Articles | Volume 18, issue 4
https://doi.org/10.5194/gmd-18-1141-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-1141-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger
CORRESPONDING AUTHOR
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Data Lab Hell GmbH, Zirl, Austria
Thorsten Simon
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Georg J. Mayr
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Tobias Hell
Data Lab Hell GmbH, Zirl, Austria
Related authors
No articles found.
Fiona Fix-Hewitt, Achim Zeileis, Isabell Stucke, Reto Stauffer, and Georg J. Mayr
EGUsphere, https://doi.org/10.5194/egusphere-2025-3552, https://doi.org/10.5194/egusphere-2025-3552, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Atmospheric deserts are air masses from the boundary layer of desert regions. This study tracked them from North Africa to Europe during a two-year period (May 2022–April 2024). They can occur up to 60 % of the time, and can span large parts of Europe. They typically last about a day, and can alter the atmosphere throughout the free troposphere. On its way from Africa the air either rises and may become even warmer and drier, or it stays at mid-altitudes and cools, or retains its properties.
Fiona Fix, Georg Mayr, Achim Zeileis, Isabell Stucke, and Reto Stauffer
Weather Clim. Dynam., 5, 1545–1560, https://doi.org/10.5194/wcd-5-1545-2024, https://doi.org/10.5194/wcd-5-1545-2024, 2024
Short summary
Short summary
Atmospheric deserts (ADs) are air masses that are transported away from hot, dry regions. Our study introduces this new concept. ADs can suppress or boost thunderstorms and potentially contribute to the formation of heat waves, which makes them relevant for forecasting extreme events. Using a novel detection method, we follow an AD directly from North Africa to Europe for a case in June 2022, allowing us to analyse the air mass at any time and investigate how it is modified along the way.
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023, https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Short summary
Statistical post-processing is necessary to generate probabilistic forecasts from physical numerical weather prediction models. To allow for more flexibility, there has been a shift in post-processing away from traditional parametric regression models towards modern machine learning methods. By fusing these two approaches, we developed model output statistics random forests, a new post-processing method that is highly flexible but at the same time also very robust and easy to interpret.
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023, https://doi.org/10.5194/wcd-4-489-2023, 2023
Short summary
Short summary
Two thunderstorm environments are described for Europe: mass-field thunderstorms, which occur mostly in summer, over land, and under similar meteorological conditions, and wind-field thunderstorms, which occur mostly in winter, over the sea, and under more diverse meteorological conditions. Our descriptions are independent of static thresholds and help to understand why thunderstorms in unfavorable seasons for lightning pose a particular risk to tall infrastructure such as wind turbines.
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022, https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary
Short summary
The power generated by offshore wind farms can vary greatly within a couple of hours, and failing to anticipate these ramp events can lead to costly imbalances in the electrical grid. A novel multivariate Gaussian regression model helps us to forecast not just the means and variances of the next day's hourly wind speeds, but also their corresponding correlations. This information is used to generate more realistic scenarios of power production and accurate estimates for ramp probabilities.
Deborah Morgenstern, Isabell Stucke, Thorsten Simon, Georg J. Mayr, and Achim Zeileis
Weather Clim. Dynam., 3, 361–375, https://doi.org/10.5194/wcd-3-361-2022, https://doi.org/10.5194/wcd-3-361-2022, 2022
Short summary
Short summary
Wintertime lightning in central Europe is rare but has a large damage potential for tall structures such as wind turbines. We use a data-driven approach to explain why it even occurs when the meteorological processes causing thunderstorms in summer are absent. In summer, with strong solar input, thunderclouds have a large vertical extent, whereas in winter, thunderclouds are shallower in the vertical but tilted and elongated in the horizontal by strong winds that increase with altitude.
Cited articles
Allen, D. J. and Pickering, K. E.: Evaluation of Lightning Flash Rate Parameterizations for Use in a Global Chemical Transport Model, J. Geophys. Res.-Atmos., 107, ACH 15-1–ACH 15-21, https://doi.org/10.1029/2002JD002066, 2002. a
Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., and Anderson, D.: Indicator Patterns of Forced Change Learned by an Artificial Neural Network, J. Adv. Model. Earth Sy., 12, e2020MS002195, https://doi.org/10.1029/2020MS002195, 2020. a
Becerra, M., Long, M., Schulz, W., and Thottappillil, R.: On the Estimation of the Lightning Incidence to Offshore Wind Farms, Electr. Pow. Syst. Res., 157, 211–226, https://doi.org/10.1016/j.epsr.2017.12.008, 2018. a
Brisson, E., Blahak, U., Lucas-Picher, P., Purr, C., and Ahrens, B.: Contrasting Lightning Projection Using the Lightning Potential Index Adapted in a Convection-Permitting Regional Climate Model, Clim. Dynam., 57, 2037–2051, https://doi.org/10.1007/s00382-021-05791-z, 2021. a
Brook, M., Nakano, M., Krehbiel, P., and Takeuti, T.: The electrical structure of the hokuriku winter thunderstorms, J. Geophys. Res.-Oceans, 87, 1207–1215, https://doi.org/10.1029/JC087iC02p01207, 1982. a
Cecil, D. J., Buechler, D. E., and Blakeslee, R. J.: Gridded Lightning Climatology from TRMM-LIS and OTD: Dataset Description, Atmos. Res., 135, 404–414, https://doi.org/10.1016/j.atmosres.2012.06.028, 2014. a
Chakraborty, R., Menghal, P., Harshitha, M., and Sodunke, M.: Climatology of Lightning Activities Across the Equatorial African Region, in: IEEE 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), 30 May–4 June 2022, Gran Canaria, Spain, 1–4, https://doi.org/10.23919/AT-AP-RASC54737.2022.9814276, 2022. a
Charn, A. B. and Parishani, H.: Predictive Proxies of Present and Future Lightning in a Superparameterized Model, J. Geophys. Res.-Atmos., 126, e2021JD035461, https://doi.org/10.1029/2021JD035461, 2021. a
Chen, H., Janizek, J. D., Lundberg, S., and Lee, S.-I.: True to the model or true to the data?, arXiv [preprint], https://doi.org/10.48550/arXiv.2006.16234, 2020. a, b
Chen, H., Covert, I. C., Lundberg, S. M., and Lee, S.-I.: Algorithms to estimate Shapley value feature attributions, Nature Machine Intelligence, 5, 590–601, 2023. a
Cummins, K., Krider, E., and Malone, M.: The US National Lightning Detection Network and Applications of Cloud-to-Ground Lightning Data by Electric Power Utilities, IEEE T. Electromagn. C., 40, 465–480, https://doi.org/10.1109/15.736207, 1998. a
DeCaria, A. J., Pickering, K. E., Stenchikov, G. L., and Ott, L. E.: Lightning-Generated NOx and its Impact on Tropospheric Ozone Production: A Three-Dimensional Modeling Study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) Thunderstorm, J. Geophys. Res.-Atmos., 110, D14303, https://doi.org/10.1029/2004JD005556, 2005. a
Dutta, D. and Pal, S. K.: Interpretation of Black Box for Short-Term Predictions of Pre-Monsoon Cumulonimbus Cloud Events over Kolkata, Journal of Data, Information and Management, 4, 167–183, https://doi.org/10.1007/s42488-022-00071-9, 2022. a
Ehrensperger, G., Hell, T., Mayr, G. J., and Simon, T.: Evaluating the generalization ability of a deep learning model trained to detect cloud-to-ground lightning on raw ERA5 data, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15817, https://doi.org/10.5194/egusphere-egu23-15817, 2023. a
Ehrensperger, G., Hell, T., Mayr, G., and Simon, T.: xai_lightningprocesses, Zenodo [code], https://doi.org/10.5281/zenodo.13907708, 2024. a, b
Feldmann, M., Germann, U., Gabella, M., and Berne, A.: A characterisation of Alpine mesocyclone occurrence, Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021, 2021. a
Finney, D. L., Doherty, R. M., Wild, O., Huntrieser, H., Pumphrey, H. C., and Blyth, A. M.: Using cloud ice flux to parametrise large-scale lightning, Atmos. Chem. Phys., 14, 12665–12682, https://doi.org/10.5194/acp-14-12665-2014, 2014. a, b, c
Finney, D. L., Doherty, R. M., Wild, O., Stevenson, D. S., MacKenzie, I. A., and Blyth, A. M.: A Projected Decrease in Lightning under Climate Change, Nat. Clim. Change, 8, 210–213, https://doi.org/10.1038/s41558-018-0072-6, 2018. a, b
Groenemeijer, P., Púcik, T., Tsonevsky, I., and Bechtold, P.: An Overview of Convective Available Potential Energy and Convective Inhibition provided by NWP models for operational forecasting, ECMWF, https://doi.org/10.21957/q392hofrl, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1979: Fifth generation of ECMWF atmospheric reanalyses of the global climate, https://cds.climate.copernicus.eu/#!/home (last access: 27 May 2021), 2017. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, CDS [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hilburn, K. A., Ebert-Uphoff, I., and Miller, S. D.: Development and Interpretation of a Neural-Network-Based Synthetic Radar Reflectivity Estimator Using GOES-R Satellite Observations, J. Appl. Meteorol. Clim., 60, 3–21, https://doi.org/10.1175/JAMC-D-20-0084.1, 2021. a
Holle, R. L.: A Summary of Recent National-Scale Lightning Fatality Studies, Weather Clim. Soc., 8, 35–42, https://doi.org/10.1175/WCAS-D-15-0032.1, 2016. a
Holmlund, K., Grandell, J., Schmetz, J., Stuhlmann, R., Bojkov, B., Munro, R., Lekouara, M., Coppens, D., Viticchie, B., August, T., Theodore, B., Watts, P., Dobber, M., Fowler, G., Bojinski, S., Schmid, A., Salonen, K., Tjemkes, S., Aminou, D., and Blythe, P.: Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit, B. Am. Meteorol. Soc., 102, 990–1015, https://doi.org/10.1175/BAMS-D-19-0304.1, 2021. a
Houze, R. A.: Orographic Effects on Precipitating Clouds, Rev. Geophys., 50, 1–47, https://doi.org/10.1029/2011RG000365, 2012. a
Janzing, D., Minorics, L., and Blöbaum, P.: Feature relevance quantification in explainable AI: A causal problem, in: International Conference on artificial intelligence and statistics, PMLR, 108, 2907–2916, 2020. a
Lopez, P.: A Lightning Parameterization for the ECMWF Integrated Forecasting System, Mon. Weather Rev., 144, 3057–3075, https://doi.org/10.1175/MWR-D-16-0026.1, 2016. a, b
Lou, Y., Caruana, R., and Gehrke, J.: Intelligible Models for Classification and Regression, in: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '12, Association for Computing Machinery, New York, NY, USA, 150–158, https://doi.org/10.1145/2339530.2339556, 2012. a
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, in: Advances in Neural Information Processing Systems, vol. 30, edited by: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., Curran Associates, Inc., https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf (last access: 20 February 2025), 2017. a, b
Mayer, K. J. and Barnes, E. A.: Subseasonal Forecasts of Opportunity Identified by an Explainable Neural Network, Geophys. Res. Lett., 48, e2020GL092092, https://doi.org/10.1029/2020GL092092, 2021. a
McCaul, E. W., Goodman, S. J., LaCasse, K. M., and Cecil, D. J.: Forecasting Lightning Threat Using Cloud-Resolving Model Simulations, Weather Forecast., 24, 709–729, https://doi.org/10.1175/2008WAF2222152.1, 2009. a
Morgenstern, D., Stucke, I., Simon, T., Mayr, G. J., and Zeileis, A.: Differentiating lightning in winter and summer with characteristics of the wind field and mass field, Weather Clim. Dynam., 3, 361–375, https://doi.org/10.5194/wcd-3-361-2022, 2022. a
Morgenstern, D., Stucke, I., Mayr, G. J., Zeileis, A., and Simon, T.: Thunderstorm environments in Europe, Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023, 2023. a, b, c
Murray, L. T.: An Uncertain Future for Lightning, Nat. Clim. Change, 8, 191–192, https://doi.org/10.1038/s41558-018-0094-0, 2018. a
Price, C. and Rind, D.: A Simple Lightning Parameterization for Calculating Global Lightning Distributions, J. Geophys. Res.-Atmos., 97, 9919–9933, https://doi.org/10.1029/92JD00719, 1992. a, b
Reineking, B., Weibel, P., Conedera, M., and Bugmann, H.: Environmental Determinants of Lightning- v. Human-Induced Forest Fire Ignitions Differ in a Temperate Mountain Region of Switzerland, Int. J. Wildland Fire, 19, 541–557, https://doi.org/10.1071/WF08206, 2010. a
Reynolds, S., Brook, M., and Gourley, M. F.: Thunderstorm Charge Separation, J. Atmos. Sci., 14, 426–436, https://doi.org/10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2, 1957. a
Ritenour, A. E., Morton, M. J., McManus, J. G., Barillo, D. J., and Cancio, L. C.: Lightning Injury: A Review, Burns, 34, 585–594, https://doi.org/10.1016/j.burns.2007.11.006, 2008. a
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B., Krieger, G., Zink, M., and Moreira, A.: Generation and performance assessment of the global TanDEM-X digital elevation model, ISPRS J. Photogramm., 132, 119–139, https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017. a
Romps, D. M., Charn, A. B., Holzworth, R. H., Lawrence, W. E., Molinari, J., and Vollaro, D.: CAPE Times P Explains Lightning Over Land But Not the Land-Ocean Contrast, Geophys. Res. Lett., 45, 12623–12630, https://doi.org/10.1029/2018GL080267, 2018. a
Saunders, C. P. R., Bax-norman, H., Emersic, C., Avila, E. E., and Castellano, N. E.: Laboratory Studies of the Effect of Cloud Conditions on Graupel/Crystal Charge Transfer in Thunderstorm Electrification, Q. J. Roy. Meteor. Soc., 132, 2653–2673, https://doi.org/10.1256/qj.05.218, 2006. a
Schulz, W., Diendorfer, G., Pedeboy, S., and Poelman, D. R.: The European lightning location system EUCLID – Part 1: Performance analysis and validation, Nat. Hazards Earth Syst. Sci., 16, 595–605, https://doi.org/10.5194/nhess-16-595-2016, 2016. a, b
Shan, S., Allen, D., Li, Z., Pickering, K., and Lapierre, J.: Machine-learning-based investigation of the variables affecting summertime lightning occurrence over the Southern Great Plains, Atmos. Chem. Phys., 23, 14547–14560, https://doi.org/10.5194/acp-23-14547-2023, 2023. a, b
Shapley, L. S.: A Value for N-Person Games, RAND Corporation, Santa Monica, CA, https://doi.org/10.7249/P0295, 1952. a
Shi, M., Zhang, W., Fan, P., Chen, Q., Liu, Z., Li, Q., and Liu, X.: Modelling Deep Convective Activity Using Lightning Clusters and Machine Learning, Int. J. Climatol., 42, 952–973, https://doi.org/10.1002/joc.7282, 2022. a, b
Silva, S. J., Keller, C. A., and Hardin, J.: Using an Explainable Machine Learning Approach to Characterize Earth System Model Errors: Application of SHAP Analysis to Modeling Lightning Flash Occurrence, J. Adv. Model. Earth Sy., 14, e2021MS002881, https://doi.org/10.1029/2021MS002881, 2022. a, b
Simon, T., Mayr, G., Morgenstern, D., Umlauf, N., and Zeileis, A.: Amplification of annual and diurnal cycles of alpine lightning, Clim. Dynam., 61, 1–13, https://doi.org/10.1007/s00382-023-06786-8, 2023. a, b, c, d
Simon, T., Schulz, W., Ehrensperger, G., and Mayr, G.: ALDIS cloud to ground lightning strike occurrence aggregated to spatiotemporal ERA5 cells (summer months 2010 to 2019), Zenodo [data set], https://doi.org/10.5281/zenodo.13164463, 2024. a
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., 15, 1929–1958, 2014. a
Stirnberg, R., Cermak, J., Kotthaus, S., Haeffelin, M., Andersen, H., Fuchs, J., Kim, M., Petit, J.-E., and Favez, O.: Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning, Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021, 2021. a
Sundararajan, M. and Najmi, A.: The many Shapley values for model explanation, in: Proceedings of the 37th International Conference on Machine Learning, PMLR, 119, 9269–9278, 2020. a
Takahashi, T., Sugimoto, S., Kawano, T., and Suzuki, K.: Microphysical Structure and Lightning Initiation in Hokuriku Winter Clouds, J. Geophys. Res.-Atmos., 124, 13156–13181, https://doi.org/10.1029/2018JD030227, 2019. a
Takeuti, T., Nakano, M., Brook, M., Raymond, D. J., and Krehbiel, P.: The anomalous winter thunderstorms of the Hokuriku Coast, J. Geophys. Res.-Oceans, 83, 2385–2394, https://doi.org/10.1029/JC083iC05p02385, 1978. a
Tippett, M. K., Lepore, C., Koshak, W. J., Chronis, T., and Vant-Hull, B.: Performance of a Simple Reanalysis Proxy for U. S. Cloud-to-Ground Lightning, Int. J. Climatol., 39, 3932–3946, https://doi.org/10.1002/joc.6049, 2019. a
Toms, B. A., Barnes, E. A., and Hurrell, J. W.: Assessing Decadal Predictability in an Earth-System Model Using Explainable Neural Networks, Geophys. Res. Lett., 48, e2021GL093842, https://doi.org/10.1029/2021GL093842, 2021. a
Tost, H., Jöckel, P., and Lelieveld, J.: Lightning and convection parameterisations – uncertainties in global modelling, Atmos. Chem. Phys., 7, 4553–4568, https://doi.org/10.5194/acp-7-4553-2007, 2007. a
Ukkonen, P. and Mäkelä, A.: Evaluation of Machine Learning Classifiers for Predicting Deep Convection, J. Adv. Model. Earth Sy., 11, 1784–1802, https://doi.org/10.1029/2018MS001561, 2019. a, b
Ukkonen, P., Manzato, A., and Mäkelä, A.: Evaluation of Thunderstorm Predictors for Finland Using Reanalyses and Neural Networks, J. Appl. Meteorol. Clim., 56, 2335–2352, https://doi.org/10.1175/JAMC-D-16-0361.1, 2017. a, b
Wang, D., Zheng, D., Wu, T., and Takagi, N.: Winter Positive Cloud-to-Ground Lightning Flashes Observed by LMA in Japan, IEEJ T. Electr. Electr., 16, 402–411, https://doi.org/10.1002/tee.23310, 2021. a
Wang, P., Yuval, J., and O'Gorman, P. A.: Non-local parameterization of atmospheric subgrid processes with neural networks, J. Adv. Model. Earth Sy., 14, e2022MS002984, https://doi.org/10.1029/2022MS002984, 2022. a
Wood, S. N.: Generalized Additive Models: An Introduction with R, Texts in Statistical Science, 2nd edn., Chapman & Hall/CRC, Boca Raton, https://doi.org/10.1201/9781420010404, 2017. a
Wood, S. N., Li, Z., Shaddick, G., and Augustin, N. H.: Generalized Additive Models for Gigadata: Modeling the U. K. Black Smoke Network Daily Data, J. Am. Stat. Assoc., 112, 1199–1210, https://doi.org/10.1080/01621459.2016.1195744, 2017. a
Zhang, Y., Tiňo, P., Leonardis, A., and Tang, K.: A Survey on Neural Network Interpretability, IEEE Transactions on Emerging Topics in Computational Intelligence, 5, 726–742, https://doi.org/10.1109/TETCI.2021.3100641, 2021. a
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric...