Articles | Volume 18, issue 5
https://doi.org/10.5194/gmd-18-1333-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-1333-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Department of Mathematics and Statistics, University of Reading, Reading, UK
Jan O. Haerter
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Integrated Modeling, Leibniz Center for Tropical Marine Research, Bremen, Germany
Physics and Earth Sciences, Constructor University Bremen, Bremen, Germany
Department of Physics and Astronomy, University of Potsdam, Potsdam, Germany
Romain Fiévet
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Scientific Computing Lab, Max Planck Institute for Meteorology, Hamburg, Germany
Related authors
No articles found.
Deepak Waman, Julian Meusel, Behrooz Keshtgar, Gabriella Wallentin, Christian Barthlott, Sachin Patade, Sonali Shete, Thara Prabhakaran, Romain Fievet, Declan Finney, Alan Blyth, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2025-6129, https://doi.org/10.5194/egusphere-2025-6129, 2026
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We use a weather model with aircraft and satellite data to study ice multiplication in thunderstorms across India, Mexico, Oklahoma, and the Atlantic. This process can create spurious ice particles in clouds, thereby increasing latent and radiative heating that strengthens storms and extends cloud lifetimes. These results improve our understanding of how small-scale ice processes influence large-scale storm behavior and rainfall patterns.
Cited articles
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus form approximation of saturation vapor pressure, J. Appl. Meteorol. Clim., 35, 601–609, 1996. a
Álvarez Borrego, S.: Phytoplankton biomass and production in the Gulf of California: a review, Bot. Mar., 55, 119–128, https://doi.org/10.1515/bot.2011.105, 2012. a
Bellenger, H. and Duvel, J.-P.: An Analysis of Tropical Ocean Diurnal Warm Layers, J. Climate, 22, 3629–3646, https://doi.org/10.1175/2008JCLI2598.1, 2009. a
Bellenger, H., Takayabu, Y. N., Ushiyama, T., and Yoneyama, K.: Role of Diurnal Warm Layers in the Diurnal Cycle of Convection over the Tropical Indian Ocean during MISMO, Mon. Weather Rev., 138, 2426–2433, https://doi.org/10.1175/2010MWR3249.1, 2010. a
Bellenger, H., Drushka, K., Asher, W., Reverdin, G., Katsumata, M., and Watanabe, M.: Extension of the prognostic model of sea surface temperature to rain-induced cool and fresh lenses, J. Geophys. Res.-Oceans, 122, 484–507, https://doi.org/10.1002/2016JC012429, 2017. a
Bernie, D. J., Guilyardi, E., Madec, G., Slingo, J. M., Woolnough, S. J., and Cole, J.: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled CGCM, Clim. Dynam., 31, 909–925, 2008. a
Böing, S.: An object-based model for convective cold pool dynamics, Mathematics of Climate and Weather Forecasting, 2, 43–60, https://doi.org/10.1515/mcwf-2016-0003, 2016. a
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. a
Börner, R.: Modeling diurnal sea surface warming in the tropical ocean (AGU 2021 talk), YouTube [video], https://www.youtube.com/watch?v=KdOWF_fzRLE (24 February 2025), 2021. a
Bretherton, C. S., Blossey, P. N., and Khairoutdinov, M.: An energy-balance analysis of deep convective self-aggregation above uniform SST, J. Atmos. Sci., 62, 4273–4292, 2005. a
Brunke, M. A., Zeng, X., Misra, V., and Beljaars, A.: Integration of a prognostic sea surface skin temperature scheme into weather and climate models, J. Geophys. Res., 113, D21117, https://doi.org/10.1029/2008JD010607, 2008. a
Börner, R.: DiuSST – Model code and data, Zenodo [code and data set], https://doi.org/10.5281/zenodo.13363481, 2024. a, b, c, d
Clayson, C. A. and Chen, A.: Sensitivity of a coupled single-column model in the tropics to treatment of the interfacial parameterizations, J. Climate, 15, 1805–1831, https://doi.org/10.1175/1520-0442(2002)015<1805:SOACSC>2.0.CO;2, 2002. a
Coppin, D. and Bony, S.: Internal variability in a coupled general circulation model in radiative-convective equilibrium, Geophys. Res. Lett., 44, 5142–5149, https://doi.org/10.1002/2017GL073658, 2017. a, b
DeCosmo, J., Katsaros, K. B., Smith, S. D., Anderson, R. J., Oost, W. A., Bumke, K., and Chadwick, H.: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results, J. Geophys. Res.-Oceans, 101, 12001–12016, https://doi.org/10.1029/95JC03796, 1996. a
DeMott, C. A., Klingaman, N. P., and Woolnough, S. J.: Atmosphere-ocean coupled processes in the Madden-Julian oscillation, Rev. Geophys., 53, 1099–1154, https://doi.org/10.1002/2014RG000478, 2015. a
Denman, K. L. and Gargett, A. E.: Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean, Limnol. Oceanogr., 28, 801–815, https://doi.org/10.4319/lo.1983.28.5.0801, 1983. a
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., and Murray, M. J.: Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research, J. Climate, 15, 353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2,, 2002. a
Edson, J., Crawford, T., Crescenti, J., Farrar, T., Frew, N., Gerbi, G., Helmis, C., Hristov, T., Khelif, D., and Jessup, A.: The coupled boundary layers and air–sea transfer experiment in low winds, B. Am. Meteorol. Soc., 88, 341–356, 2007. a
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On the Exchange of Momentum over the Open Ocean, J. Phys. Oceanogr., 43, 1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013. a
Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., and Young, G. S.: Cool-skin and warm-layer effects on sea surface temperature, J. Geophys. Res.-Oceans, 101, 1295–1308, https://doi.org/10.1029/95JC03190, 1996. a, b, c, d
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.: Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm, J. Climate, 16, 571–591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003. a, b
Foreman-Mackey, D.: corner.py: Scatterplot matrices in Python, Journal of Open Source Software, 1, 24, https://doi.org/10.21105/joss.00024, 2016. a
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.: emcee : The MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306–312, https://doi.org/10.1086/670067, 2013. a, b
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.: Bayesian Data Analysis, CRC Press, https://doi.org/10.1201/b16018, 2013. a
Gentemann, C. L., Donlon, C. J., Stuart-Menteth, A., and Wentz, F. J.: Diurnal signals in satellite sea surface temperature measurements, Geophys. Res. Lett., 30, 1140, https://doi.org/10.1029/2002GL016291, 2003. a, b
Gentemann, C. L., Minnett, P. J., Borgne, P. L., and Merchant, C. J.: Multi-satellite measurements of large diurnal warming events, Geophys. Res. Lett., 35, L22602, https://doi.org/10.1029/2008GL035730, 2008. a
Gentemann, C. L., Minnett, P. J., and Ward, B.: Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal warming, J. Geophys. Res., 114, C07017, https://doi.org/10.1029/2008JC004825, 2009. a, b, c, d
Goodman, J. and Weare, J.: Ensemble samplers with affine invariance, Comm. App. Math. Com. Sc., 5, 65–80, https://doi.org/10.2140/camcos.2010.5.65, 2010. a, b
Haerter, J. O.: Convective Self-Aggregation As a Cold Pool-Driven Critical Phenomenon, Geophys. Res. Lett., 46, 4017–4028, https://doi.org/10.1029/2018GL081817, 2019. a
Haerter, J. O., Meyer, B., and Nissen, S. B.: Diurnal self-aggregation, npj Clim. Atmos. Sci., 3, 1–11, https://doi.org/10.1038/s41612-020-00132-z, 2020. a, b
Hohenegger, C. and Stevens, B.: Coupled radiative convective equilibrium simulations with explicit and parameterized convection, J. Adv. Model. Earth Sy., 8, 1468–1482, https://doi.org/10.1002/2016MS000666, 2016. a, b
Hughes, K. G., Moum, J. N., and Shroyer, E. L.: Heat Transport through Diurnal Warm Layers, J. Phys. Oceanogr., 50, 2885–2905, https://doi.org/10.1175/JPO-D-20-0079.1, 2020. a, b, c
Jensen, G. G., Fiévet, R., and Haerter, J. O.: The Diurnal Path to Persistent Convective Self-Aggregation, J. Adv. Model. Earth Sy., 14, e2021MS002923, https://doi.org/10.1029/2021MS002923, 2022. a
Jia, C., Minnett, P. J., and Luo, B.: Significant Diurnal Warming Events Observed by Saildrone at High Latitudes, J. Geophys. Res.-Oceans, 128, e2022JC019368, https://doi.org/10.1029/2022JC019368, 2023. a, b
Jiang, X., Adames, Á. F., Kim, D., Maloney, E. D., Lin, H., Kim, H., Zhang, C., DeMott, C. A., and Klingaman, N. P.: Fifty years of research on the Madden-Julian Oscillation: Recent progress, challenges, and perspectives, J. Geophys. Res.-Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911, 2020. a
Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., and Schubert, W. H.: Trimodal Characteristics of Tropical Convection, J. Climate, 12, 2397–2418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2, 1999. a
Kantha, L. H. and Clayson, C. A.: An improved mixed layer model for geophysical applications, J. Geophys. Res.-Oceans, 99, 25235–25266, https://doi.org/10.1029/94JC02257, 1994. a
Kara, A. B., Wallcraft, A. J., Metzger, E. J., Hurlburt, H. E., and Fairall, C. W.: Wind Stress Drag Coefficient over the Global Ocean, J. Climate, 20, 5856–5864, https://doi.org/10.1175/2007JCLI1825.1, 2007. a
Karlowska, E., Matthews, A. J., Webber, B. G. M., Graham, T., and Xavier, P.: The effect of diurnal warming of sea-surface temperatures on the propagation speed of the Madden–Julian oscillation, Q. J. Roy Meteor. Soc., 150, 334–354, https://doi.org/10.1002/qj.4599, 2023. a
Kawai, Y. and Kawamura, H.: Evaluation of the Diurnal Warming of Sea Surface Temperature Using Satellite-Derived Marine Meteorological Data, J. Oceanogr., 58, 805–814, https://doi.org/10.1023/A:1022867028876, 2002. a
Kawai, Y. and Wada, A.: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review, J. Oceanogr., 63, 721–744, https://doi.org/10.1007/s10872-007-0063-0, 2007. a, b, c, d
Khairoutdinov, M. F. and Randall, D. A.: Cloud Resolving Modeling of the ARM Summer 1997 IOP: Model Formulation, Results, Uncertainties, and Sensitivities, J. Atmos. Sci., 60, 607–625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2, 2003. a
Kondo, J., Sasano, Y., and Ishii, T.: On Wind-Driven Current and Temperature Profiles with Diurnal Period in the Oceanic Planetary Boundary Layer, J. Phys. Oceanogr., 9, 360–372, https://doi.org/10.1175/1520-0485(1979)009<0360:OWDCAT>2.0.CO;2, 1979. a
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air–sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363, https://doi.org/10.1029/94RG01872, 1994. a
Madden, R. A. and Julian, P. R.: Description of global-scale circulation cells in the tropics with a 40–50 day period, J. Atmos. Sci., 29, 1109–1123, 1972. a
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, https://doi.org/10.1029/RG020i004p00851, 1982. a
Minnett, P. J.: Radiometric measurements of the sea-surface skin temperature: The competing roles of the diurnal thermocline and the cool skin, Int. J. Remote Sens., 24, 5033–5047, https://doi.org/10.1080/0143116031000095880, 2003. a, b, c, d
Minnett, P. J., Knuteson, R. O., Best, F. A., Osborne, B. J., Hanafin, J. A., and Brown, O. B.: The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer, J. Atmos. Oceanic Tech., 18, 994–1013, https://doi.org/10.1175/1520-0426(2001)018<0994:TMAERI>2.0.CO;2, 2001. a
Moncrieff, M. W.: The Multiscale Organization of Moist Convection and the Intersection of Weather and Climate, in: Climate Dynamics: Why Does Climate Vary?, American Geophysical Union (AGU), 3–26, ISBN 978-1-118-67039-2, https://doi.org/10.1029/2008GM000838, 2010. a
Müller, S. K. and Hohenegger, C.: Self-Aggregation of Convection in Spatially Varying Sea Surface Temperatures, J. Adv. Model. Earth Sy., 12, e2019MS001698, https://doi.org/10.1029/2019MS001698, 2020. a
Nissen, S. B. and Haerter, J. O.: Circling in on convective self-aggregation, J. Geophys. Res.-Atmos., 126, e2021JD035331, https://doi.org/10.1029/2019GL082092, 2021. a
NOAA Physical Sciences Laboratory: COARE-algorithm v3.6, GitHub [code], https://github.com/NOAA-PSL/COARE-algorithm (last access: 24 February 2025), 2023. a
Noh, Y. and Jin Kim, H.: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process, J.Geophys. Res.-Oceans, 104, 15621–15634, https://doi.org/10.1029/1999JC900068, 1999. a
Noh, Y., Min, H. S., and Raasch, S.: Large Eddy Simulation of the Ocean Mixed Layer: The Effects of Wave Breaking and Langmuir Circulation, J. Phys. Oceanogr., 34, 720–735, https://doi.org/10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2, 2004. a
Noh, Y., Lee, E., Kim, D.-H., Hong, S.-Y., Kim, M.-J., and Ou, M.-L.: Prediction of the diurnal warming of sea surface temperature using an atmosphere-ocean mixed layer coupled model, J. Geophys. Res., 116, C11023, https://doi.org/10.1029/2011JC006970, 2011. a
Pope, S. B.: Turbulent flows, Cambridge University Press, https://doi.org/10.1017/CBO9780511840531, 2000. a
Price, J. F., Weller, R. A., and Pinkel, R.: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing, J. Geophys. Res., 91, 8411, https://doi.org/10.1029/JC091iC07p08411, 1986. a, b
Price, J. F., Weller, R. A., Bowers, C. M., and Briscoe, M. G.: Diurnal response of sea surface temperature observed at the long-term upper ocean study (34° N, 70° W) in the Sargasso Sea, J. Geophys. Res.-Oceans, 92, 14480–14490, https://doi.org/10.1029/JC092iC13p14480, 1987. a
Schiller, A. and Godfrey, J. S.: A diagnostic model of the diurnal cycle of sea surface temperature for use in coupled ocean-atmosphere models, J. Geophys. Res.-Oceans, 110, C11014, https://doi.org/10.1029/2005JC002975, 2005. a
Schumacher, R. S. and Rasmussen, K. L.: The formation, character and changing nature of mesoscale convective systems, Nature Reviews Earth & Environment, 1, 300–314, https://doi.org/10.1038/s43017-020-0057-7, 2020. a
Seo, H., Subramanian, A. C., Miller, A. J., and Cavanaugh, N. R.: Coupled Impacts of the Diurnal Cycle of Sea Surface Temperature on the Madden–Julian Oscillation, J. Climate, 27, 8422–8443, https://doi.org/10.1175/JCLI-D-14-00141.1, 2014. a
Seo, H., O’Neill, L. W., Bourassa, M. A., Czaja, A., Drushka, K., Edson, J. B., Fox-Kemper, B., Frenger, I., Gille, S. T., Kirtman, B. P., Minobe, S., Pendergrass, A. G., Renault, L., Roberts, M. J., Schneider, N., Small, R. J., Stoffelen, A., and Wang, Q.: Ocean Mesoscale and Frontal-Scale Ocean–Atmosphere Interactions and Influence on Large-Scale Climate: A Review, J. Climate, 36, 1981–2013, https://doi.org/10.1175/JCLI-D-21-0982.1, 2023. a
Shamekh, S., Muller, C., Duvel, J.-P., and d'Andrea, F.: Self-Aggregation of Convective Clouds With Interactive Sea Surface Temperature, J. Adv. Model. Earth Sy., 12, e2020MS002164, https://doi.org/10.1029/2020MS002164, 2020a. a, b
Shamekh, S., Muller, C., Duvel, J.-P., and d’Andrea, F.: How do ocean warm anomalies favor the aggregation of deep convective clouds?, J. Atmos. Sci., 77, 3733–3745, 2020b. a
Shevchenko, R., Hohenegger, C., and Schmitt, M.: Impact of Diurnal Warm Layers on Atmospheric Convection, J. Geophys. Res.-Atmos., 128, e2022JD038473, https://doi.org/10.1029/2022JD038473, 2023. a
Siebesma, A. P., Bony, S., Jakob, C., and Stevens, B.: Clouds and Climate: Climate Science's Greatest Challenge, Cambridge University Press, https://doi.org/10.1017/9781107447738, 2020. a
Skyllingstad, E. D., Szoeke, S. P. d., and O’Neill, L. W.: Modeling the Transient Response of Tropical Convection to Mesoscale SST Variations, J. Atmos. Sci., 76, 1227–1244, https://doi.org/10.1175/JAS-D-18-0079.1, 2019. a
Slingo, J., Inness, P., Neale, R., Woolnough, S., and Yang, G.-Y.: Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors, Ann. Geophys., 46, 1, https://doi.org/10.4401/ag-3383, 2003. a
Smith, S. D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature, J. Geophys. Res., 93, 15467, https://doi.org/10.1029/JC093iC12p15467, 1988. a
Soloviev, A. and Lukas, R.: Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool, Deep-Sea Res. Pt. I, 44, 1055–1076, https://doi.org/10.1016/S0967-0637(96)00124-0, 1997. a, b, c
Son, S. and Wang, M.: Diffuse attenuation coefficient of the photosynthetically available radiation Kd(PAR) for global open ocean and coastal waters, Remote Sens. Environ., 159, 250–258, https://doi.org/10.1016/j.rse.2014.12.011, 2015. a
Stull, R. B. and Kraus, E. B.: The transilient model of the upper ocean, J. Geophys. Res.-Oceans, 92, 10745–10755, 1987. a
Takaya, Y., Bidlot, J.-R., Beljaars, A. C. M., and Janssen, P. A. E. M.: Refinements to a prognostic scheme of skin sea surface temperature, J. Geophys. Res., 115, C06009, https://doi.org/10.1029/2009JC005985, 2010. a, b
Tan, J., Jakob, C., Rossow, W. B., and Tselioudis, G.: Increases in tropical rainfall driven by changes in frequency of organized deep convection, Nature, 519, 451–454, https://doi.org/10.1038/nature14339, 2015. a
Tompkins, A. M.: Organization of tropical convection in low vertical wind shears: The role of cold pools, J. Atmos. Sci., 58, 1650–1672, 2001. a
Tompkins, A. M. and Craig, G. C.: Radiative–convective equilibrium in a three-dimensional cloud-ensemble model, Q. J. Roy. Meteor. Soc., 124, 2073–2097, https://doi.org/10.1002/qj.49712455013, 1998. a
Tompkins, A. M. and Semie, A. G.: Impact of a mixed ocean layer and the diurnal cycle on convective aggregation, J. Adv. Model. Earth Sy., 13, e2020MS002186, https://doi.org/10.1029/2020MS002186, 2021. a, b
Trenberth, K. E., Large, W. G., and Olson, J. G.: The Effective Drag Coefficient for Evaluating Wind Stress over the Oceans, J. Climate, 2, 1507–1516, https://doi.org/10.1175/1520-0442(1989)002<1507:TEDCFE>2.0.CO;2, 1989. a
Voldoire, A., Roehrig, R., Giordani, H., Waldman, R., Zhang, Y., Xie, S., and Bouin, M.-N.: Assessment of the sea surface temperature diurnal cycle in CNRM-CM6-1 based on its 1D coupled configuration, Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, 2022. a
Webster, P. J., Clayson, C. A., and Curry, J. A.: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific, J. Climate, 9, 1712–1730, https://doi.org/10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2, 1996. a, b
Weihs, R. R. and Bourassa, M. A.: Modeled diurnally varying sea surface temperatures and their influence on surface heat fluxes, J. Geophys. Res.-Oceans, 119, 4101–4123, https://doi.org/10.1002/2013JC009489, 2014. a
Wells, N. C. and King-Hele, S.: Parametrization of tropical ocean heat flux, Q. J. Roy. Meteor. Soc., 116, 1213–1224, https://doi.org/10.1002/qj.49711649511, 1990. a, b
Wing, A. A., Emanuel, K., Holloway, C. E., and Muller, C.: Convective Self-Aggregation in Numerical Simulations: A Review, Surv. Geophys., 38, 1173–1197, https://doi.org/10.1007/s10712-017-9408-4, 2017. a
Witte, C. R., Zappa, C. J., and Edson, J. B.: The Response of Ocean Skin Temperature to Rain: Observations and Implications for Parameterization of Rain-Induced Fluxes, J. Geophys. Res.-Oceans, 128, e2022JC019146, https://doi.org/10.1029/2022JC019146, 2023. a
Wong, E. W. and Minnett, P. J.: The Response of the Ocean Thermal Skin Layer to Variations in Incident Infrared Radiation, J. Geophys. Res.-Oceans, 123, 2475–2493, https://doi.org/10.1002/2017JC013351, 2018. a, b, c
Woolnough, S. J., Vitart, F., and Balmaseda, M. A.: The role of the ocean in the Madden–Julian Oscillation: Implications for MJO prediction, Q. J. Roy. Meteor. Soc., 133, 117–128, https://doi.org/10.1002/qj.4, 2007. a
Wurl, O., Ekau, W., Landing, W. M., and Zappa, C. J.: Sea surface microlayer in a changing ocean – A perspective, Elementa: Science of the Anthropocene, 5, 31, https://doi.org/10.1525/elementa.228, 2017. a, b
Yanase, T., Nishizawa, S., Miura, H., Takemi, T., and Tomita, H.: New Critical Length for the Onset of Self-Aggregation of Moist Convection, Geophys. Res. Lett., 47, e2020GL088763, https://doi.org/10.1029/2020GL088763, 2020. a
Zeng, X., Zhao, M., Dickinson, R. E., and He, Y.: A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific, J. Geophys. Res.-Oceans, 104, 1525–1536, https://doi.org/10.1029/1998JC900060, 1999. a
Zhang, C.: Madden-Julian Oscillation, Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158, 2005. a, b
Zhao, N. and Nasuno, T.: How Does the Air-Sea Coupling Frequency Affect Convection During the MJO Passage?, J. Adv. Model. Earth Sy., 12, e2020MS002058, https://doi.org/10.1029/2020MS002058, 2020. a
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could...