Olea (1999) and Goovaerts (1997).
While kriging and related spatial regression methods have
previously been used for meteorological data interpolation,
they are most commonly used to produce gridded point esti-
mates. A central component of this work is to test the validity
of predictive distributions generated using DNK and, as such,
their utility for uncertainty quantification. Uncertainty is not
intrinsic to macroscale physical phenomenon but rather is a
property of the combination of data and a model (Goovaerts,
1997), which means that there is not an objective “correct”
predictive distribution for a given unknown value. However,
we can assess the validity of a collection of predictive distri-
butions, in aggregate, by testing the rate at which true mea-
surement data fall within prediction intervals relative to those
intervals’ theoretical coverage. If the validity of predictive
distributions can be established, then DNK can accurately
quantify uncertainty in gridded meteorological data.

2 Methods

2.1 Input data

This study uses two sets of input data: daily maximum air
temperature at 2 m (Tmax) and elevation. Tmax data are pro-
vided by Thornton et al. (2022) for stations in the Global His-
torical Climatology Network (GHCN) (Menne et al., 2012),
a database of measurement data from ground-based weather
stations across the world. The GHCNd (daily) data are pro-
cessed as described in Thornton et al. (2021) to correct for
temperature sensor biases and inconsistencies in time of ob-
servation. Figure 1a shows the spatial distribution of weather
stations across the study area. We use data from 2022 to con-
duct the validation study. In 2022, the number of weather
stations within the California state boundary ranges between
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Figure 1. Study area, locations of weather stations, and sample Tmax time series. Panel (a) shows the study area and weather station locations.
Black lines mark the bounds of the study area (the state of California). Blue dots mark the locations of GHCN weather stations that were
active in 2022. Panel (b) shows sample time series for three weather stations, each from a different type of location.

524 and 542 stations depending on the day of the year
(DOY). Data from stations within the state boundaries are
used as ground truth for validation. Data from stations out-
side the study area contribute to predictions at locations near
the boundary, but these stations are not, themselves, used
as validation locations. Elevation data are sourced from a
digital elevation model (DEM) with 90 m resolution for the
western United States (Hanser, 2008). The DEM is clipped
to the boundaries of the study area and then resampled us-
ing mean resampling to a grid with 1 km2 grid cells. Fig-
ure 1b shows example Tmax time series for three stations from
different types of regions: “USC00045795” (blue, coastal),
“USW00053119” (orange, inland), and “USS0019L45S”
(green, mountain).

2.2 Probabilistic interpolation procedure

The interpolation procedure, which we summarize as de-
trend, normal score, krige (DNK), combines established
methods from geostatistics to produce predictive distribu-
tions. We briefly summarize the procedure here, before pro-
viding greater detail in the following sub-sections. At a high
level, the data are modeled as being observations of a sta-
tionary Gaussian random field. The “detrend” and “normal
score” steps are transformations applied to make the data bet-
ter satisfy the assumptions of this mathematical model. The
procedure consists of the following steps:

1. detrend – estimate and subtract spatial trends from mea-
surement data

2. normal score – apply quantile-to-quantile mapping
transforming observed empirical distribution to a stan-
dard normal distribution

3. krige – produce marginal (or joint) predictive distribu-
tions at prediction locations using ordinary kriging (or
conditional Gaussian simulation)

4. inverse normal score transformation – apply the inverse
of the mapping from step (2) to the output of step (3),
transforming predicted values back to the “original”
(detrended) distribution

5. add back the trend – estimate spatial trends at predic-
tion locations and add them to the output of step (4) to
produce final predictive distributions.

The procedure is also represented graphically in Fig. 2,
where each step in the previous list corresponds to a transi-
tion from one column to the next (moving from left to right).
We will refer to Fig. 2 in the following sub-sections. All cal-
culations for this study were performed using the Julia pro-
gramming language (Bezanson et al., 2017), and we make
significant use of the GeoStats.jl package (Hoffimann, 2018)
in particular. All package names and versions that were used
can be found in the Manifest.toml file provided (see “Code
availability”).

2.2.1 Detrending

The first transformation models and then subtracts local spa-
tial trends. The purpose of trend modeling is to identify and
remove variation at coarse spatial scales that would other-
wise make the data nonstationary. We use the term “trend” to
refer to both large-scale variation in longitude–latitude space
and variation due to change in elevation (lapse rate). While
some prior approaches assume a fixed lapse rate (Hart et al.,
2009), we allow the lapse rate to vary in space (Thornton et
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Figure 2. Illustration of data-processing steps. Each column corresponds to a step in the processing and estimation pipeline. The top row
shows point (a, c, e) and gridded (g, i, k) data values. The bottom row shows histograms of the data at each processing step. Panels (a)
and (b) show the measured Tmax values. Panels (c) and (d) show the Tmax values after spatial trends have been estimated and subtracted.
Panels (e) and (f) show the detrended Tmax data after the normal score transformation has been applied. Panels (g) and (h) show gridded
estimates produced by OK in the detrended and Gaussian space. Panels (i) and (j) show gridded estimates after reverting the normal score
transformation using quantile information from the distributions in panels (c) and (d). Panels (k) and (l) show the final gridded estimates
after readding spatial trends.

al., 1997, 2021; Daly et al., 2008; Cornes et al., 2018). Lo-
cal trends are estimated by regressing Tmax values on spatial
coordinates and elevation:

Tmaxi = xi + yi + zi + εi, (1)

where xi and yi are the spatial coordinates and zi is the ele-
vation at weather station i. The residual εi , calculated as the
observation minus the fitted value from the trend model, is
taken as the detrended Tmax value. Detrending is performed
locally using a 100 km search radius around each weather
station. Detrended station-level Tmax values are shown in
Fig. 2b and c. A similar procedure is applied to “add back”
the trend after estimation: the trend parameters are estimated
at locations centered on each grid cell, again using data from
weather stations within 100 km. The cell-wise trend value is
calculated using the regression parameter estimates and the
corresponding coordinates of the cell and elevation from a
digital elevation model. The gridded estimates with the trend
added back is shown in Fig. 2k and l. The purpose of de-
trending is not to explain all variation in Tmax values. Rather,
the purpose is to control for large-scale variation such that
the residuals, after detrending, can be modeled as a random
field whose mean does not vary deterministically in space.
While it could be useful to incorporate other covariates (e.g.,
distance to the ocean), doing so would likely require a non-
linear trend model.

2.2.2 Normal score transformation

The second transformation, a “normal score transformation”,
transforms the data to be approximately Gaussian. The trans-
formation is done by mapping quantiles of the empirical
distribution of detrended Tmax values to the corresponding
quantiles of a standard normal distribution. The transformed

station-level data are shown in Fig. 2c and d. The quantile in-
formation from the original empirical distribution is saved so
that the inverse transformation can be applied after estima-
tion. The gridded estimates, after reverting the normal score
transformation, are shown in Fig. 2i and j. This transforma-
tion is implemented in TableTransforms.jl. Inclusion of this
step is one place where our approach differs from the E-OBS
methodology (Cornes et al., 2018) and could explain some
of the differences in results. We address this difference in the
discussion.

2.2.3 Estimation of marginal predictive distributions
using ordinary kriging

The primary estimation method we consider is ordinary krig-
ing (OK) (see, e.g., Goovaerts, 1997; Olea, 1999; Anderes,
2012), which gives analytical solutions for both a point es-
timate and the variance of a predictive distribution. For a
random field that is covariance stationary and Gaussian, the
OK prediction mean and variance completely characterize
the predictive distribution. In general, spatially distributed
Tmax data satisfy neither assumption, which is why we first
apply detrending and normal score transformations. We ap-
ply OK locally at each prediction location using measure-
ment data within a 100 km radius of the location in the es-
timation. Figure 2g and h show an example of the gridded
estimates produced by OK from the point measurement data
shown in Fig. 2e and f. Samples (or quantiles) of a given pre-
dictive distribution are generated by drawing samples from
(or calculating quantiles for) the Gaussian predictive distri-
bution described by the OK prediction mean and variance
and then applying the inverse normal score and detrending
transformations as described in the prior two sections. The
validation scheme for local (marginal) predictive distribu-
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tions is described in Sect. 2.3, and the results of the validation
study are presented in Sect. 3.1.

2.2.4 Sampling from the joint predictive distribution
using conditional Gaussian simulation

In addition to OK, we also demonstrate spatial uncertainty
quantification using conditional Gaussian simulation (CGS).
Samples generated by CGS are equally probable “realiza-
tions” of the underlying random field that produced the mea-
surement data. For a stationary Gaussian random field, local
predictive distributions (i.e., the marginal predictive distribu-
tion at a given grid cell) generated by CGS are equivalent
to the distribution defined by the kriging variance (see, e.g.,
Goovaerts, 2001). However, CGS produces realizations that
are spatially coherent with respect to the model of spatial co-
variance (see Sect. 2.2.5, Variography), whereas gridded es-
timates produced by OK do not. As such, CGS can be used to
express “spatial uncertainty”, or spatial correlation in errors,
as described by the joint predictive distribution over multiple
grid cells.

We apply CGS using a method based on a decomposition
of the conditional distribution covariance matrix, commonly
referred to in geostatistics literature as the “LU method” of
CGS (Alabert, 1987). The LU method samples from the ex-
act multivariate Gaussian predictive distribution. For larger-
scale simulations, the LU method becomes computationally
infeasible and other algorithms and approximations may be
required. However, in this example, we are drawing samples
for a small number of locations, so the LU method works
well. As with OK, inverse normal score and detrending trans-
formations are applied to produce the final predictive distri-
butions.

This study does not include a comprehensive assessment
of spatial uncertainty quantification. Instead, we present a
case study (Sect. 3.2) using data from two weather stations
close to one another where we expect the Tmax values and
prediction errors to be correlated. Quantitative results using
104 samples from the joint and marginal predictive distribu-
tions are shown that illustrate how CGS describes spatial un-
certainty.

2.2.5 Variography

Both OK and CGS rely on a model of spatial covariance
to produce gridded Tmax estimates and prediction uncer-
tainty. Traditionally in geostatistics, spatial variation is rep-
resented using a semi-variogram, which is a function that de-
scribes the decrease in correlation between two locations as
the distance between them increases (see, e.g., Olea, 1999;
Goovaerts, 1997). In this study, variography is performed us-
ing functions from the GeoStats.jl library (Hoffimann, 2018).
We model the theoretical semi-variogram using the pentas-
pherical function:

γ (h)= (s− n)
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]
+ n · 1(0,∞)(h), (2)

where the variable h is the lag distance; s, n, and r are pa-
rameters estimated to fit the empirical semi-variogram repre-
senting the sill (value of γ as h→∞), nugget (value of γ as
h→ 0), and range (roughly the value of h where γ “levels
off”), respectively; and 1(l,u)(h) is an indicator function that
is 1 if l < h < u and 0 otherwise. The theoretical model is
fit to the empirical semi-variogram by minimizing the sum
of squared errors with equal weight given to each lag bin.
Model fitting is performed using the detrended and normal
score data (the data in Fig. 2e and f) for each day inde-
pendently (i.e., there is a different semi-variogram model
for each day). At shorter lag distances, the pentaspherical
model produces semi-variances between that of exponential
and spherical models, which have been used previously to
interpolate near-surface air temperature (Cornes et al., 2018;
Hudson and Wackernagel, 1994). Running the analysis us-
ing these different semi-variogram models produces, in ag-
gregate, very similar validation statistics. The pentaspherical
model produces better accuracy in the CGS case study, and
we use it throughout the analysis for consistency. Interested
readers can reproduce all results and figures in this paper us-
ing different semi-variogram models by replacing the model
type passed to the semi-variogram fitting function (see “Code
availability”). Examples of fitted semi-variograms are shown
in Fig. S1 in the Supplement.

At present, we do not model or try to exploit temporal cor-
relation in Tmax or prediction errors. This topic will be ad-
dressed in future work.

2.3 Validation of local predictive distributions

We implement a validation scheme that evaluates the accu-
racy of the OK predictive distributions in quantifying lo-
cal prediction uncertainty. Uncertainty is not intrinsic to the
physical phenomenon, and, as such, there is not an objec-
tive correct predictive distribution. However, a collection of
valid predictive distributions should produce statistics that
reflect appropriate levels of confidence in aggregate. The
main quantitative validation results in this study are, for lo-
cal (marginal) predictive distributions, computed using OK.
We present some quantitative results for a CGS case study,
but we do not conduct a comprehensive evaluation of spatial
uncertainty quantification.

To assess the validity of local predictive distributions, we
use a strategy based on prediction intervals described by
Deutsch (1997). For each day of the year, we perform leave-
one-out (LOO) cross-validation with each weather station.
The measurement at the left-out station is not used in trend
modeling, variography, or estimation. Predictions are made
for the point at the center of the grid cell containing the
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weather station that will be used for validation. Estimates
of the multiples of 0.005 quantiles are produced for each
predictive distribution, from which centered prediction in-
tervals are calculated with q coverage for q ∈Q= {0.01,
0.02, . . . , 0.99}. For each q prediction interval, let qlow = (1−
q)/2 and qupp = (1+ q)/2 be the lower and upper quantiles
bounding the theoretical prediction interval. Then for Tmaxi ,
the measured Tmax at weather station i, define an indicator
function:

ξ
(
Tmaxi ;q

)
=

{
1, if q∗

(
Tmaxi

)
∈
(
qlow,qupp

)
0, otherwise , (3)

where q∗(Tmaxi ) denotes the quantile of the true Tmaxi rel-
ative to the predictive distribution for location i. Then for
each q prediction interval, we compute an average over all

n stations as ξ(q)= 1
n

n∑
i=1
ξ(Tmaxi ;q). For exactly valid pre-

dictive distributions, ξ(q)= q for any q. To summarize the
errors, we calculate the mean bias error as 1

99
∑
q∈Q

ξ(q)− q

and the mean absolute error (MAE) as 1
99
∑
q∈Q

∣∣∣ξ(q)− q∣∣∣. The

MAE weights errors being too confident and too conservative
equally. The bias indicates whether the predictive distribu-
tions are too confident (negative) or too conservative (posi-
tive) on average.

Figure 3 shows a representation of how the ξ function is
evaluated. The vertical blue and red lines denote the lower
and upper bounds, respectively, of nested prediction inter-
vals. The translucent lines indicate intervals that do not con-
tain the true measured value, which is denoted by the ver-
tical dashed line. The solid lines indicate that the interval
does contain the true value. The prediction intervals are de-
termined by the predictive distribution, the probability den-
sity function (PDF) of which is shown as a dotted curve.

3 Results

3.1 Local uncertainty quantification using ordinary
kriging

We first present the validation of local uncertainty quantifi-
cation using the predictive distributions from OK. Figure 4
shows the average accuracy of the predictive distributions us-
ing the LOO validation scheme described in Sect. 2.5. Fig-
ure 4a shows the mean absolute error (MAE) in terms of
the predicted versus actual proportion of Tmax values that
fall within a given prediction interval. For example, an MAE
of 0.01 indicates that for a p% prediction interval (where
p = q×100), the true value fell within that interval (p±1) %
of the time. The largest MAE of 0.045 occurs on DOY 96.
The median MAE is 0.013, and 82 % of days had an MAE
less than 0.02. Figure 4b shows the average bias for each day.
For example, a bias of −0.01 indicates that for a p% predic-
tion interval, the true value fell within that prediction interval

Figure 3. Prediction intervals versus the measured Tmax. The lower
bounds (blue) and upper bounds (red) of prediction intervals with
coverage q ∈ {0.05, 0.10, . . . , 0.95} for a single prediction loca-
tion are shown. (Validation statistics are computed using q ∈ {0.01,
0.02, . . . , 0.99}, but we show fewer intervals here for legibility.)
Intervals that contain the measured Tmax (dashed black line) are
drawn as solid lines, and the intervals that do not are drawn as par-
tially transparent. The dotted black curve shows a kernel density
estimate of the predictive distribution.

(p− 1) % of the time. Positive bias indicates that the predic-
tion intervals are too conservative on average, and negative
bias indicates that the prediction intervals are too confident
on average. The largest positive bias of +0.045 occurred on
DOY 96, and the largest negative bias of −0.040 occurred
on DOY 7. The median bias was −0.005. There are tempo-
ral patterns with the bias metric errors of a similar sign and
magnitude persisting for periods ranging from a few days to
multiple weeks.

Figure 5 shows validation results for 3 individual days.
In addition to showing the day with the median MAE, we
highlight the two days with the most significant errors in the
sample to give a sense of the “worst-case” accuracy in uncer-
tainty quantification. Values in the x direction correspond to
theoretical prediction intervals centered on the median. Val-
ues in the y direction are the actual proportion of true Tmax
values that fall within the given theoretical interval. For ex-
ample, a point at 0.25, 0.3 would mean that 30 % of true val-
ues fell within the corresponding 25 % prediction intervals.
Figure 5a shows results for DOY 304, which had the median
MAE of 0.013. For DOY 304, the actual proportions closely
track the theoretical prediction intervals, with the largest er-
ror occurring at the 74 % intervals, which contained 77.1 %
of the true values. Figure 5b and c show the same information
for DOY 96 and DOY 7, which are the days with the largest
positive and negative biases of +0.045 and −0.040, respec-
tively. The largest error for DOY 96 occurs at the 60 % pre-
diction intervals, which contained 68.1 % of true Tmax values.
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Figure 4. Predictive-distribution quantitative validation statistics. Validity is assessed by comparing the theoretical coverage versus the rate
that measurement data actually fell within the prediction intervals. The calculation uses an indicator function ξ described in Eq. (1). Panel

(a) shows the mean absolute error (MAE) for each day of the year, calculated as 1
99

99∑
p=1

∣∣∣ξ(q)− q∣∣∣. Panel (b) shows the mean bias error for

each day of the year: 1
99

99∑
p=1

ξ(q)−q. Positive bias indicates that predictive distributions were too conservative on average, and negative bias

indicates they were too confident on average.

Figure 5. Theoretical versus actual coverage of prediction intervals. x axes correspond to the coverage of the theoretical prediction interval,
and y axes correspond to the proportion of values that actually fell within the intervals. Panel (a) shows results for DOY 304, which had
the median MAE of all the days in the sample. Panels (b) and (c) show DOY 96 and 7, which had the largest positive and negative biases,
respectively.

The largest error for DOY 7 occurs at the 62 % prediction in-
tervals, which contained 54.9 % of true Tmax values.

When applying our method across a full spatial domain,
we observe that local predictive distributions vary in space
and time. Figure 6 shows predicted Tmax and uncertainty
statistics (spread of predictive distributions) for 4 different
days, where each row corresponds to a single day of the year.
The days are approximately equally spaced and cover differ-
ent seasons, including the first days of January (Fig. 6a–c),
April (Fig. 6d–f), July (Fig. 6g–i), and October (Fig. 6j–l).
The first column (Fig. 6a, d, g, and j) shows the median of
the predictive distribution for each 1 km2 grid cell. The sec-
ond column (Fig. 6b, e, h, and k) shows the magnitude of the
50 % prediction interval of each predictive distribution (the
75th percentile minus the 25th percentile). The third column

(Fig. 6c, f, i, and l) shows the magnitude of the 90 % pre-
diction interval of each predictive distribution (the 95th per-
centile minus the 5th percentile). Each column uses a single
common color gradient (the gradients do not vary between
rows).

The Tmax prediction uncertainty varies in both space and
time. Comparing the uncertainty maps in time (between
rows), the magnitude, spatial patterns, and the magnitude of
variation in prediction uncertainty all vary. Spatial patterns
also differ based on the magnitude of the prediction inter-
val. OK prediction variance depends only on the distances
to measurement data locations, not the measurement values
themselves (see, e.g., Olea, 1999). However, the forward and
inverse normal score transformations are nonlinear, so the
shape of the final prediction distribution is influenced by the
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Figure 6. Tmax and prediction uncertainty maps for 4 different days. Each row shows results for a different day. The days are DOY 1 (a–
c), DOY 91 (d–f), DOY 182 (g–i), and DOY 274 (j–l) from 2022. The first column (a, d, g, j) shows the median of the Tmax predictive
distribution at each grid cell. The second column (b, e, h, k) shows the magnitude of the 50 % prediction interval for each grid cell. The third
column (c, f, i, l) shows the magnitude of the 90 % prediction interval for each grid cell.
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actual measurement and prediction values. The 90 % predic-
tion intervals (rightmost column) appear to be controlled pri-
marily by the local spatial density of measurements, with
the locations of weather stations standing out as local min-
ima. The patterns in the 50 % prediction intervals (center col-
umn) are more complex. The fact that many of the locations
with the largest uncertainties are near the Pacific coast may
be caused by the trend model failing to capture local Tmax
trends, where cooling from the ocean confounds the usual
negative correlation between temperature and elevation. This
could cause the detrended measurements near the coast to be
outliers on the low end of the overall distribution. As a re-
sult, prediction intervals in this part of the distribution get
“stretched out” by the inverse normal score transformation.
This issue would not occur in the mountains where the ex-
pected relationship between temperature and elevation holds,
and the resulting detrended data are not outliers. A more so-
phisticated approach to trend modeling may improve accu-
racy and reduce uncertainty near the coast.

3.2 Case study: spatial uncertainty quantification using
conditional Gaussian simulation

In addition to local (cell-wise marginal) uncertainty, we can
represent spatial uncertainty using CGS to sample from the
joint predictive distribution over multiple grid cells. Fig-
ure 7 shows the predictive distributions for grid cells contain-
ing two weather stations, USC00043747 (“Station 1”) and
USW00053119 (“Station 2”), near Hanford, California, for
DOY 182. The centers of the grid cells containing the stations
are 1.4 km apart. The red lines show kernel density estimates
of the joint and marginal predictive distributions generated
using CGS. The blue lines show the same predictive distri-
butions generated using OK, where the “joint distribution” is
generated by sampling independently from the marginal dis-
tributions. The empirical distributions were generated using
104 samples each. While the OK samples show no correla-
tion between locations (by construction), the samples pro-
duced by CGS show a correlation of approximately 0.66 be-
tween predictions at the two locations. This shows how errors
in predictions at nearby locations are likely to be correlated
with one another. The marginal distributions generated using
OK and CGS are virtually identical at each of the two loca-
tions (Fig. 7a and c), as expected.

Figure 8 shows histograms of predictive distributions
for Tmax estimates at Station 1 when conditioned on differ-
ent information about Tmax at Station 2. Measurements from
both stations are held out from the estimation procedure.
The dashed black line is the Tmax measured at Station 1.
The blue histogram is the unconditional marginal distribu-
tion for the grid cell containing Station 1. The orange and
green histograms show empirical conditional distributions at
Station 1 given that the error at Station 2 is less that 2° (“con-
ditional 2”) and less than 1° (“conditional 1”), respectively.
These empirical distributions are generated by filtering the

Figure 7. Joint and marginal predictive distributions using OK ver-
sus CGS. Predictive distributions were generated for two nearby
grid cells that contain weather stations. Panels (a) and (c) show the
marginal (local) predictive distributions at the two locations, and
panel (b) shows the joint (spatial) predictive distribution. The pre-
dictive distributions from OK are in blue, and the distributions gen-
erated by CGS are in red. The two estimation methods produce the
same marginal distributions, but the joint distributions are different.
The distribution from CGS reflects the spatial correlation in predic-
tions between the two locations.

simulation ensemble. Conditioning the predictive distribu-
tion reduces the standard deviation from 2.4 °C in the un-
conditional distribution to 1.9 and 1.7 °C for conditional 2
and conditional 1, respectively. If the mean of the predic-
tive distribution is taken as a point estimate, the error for the
unconditional distribution is +0.25 °C. The error is reduced
to −0.08 for conditional 2 but then increases (in magnitude)
to−0.25 for conditional 1. The degree to which the point es-
timates and prediction variance change is controlled by the
semi-variogram model. The semi-variogram for DOY 182
has the smallest nugget (i.e., the strongest correlation at short
distances) among the days shown in Fig. 6. This means the
model-implied correlation between the two stations will be
lower on the other 3 d. Plots of empirical and fitted theoreti-
cal semi-variograms for the 4 d can be found in the Supple-
ment. In general, we observe that the fitted semi-variograms
have relatively large nugget values. This may be partly an
artifact of the semi-variogram estimation process, given that
there are few pairs of weather stations within 1–10 km of one
another. However, there does appear to be significant “real”
variance in measured Tmax values even at short spatial scales.
For example, the two stations used in this example are 1.4 km
apart and at nearly identical elevation but have an average
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Figure 8. Marginal predictive distributions without and with addi-
tional spatial information. Three empirical predictive distributions
at Station 1 (S1) are shown including the unconditional distribution
(blue) and two distributions conditioned on predictive accuracy at
nearby Station 2 (S2). Conditioning is performed by filtering the
ensemble and leaving only realizations, where the prediction at S2
was within 2 °C (orange) or within 1 °C (green) of the measured
value. Conditioning on additional spatial information reduces the
spread of the marginal predictive distribution.

difference in Tmax of nearly 1.5 °C in 2022. This difference
may be explained by site-specific effects, such as land cover
or other features near the weather stations, rather than physi-
cal variation that would persist under idealized conditions.

4 Discussion and conclusion

This work presents and validates an approach to quantify-
ing spatially and temporally resolved prediction uncertainty
in interpolated meteorological data products. In the quantita-
tive validation study, the DNK method produced highly ac-
curate uncertainty quantification. Even in the least accurate
cases, the predictive distributions are qualitatively informa-
tive and are still sufficiently accurate to be useful for many
applications. Accuracy assessment of point estimates is use-
ful but fundamentally cannot describe prediction uncertainty
at times and locations where measurement data are unavail-
able. In this application, we have measurements at hundreds
of weather stations and predict Tmax values at hundreds of
thousands of grid cells, some of which are nearly 100 km
from the nearest measurement. This means that the number
of locations where we can assess prediction uncertainty us-
ing actual measurement data is vanishingly small compared
to the number of locations where we do not have measure-
ments. We show that the magnitude of prediction uncertainty
varies significantly in space and in time and that using av-
erage error statistics will overestimate prediction uncertainty
in some cases and dramatically underestimate it in others.

The DNK methodology described in this paper could be
applied to a wide range of applications due to its general-
ity and relatively low computational cost. The main appli-
cation area motivating this work was modeling land surface
fluxes of water and carbon, given that rates of evapotranspi-
ration (Volk et al., 2024) and primary production (Zeng et
al., 2020) are particularly sensitive to near-surface meteo-
rological conditions. However, gridded meteorological data
are used to make predictions and draw conclusions about
many other phenomena including crop yield (Lobell et al.,
2015), vegetation phenology (White et al., 1997), economic
productivity (Burke et al., 2015), human conflict (Hsiang et
al., 2013), and others. Using gridded predictive distributions
rather than point estimates can help ensure the robustness of
scientific conclusions given uncertainty in model inputs. The
decision to use cell-wise marginal (OK) or full joint (CGS)
predictive distributions depends on various factors including
the size of grid cells, the distances between locations being
compared, and the sensitivity of the analysis to spatial corre-
lation in prediction errors (e.g., for causal inference). Users
of gridded meteorological data products can propagate un-
certainty through their analysis by running models multiple
times using either random samples or a preset collection of
quantiles from the distribution. This approach does not re-
quire any additional modeling choices or assumptions be-
cause the relevant information about uncertainty in the model
inputs is expressed by the predictive distributions. Also, com-
putationally expensive models may use the gridded variable
uncertainty to prioritize sensitivity analyses and reduce the
total number of model runs required.

Producing a predictive distribution using DNK, rather than
a single point estimate, requires only marginally more com-
putation. The main computation required in OK is solv-
ing for the kriging weights λs, which requires solving a
(S+ 1)× (S+ 1) system of linear questions for S stations.
The prediction mean µOK and variance σ 2

OK are both func-
tions of the S station data and the weights λs. Drawing sam-
ples from the predictive distribution only requires drawing
samples from Normal(µOK, σ 2

OK) and then, for each sample,
applying the reverse normal score transformation and adding
back the trend. Computing the joint conditional distribution
and sampling using CGS is more computationally expensive,
as it requires solving the system of kriging equations as well
as factorizing a C×C matrix, where C is the number of pre-
diction grid cells and often C� S. There exist more com-
putationally scalable methods for conditional Gaussian sim-
ulation (Gómez-Hernández and Journel, 1993; Gutjahr et al.,
1997; Gómez-Hernández and Srivastava, 2021) that we do
not discuss here.

The normal score transformation used in this study is an
important step that may explain differences in our validation
results compared to prior studies. Cornes et al. (2018) eval-
uated the predictive distributions of the E-OBS data prod-
uct using an approach similar to the one used in this work.
They found that, on average, the predictive distributions were
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overconfident and that measured values fell in the tails of
the distributions at a higher-than-expected rate, although this
trend varied regionally. Our study is conducted over a much
smaller area and with different prediction spatial scales (1 km
versus 12 km), so we cannot definitively explain the differ-
ences in findings. However, omission of the normal score
transformation could explain underdispersion in predictive
distributions. We observe that the distributions of the de-
trended observation data generally have positive excess kur-
tosis, meaning they have heavier tails than a Gaussian distri-
bution. As such, approximating predictive distributions with
a Gaussian could fail to account for additional probability
mass in the tails. Surrounding the calculation of the pre-
dictive distributions with forward and inverse normal score
transformations does a better job of capturing the shape of
the original data distribution.

Our analysis also provides perspective on when the ad-
ditional computational cost of CGS is justified. Cornes et
al. (2018) note the high cost of CGS, including the fact that
it was prohibitive for earlier versions of the data product.
In general, CGS is required when spatial correlation in er-
rors matters for the application, like prediction uncertainty
for spatial averages. However, when examining a single lo-
cation in isolation, the predictive distribution given by OK
is valid and CGS does not add value. The semi-variogram
model, with the nugget in particular, determines the degree
of correlation at shorter spatial scales. For distances beyond
some correlation length, the joint distribution can be reason-
ably approximated as the product of the marginals. While
air temperature is traditionally modeled as varying smoothly
in space with semi-variogram nuggets close (Cornes et al.,
2018) or equal to 0 (Hudson and Wackernagel, 1994), obser-
vational Tmax data do not necessarily support this assumption
(see Sect. 3.2). This topic merits further inquiry.

Users of the DNK methodology should be aware of some
practical limitations. First, we reiterate that there is no ob-
jectively correct Tmax predictive distribution for a given lo-
cation. Uncertainty is a property of the measurement data
and modeling decisions, and making different modeling de-
cisions will produce different predictive distributions. Dif-
ferent modeling decisions could lead to larger or smaller er-
rors in point estimates on average but still produce predic-
tive distributions that are valid (i.e., where true values fall in
prediction intervals at the prescribed rate). In addition, even
large samples from predictive distributions will necessarily
suffer from deficiencies inherent in the estimation and sam-
pling process. Covariance stationarity and multi-Gaussianity
are strong assumptions that are relied upon for the validity
of the predictive distributions, and the transformations made
to satisfy these assumptions are imperfect. The normal score
transformation requires estimating an empirical distribution
from the weather station data. Given that we generally wish
to draw on samples larger than the size of the measurement
data, reverting the normal score transformation necessarily
requires interpolation and extrapolation of that distribution

(see Goovaerts, 1997, for a detailed discussion). In practice,
this can produce artifacts like clusters of similar values, par-
ticularly near undersampled portions of the distribution. Re-
garding stationarity, trend modeling can also strongly influ-
ence predictive distributions. Like uncertainty itself, a “spa-
tial trend” is not an objectively observable phenomenon. Re-
liably estimating spatial trends can be difficult when mea-
surement data are sparse or when other physical phenom-
ena, like cooling or warming due to coastal proximity, con-
found the basic estimation procedure. Limitations in trend
modeling contributed to our use of OK (locally constant un-
known mean) rather than simple kriging (SK) (locally con-
stant known mean), despite the latter being theoretically jus-
tifiable for detrended data. Results using OK versus SK were
very similar, with OK performing marginally better likely
due to coarse-scale variation that was still present after mod-
eling and subtracting spatial trends. Finally, note that the vali-
dation results for this study were produced using high-quality
Tmax data from GHCN. If the data contain non-random er-
rors, the assumptions of the DNK procedure will no longer be
satisfied and the quality of uncertainty quantification may de-
cline. For less densely sampled study areas, prediction uncer-
tainty will grow for many locations but the predictive distri-
butions should still be valid. It would be valuable to evaluate
the DNK methodology using poor-quality and sparse data,
but doing so would require a different experimental design
and is beyond the scope of this study.

There are many potential avenues for future work building
on the methods and results described in this paper. One im-
portant area for further study is the analyzing of the effects
of trend estimation on characteristics and robustness of pre-
dictive distributions. For a covariance stationary and multi-
Gaussian random field, predictive distributions will be valid
over a sufficiently large sample. This indicates that invalid
predictive distributions are driven primarily by the transfor-
mations we apply (and revert) to make the data stationary
and Gaussian. Relatedly, it would be useful to find ways of
incorporating additional physical information not explained
by a large-scale spatial trend. The strength of data products
like NEX-GDM and PRISM come from the use of additional
physical information (e.g., coastal proximity, slope, aspect)
in predictions. It is not immediately clear how this informa-
tion could be incorporated into the underlying mathemati-
cal model from which our predictive distributions are de-
rived, but doing so could produce more precise estimates ac-
companied by valid predictive distributions. Lastly, the DNK
method should be tested for the interpolation of meteorologi-
cal variables other than Tmax. The methodology seems likely
to transfer to certain variables like daily minimum air tem-
perature and humidity, but it is not a given that all variables
can be approached the same way.

Going forward, it will be valuable not only to produce
the “best available” gridded meteorological data products
but also to produce spatially and temporally resolved un-
certainty quantification. Accounting for uncertainty in model
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inputs is important considering the robustness of scientific
conclusions. It is also important for guiding the design and
implementation of science-informed policies. Given uncer-
tain information, conclusions about the “best” policy option
may differ when using a deterministic versus probabilistic
cost–benefit analysis (Morgan and Henrion, 1990). Similarly,
there may be asymmetric consequences for over- or underes-
timation of a given model input. In this scenario, using a pre-
dictive distribution rather than a point estimate allows policy-
makers to quantitatively assess tradeoffs between maximiz-
ing expected outcomes and minimizing risk. More broadly,
accounting for uncertainty in scientific models is necessary
not only for designing informed policies but also for build-
ing and maintaining trust in science-informed policymaking.
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