Articles | Volume 18, issue 4
https://doi.org/10.5194/gmd-18-1141-2025
https://doi.org/10.5194/gmd-18-1141-2025
Development and technical paper
 | 
26 Feb 2025
Development and technical paper |  | 26 Feb 2025

Identifying lightning processes in ERA5 soundings with deep learning

Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell

Related authors

Properties and Characteristics of Atmospheric Deserts over Europe
Fiona Fix-Hewitt, Achim Zeileis, Isabell Stucke, Reto Stauffer, and Georg J. Mayr
EGUsphere, https://doi.org/10.5194/egusphere-2025-3552,https://doi.org/10.5194/egusphere-2025-3552, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Detection and consequences of atmospheric deserts: insights from a case study
Fiona Fix, Georg Mayr, Achim Zeileis, Isabell Stucke, and Reto Stauffer
Weather Clim. Dynam., 5, 1545–1560, https://doi.org/10.5194/wcd-5-1545-2024,https://doi.org/10.5194/wcd-5-1545-2024, 2024
Short summary
Robust weather-adaptive post-processing using model output statistics random forests
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023,https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Thunderstorm environments in Europe
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023,https://doi.org/10.5194/wcd-4-489-2023, 2023
Short summary
Predicting power ramps from joint distributions of future wind speeds
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022,https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary

Cited articles

Allen, D. J. and Pickering, K. E.: Evaluation of Lightning Flash Rate Parameterizations for Use in a Global Chemical Transport Model, J. Geophys. Res.-Atmos., 107, ACH 15-1–ACH 15-21, https://doi.org/10.1029/2002JD002066, 2002. a
Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., and Anderson, D.: Indicator Patterns of Forced Change Learned by an Artificial Neural Network, J. Adv. Model. Earth Sy., 12, e2020MS002195, https://doi.org/10.1029/2020MS002195, 2020. a
Becerra, M., Long, M., Schulz, W., and Thottappillil, R.: On the Estimation of the Lightning Incidence to Offshore Wind Farms, Electr. Pow. Syst. Res., 157, 211–226, https://doi.org/10.1016/j.epsr.2017.12.008, 2018. a
Brisson, E., Blahak, U., Lucas-Picher, P., Purr, C., and Ahrens, B.: Contrasting Lightning Projection Using the Lightning Potential Index Adapted in a Convection-Permitting Regional Climate Model, Clim. Dynam., 57, 2037–2051, https://doi.org/10.1007/s00382-021-05791-z, 2021. a
Brook, M., Nakano, M., Krehbiel, P., and Takeuti, T.: The electrical structure of the hokuriku winter thunderstorms, J. Geophys. Res.-Oceans, 87, 1207–1215, https://doi.org/10.1029/JC087iC02p01207, 1982. a
Download
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
Share