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Abstract. Atmospheric environments favorable for lightning
and convection are commonly represented by proxies or pa-
rameterizations based on expert knowledge such as convec-
tive available potential energy (CAPE), wind shear, charge
separation, or combinations thereof. Recent developments in
the field of high-resolution reanalyses, accurate lightning ob-
servations, machine learning (ML), and explainable artificial
intelligence (XAI) open possibilities for identifying tailored
proxies without prior expert knowledge.

This study utilizes a deep neural network trained to match
temporally and vertically well-resolved ERA5 soundings
of cloud physics, mass-field, and wind-field variables with
lightning observations from the Austrian Lightning Infor-
mation & Detection System (ALDIS). The ML model only
receives the raw model atmosphere data as inputs, with-
out incorporating any expert parameters or proxies derived
from the model levels. Using and adapting appropriate XAI
methods, it is then demonstrated how the inner workings of
this well-performing deep learning model can be uncovered
to identify physically meaningful patterns within the ERA5
soundings that describe lightning processes.

The ERA5 parameters are taken on model levels beyond
the tropopause, forming an input layer of approx. 670 fea-
tures, and the lightning data are transformed to a binary target
variable labeling the spatio-temporal ERA5 grid cells as cells
with lightning activity and cells without lightning activity.

Scaled Shapley additive explanations (SHAP) values are
introduced to highlight the atmospheric processes learned
by the neural network and show that the model identifies
cloud ice and snow content in the upper troposphere and mid-
troposphere as very relevant features. As these patterns cor-
respond to the separation of charge in thunderstorm clouds,

the deep learning model can serve as a physically meaningful
description of lightning. The scaled SHAP values also reveal
that, depending on the location, the model additionally learns
to correctly classify cells with lightning activity by exploiting
mass-field or wind-field variables.

This approach also showcases how XAI can be used to ac-
celerate knowledge discovery in areas where expert knowl-
edge is still scarce.

1 Introduction

Lightning affects many fields of our everyday life. Cloud-
to-ground flashes might hit infrastructure such as wind tur-
bines (Becerra et al., 2018) and power lines (Cummins et al.,
1998) and thus cause power outages. Humans might get in-
jured (Ritenour et al., 2008) or even die (Holle, 2016) after
being hit by lightning. Wildfires (Reineking et al., 2010) re-
lease carbon dioxide into the climate system and thus limit
the biosphere’s capacity to store carbon dioxide. Lightning
also affects the climate system by producing nitrogen oxides,
which play a key role in ozone conversion and acid rain pro-
duction (DeCaria et al., 2005). Ozone is an important green-
house gas, and changes in concentration can lead to warming
or cooling of the atmosphere. Thus, understanding of light-
ning is also an important factor in climate change research
(Finney et al., 2018).

Given lightning’s impact and the fact that an average of
46 flashes occur around the globe every second (Cecil et al.,
2014), it is desirable to have models of the atmosphere ca-
pable to simulate lightning and its underlying dynamic pro-
cesses down to the resolved scales of the numeric model.
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Beyond the resolved scales, one relies on so-called proxies
or parameterizations to further describe lightning. The term
proxy is commonly used for quantities derived from atmo-
spheric model output after the simulation has run. Parame-
terizations diagnose lightning while the model is running and
hence can feed back on the simulation.

Proxies are frequently applied to assess historic and fu-
ture behavior of convection and lightning. Popular proxies
are cloud top height (Price and Rind, 1992), cloud ice flux
(Finney et al., 2014), convective available potential energy
(CAPE) times precipitation (Romps et al., 2018), or the light-
ning potential index (Brisson et al., 2021). Though these
proxies perform reasonably well (Tippett et al., 2019), there
is a need for more complex or holistic proxies, as the be-
havior of lightning in a changing climate is still uncertain
(Murray, 2018). Another application highlighting the need
for further research on lightning description is operational
weather forecasting. Experience indicates, for instance, that
CAPE needs to be adapted to local conditions in order to per-
form well (Groenemeijer et al., 2019).

Parameterizations are an internal part of numeric mod-
els, as they emulate sub-scale processes that cannot be re-
solved due the discretization of governing equations. There-
fore, the emulated processes give feedback to the other pro-
cesses, also on larger scales, within the atmospheric model.
For instance, Tost et al. (2007) showed that modeled nitro-
gen oxide is sensitive to lightning parameterizations in nu-
merical models. Next to the classic description of lightning
using cloud top height (Price and Rind, 1992), parameter-
izations have been developed using polynomial regression
(Allen and Pickering, 2002) and schemes based on hydrom-
eteors in the mixed-phase region, which is important for
cloud-resolving models (McCaul et al., 2009). A compari-
son of several parameterizations using a super-parameterized
model is given by Charn and Parishani (2021). Recently, the
ECMWF launched a product for total lightning densities ex-
pressed as a function of hydrometeors contents, CAPE, and
(convective) cloud-base height output by the convective pa-
rameterization (Lopez, 2016).

In recent years, machine learning approaches have also
been proposed to describe convection and lightning. A total
of 40 preselected single-level parameters from ERA5 were
processed by artificial neural networks and gradient boost-
ing machines to study lightning in parts of Europe and Sri
Lanka (Ukkonen et al., 2017; Ukkonen and Mäkelä, 2019).
Other studies evaluated random forests for regions such as
the Hubei Province in China (Shi et al., 2022) or the South-
ern Great Plains (Shan et al., 2023) and generalized additive
models (GAM) for the European Alps (Simon et al., 2023).
All these studies confirm that the use of ML approaches for
the description of lightning is promising.

Very recently, explainable artificial intelligence (XAI)
techniques have been used to move towards understanding
the underlying reasoning of complex AI models and show
encouraging results in various Earth system sciences appli-

cations (Barnes et al., 2020; Dutta and Pal, 2022; Hilburn et
al., 2021; Mayer and Barnes, 2021; Stirnberg et al., 2021;
Toms et al., 2021). Specifically, Silva et al. (2022) use XG-
Boost classification trees to explore when the NASA God-
dard Earth Observing System model of lightning flash occur-
rence shows weaknesses and apply Shapley additive expla-
nations (SHAP) to describe which meteorological drivers are
related to the model errors. They found that these errors are
strongly related to convection in the atmosphere and certain
characteristics of the land surface.

This paper builds upon these studies and demonstrates the
use of explainable artificial intelligence to discover poten-
tial proxies favorable for lighting directly from raw model
level atmospheric data. Unlike prior research (Ukkonen et
al., 2017; Ukkonen and Mäkelä, 2019; Shi et al., 2022; Shan
et al., 2023; Simon et al., 2023) that applied machine learn-
ing to classify lightning occurrence using preselected proxies
derived from atmospheric parameters by experts, this work
directly exploits the raw ERA5 model level data and is tar-
geted at finding such proxies. Using model level data directly
offers two key benefits. First, it reduces the risk of overlook-
ing potentially significant atmospheric conditions that could
be missed when concentrating solely on preselected proxies.
Second, it provides a comprehensive view of the vertical at-
mospheric layers, requiring less meteorological expertise to
prepare the input data. This approach, however, increases the
dimensionality of the input layer with highly correlated fea-
tures along the vertical axis, making commonly used feature
importance graphs hard to interpret. Inspired by the use of
SHAP values in imaging tasks, this work employs SHAP
values to reason on model levels directly. Due to the high
dimensionality of the input, out-of-the-box plotting routines
are not feasible for interpreting SHAP values in this context.
Therefore, the obtained SHAP values are aggregated to pro-
vide a more global understanding of a feature’s contribution
to the final model output. To improve explainability, scaled
SHAP values are introduced to align the SHAP values across
all grid cells. The median, as well as the 25th and 75th per-
centiles of these scaled SHAP values, is then visualized along
the vertical profiles, aiding the interpretation of the patterns
exploited by the model.

This study focuses on lightning during the peak phase of
the warm season (June, July, August), which differs funda-
mentally in the underlying dynamic processes to lightning
during the cold season (Morgenstern et al., 2022).

The region of interest is the Eastern Alps, which are char-
acterized by complex terrain. Atmospheric dynamics on a
gamut of scales interact with topography, leading to various
mesoscale processes (Feldmann et al., 2021) and local pro-
cesses (Houze, 2012) that can trigger convection and light-
ning.

This paper is structured as follows. Section 2 presents both
the lightning detection data and the atmospheric reanalyses.
Section 3 describes the two modeling approaches and elabo-
rates on the XAI method used to interpret the patterns identi-
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fied by the deep learning model. The results of these analyses
are given in Sect. 4. Section 5 discusses the physical patterns
identified by the methods, highlights future applications, and
finally concludes the study.

2 Data

Two data sets build the foundation for this supervised ma-
chine learning task. First, the observational data from the
lightning location system ALDIS (Sect. 2.1) are used to de-
rive the labels distinguishing cells with and without lightning
activity. Second, pseudo soundings from ERA5 (Sect. 2.2)
serve as input for the deep learning approach. Spatially, the
grid centers range from 8.25 to 16.75° E and from 45.25 to
49.75° N.

Temporally, data for the meteorological summers (June,
July, August) from 2010 to 2019 are available. The data of
2010–2018 serve as training–validation1, and the data from
2019 are reserved as truly independent test data.

2.1 Lightning detection data

The Austrian Lightning Detection & Information System
(ALDIS) is part of the European Cooperation for Light-
ning Detection (EUCLID) (Schulz et al., 2016). Cloud-to-
ground flashes with a current greater than 15 kA or smaller
than −2 kA are aggregated to the spatio-temporal grid cells
of ERA5 (Sect. 2.2). Each cell has a horizontal extent of
0.25°× 0.25° and temporally of 1 h. If at least one flash has
been detected in such a grid cell, then the cell is labeled as
cell with lightning activity. Otherwise, if not a single flash
has been detected, the cell is labeled as cell without lightning
activity.

2.2 Atmospheric reanalysis

ECMWF’s fifth reanalyses, ERA5 (Hersbach et al., 2020), is
available at a horizontal resolution of 0.25°× 0.25° (in the
region of interest this corresponds to approx. 19km×28km)
and temporally of 1 h. Vertically it consists of 137 hybrid
model levels that align with topography near ground and ap-
proach isobars in the upper atmosphere2. On these model lev-
els nine parameters (Table 1) are available to describe the
state of the atmosphere. In addition to classical parameters
such as temperature, specific humidity and three-dimensional
winds, ERA5 provides a description of liquid and solid water
particles in clouds, i.e., the specific content of ice, snow (in-
cluding graupel), liquid water, and rain. For this study, these
parameters are used on the lowest 74 model levels, spanning

1Data are split based on distinct days; 20 % of these distinct days
are used for validation, while the remaining 80 % serve as training
data set.

2See https://confluence.ecmwf.int/display/UDOC/L137+model
+level+definitions (last access: 20 February 2025).

Table 1. ERA5 parameters on model levels.

Name Short Units Parameter
name ID

Temperature t K 130
Specific humidity q kgkg−1 133
U component of wind u ms−1 131
V component of wind v ms−1 132
Vertical velocity w Pas−1 135
Specific rain water content crwc kgkg−1 75
Specific snow water content cswc kgkg−1 76
Specific cloud liquid water content clwc kgkg−1 246
Specific cloud ice water content ciwc kgkg−1 247

from level 64 (approx. 15 000 m geopotential height) to level
137 (10 m above ground).

2.3 Composition of data sets

The two data sets are merged in order to obtain a tabular
data shape. Each row of this tabular data refers to a spatio-
temporal grid cell. Thus, it can be indexed by the longitude
and latitude of its center as well as its hourly time stamp.
Each row is labeled as either cells with lightning activity or
cells without lightning activity. The nine ERA5 parameters
(Table 1) on their 74 model levels enter the tabular data such
that each resulting column refers to an individual parame-
ter on an individual level, making up a total of 9× 74= 666
ERA5 feature columns. Further, each row is complemented
with the information of the hour of the day and day of the
season to account for diurnal and seasonal variations, respec-
tively. Finally, the model topography3 is added as another
column.

3 Methods

To avoid incorporating expert knowledge using specialized
deep learning architectures and to efficiently handle a large
number of input features, a classical fully connected neural
network (Sect. 3.1) is used. To make sure that the neural
network can model lightning sufficiently well and is worth
being analyzed, the resulting outputs are compared to those
of a state-of-the-art reference model (Sect. 3.2) on unseen
test data. Finally, insights into the patterns exploited by the
trained model are gained by applying Shapley additive expla-
nations (Sect. 3.3).

3.1 Deep learning approach

A fully connected neural network was designed, consist-
ing of eight hidden layers with 512× 512× 512× 512×

3The topography is represented by a single scalar value: the
geopotential height from model level 137, which is the layer ad-
jacent to the Earth’s surface at the specified grid point.

https://doi.org/10.5194/gmd-18-1141-2025 Geosci. Model Dev., 18, 1141–1153, 2025

https://confluence.ecmwf.int/display/UDOC/L137+model+level+definitions
https://confluence.ecmwf.int/display/UDOC/L137+model+level+definitions


1144 G. Ehrensperger et al.: Identifying lightning processes in ERA5 soundings with deep learning

128×128×128×16 nodes. Leaky rectified linear unit (leaky
ReLU) is used as the activation function for all hidden lay-
ers. The input dimension is predetermined by the number of
input features and thus equals 671 (nine atmospheric vari-
ables on 74 levels, longitude, latitude, hour of the day, day
of the season, and topography). The dimension of the output
layer equals 1, as it solely classifies whether the cell is with
or without lightning activity. The model output is activated
with the sigmoid function.

Prior to training, the input variables are stan-
dardized. For each of the atmospheric variables
v ∈ {ciwc,clwc,crwc,cswc,q, t,u,v,w}, the mean µv
and standard deviation σv are calculated over all 74 model
levels together but separately for each of the nine variables.

To prevent the model from overfitting, dropout (Srivastava
et al., 2014) with a value of 0.15 and early stopping with a pa-
tience of 10 epochs are applied. Binary cross-entropy serves
as a loss function with a weight of approximately 41 for pos-
itive events (flash occurrences) to address the highly imbal-
anced data set.

3.2 Reference model

For reference, a generalized additive model (GAM) (Wood,
2017) is used and fitted using an algorithm tailored for gi-
gadata (Wood et al., 2017). This model is trained on longi-
tude; latitude; hour of the day; day of the season; topography;
and the atmospheric variables listed in Table 2, which were
derived from ERA5 soundings on meteorological expertise
(Simon et al., 2023).

Thus, the input dimension for the reference model is only
15.

3.3 Explainability

While generalized additive models are interpretable by users
(Lou et al., 2012), interpretability research of deep neural
networks still suffers many gaps (Zhang et al., 2021). In this
work SHAP (Lundberg and Lee, 2017) is utilized to gain
insights into the patterns exploited by the neural network
from Sect. 3.1 and to understand the features contributing to
the classification of a spatio-temporal cell as one exhibiting
lightning activity.

SHAP is a game theoretic approach which can be used to
explain the relation of input and output of any machine learn-
ing model. It follows the concept of Shapley values (Shap-
ley, 1952) to provide local interpretability by computing fea-
ture attributions that lead to the model’s output for a given
input. Unfortunately, the computation time for calculating
exact Shapley values grows exponentially with the number
of input features, leading to various ways in which Shapley
values are operationalized (Sundararajan and Najmi, 2020;
Chen et al., 2023). The two main approaches, observational
and interventional, differ in the way they sample dropped in-
put features to attribute for the difference between the model

output and the expectation caused by the removed feature
(Chen et al., 2020). While there is an ongoing debate about
which approach is preferable (Chen et al., 2020), Janzing et
al. (2020) argue, supported by experiments, that the obser-
vational approach is flawed, and the interventional approach
provides the correct notion of dropping features.

This work applies Deep SHAP4 (Lundberg and Lee,
2017) which is a model-agnostic method that leverages ex-
tra knowledge about the nature of deep neural networks to
approximate Shapley values more efficiently. The input fea-
tures in this work are highly correlated, particularly along
the vertical profiles within a single variable. Deep SHAP be-
longs to the family of interventional methods; thus it effec-
tively identifies the features that the model genuinely uses to
generate a specific output, even in the presence of correlated
inputs.

4 Results

This section first evaluates the performance of the deep
learning approach and compares it to the reference model
(Sect. 4.1). Next, the application of SHAP provides insights
into the vertical profiles that the neural network found to be
favorable for lightning (Sect. 4.2).

4.1 Performance of the deep learning approach

The neural network is trained as described in Sect. 3.1 to
distinguish whether a given spatio-temporal cell is a cell with
or without lightning activity. To map the model’s output to a
binary category, a threshold has to be defined. Due to the
highly imbalanced nature of the given data set, this threshold
is determined by maximizing the F1 score, which balances
precision and recall, on the validation set.

This study aims at finding the atmospheric patterns ex-
ploited by the neural network to classify cells being with
or without lightning, making the strategy and exact choice
of threshold less critical. However, before analyzing the in-
ner workings of the model, it is essential to ensure that the
trained model’s performance is comparable to or even better
than a state-of-the-art reference model.

The reference model is fitted as described in Sect. 3.2, and
the threshold is computed following the same procedure.

From the confusion matrices displayed in Table 3, it can
be concluded that the neural network slightly outperforms
the reference model in every category of the confusion ma-
trix on previously unseen test data (year 2019). This is fur-
ther supported by comparing the Matthew correlation coef-
ficients (MCCs) of the two models, where +1 represents a
perfect match between model output and observations, and
0 indicates no better than random guessing. The deep learn-

4Provided by the DeepExplainer class within the Python
package shap.
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Table 2. The reference model is trained using the following 10 atmospheric variables.

Description Short name

Convective available potential energy cape
Binary indicator whether cloud is present cloud_exists
Convective precipitation cp
Mass of specific snow water content between the −20 and −40 °C isotherms cswc2040
Cloud top height in height above ground cth
Instantaneous surface sensible heat flux ishf
Medium cloud cover mcc
Total column supercooled liquid tcslw
Mass of water vapor between the −10 and −20 °C isotherms wvc1020
Two meter temperature 2t

Table 3. Confusion matrices of the neural network model (left) and
the reference model (right) on the test year of 2019.

Observed Observed

Yes No Yes No

Modeled yes 14 372 61 431 yes 12 654 65 176
no 15 766 1 374 756 no 17 484 1 371 011

ing model has an MCC of approximately 0.278, while the
reference model has an MCC of 0.237.

4.2 Identifying patterns exploited by the deep learning
model

The performance of the deep learning approach encourages
a closer examination of the patterns the model has learned to
differentiate between cells with and without lightning activ-
ity. A sample is classified as having lightning activity when
the model output exceeds the threshold φ.

SHAP values (Sect. 3.3) indicate which inputs the neural
network is particularly interested in. Given a specific input,
the SHAP values of all input features always sum up, with
only minor approximation errors, to the difference between a
base value (derived from the expected model output based on
so-called background data) and the actual model output. To
identify patterns that are consistent across the entire training
region and not influenced by the frequency of lightning in
specific spatial cells, SHAP values and corresponding back-
ground data are calculated and sampled separately for each
spatial cell. Specifically, for each spatial cell, the background
data consist of the complete set of samples without lightning
activity from that cell. To better understand the underlying
patterns, the SHAP values are then scaled by dividing them
by the difference between the base value of the correspond-
ing spatial cell and the threshold (φ) at which a cell is classi-
fied as having lightning activity. This implies that the model
classifies a sample as having lightning activity as soon as the
scaled SHAP values sum up to 1 or more, regardless of the
underlying base value and location.

Expressiveness is further improved by splitting the class of
true positives into less confident and very confident. True pos-
itives with a model output in the interval [φ, 1+φ

2 ) are con-
sidered less confident true positives, and true positives with a
model output in [ 1+φ2 ,1] are termed very confident true pos-
itives.

The aggregated results of the scaled SHAP values of cor-
rectly classified cells with lightning activity are visualized in
Fig. 1.

On average, cloud ice (ciwc) and snow water content
(cswc) contribute the most to the model’s output. Also note
that ciwc with its lighter-weighted ice crystals is particu-
larly interesting at a geopotential height of approx. 8000
to 12 000 m and cswc with its solid precipitation at approx.
3000 to 10 000 m.

Taking a closer look (Fig. 2) at the ciwc and cswc at these
altitudes, it is noticeable that the model exhibits greater confi-
dence when ciwc and cswc values are substantially elevated.
Furthermore, there is a tendency for the model to produce
false positives during periods of high ciwc and cswc, while
false negatives are more prevalent when these values are low
compared to correctly classified lightning events.

While classifications where a cloudy atmosphere is the
most dominantly exploited feature by the neural network are
the majority, grouping the results into three categories, fol-
lowing Morgenstern et al. (2023), reveals additional patterns:

Cloud. True positives are where the sum of scaled SHAP
values of ciwc, clwc, crwc, and cswc over all model lev-
els exceeds 0.5. Cloud-dominant cells with lightning ac-
tivity are distributed across the entire region of interest
but are particularly abundant along the primary chain of
the Alps.

Mass. True positives are where the sum of scaled SHAP
values of q and t over all model levels exceeds 0.5.
Mass-dominant cells are predominantly situated in
northern Italy and Slovenia.

Wind. True positives are where the sum of scaled SHAP
values of u, v, and w over all model levels exceeds
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Figure 1. Scaled SHAP values for several variables (names on top of each subfigure) on correctly modeled lightning events (true positives).
The two colors represent the confidence (stratified by median) of the network in its output. The dark-green color summarizes the events where
the network is very confident that a lightning event occurred. The light-green color summarizes the events where the network still modeled
correctly but with less confidence. The solid lines show the median of all observations, and the dashed lines highlight the interquartile range.

Figure 2. The two left columns display the vertical profiles of the real feature labels, while the two right columns present the vertical profiles
of the scaled SHAP values. The upper row illustrates less confident true positives (TPs) compared to false positives (FPs), while the lower
row illustrates less confident true positives compared to false negatives (FNs). True negatives (TNs) are also included for reference. The solid
lines show the median of all observations, and the dashed lines highlight the interquartile range.

Geosci. Model Dev., 18, 1141–1153, 2025 https://doi.org/10.5194/gmd-18-1141-2025



G. Ehrensperger et al.: Identifying lightning processes in ERA5 soundings with deep learning 1147

0.5. Wind-dominant cells are primarily concentrated in
the northwestern region of the Italian flat terrain, the Po
Plain.

Approximately 39.8 % of the true positives belong to the
cloud-dominant, 2.6 % to the mass-dominant and 7.9 % to the
wind-dominant class. Note that a single sample may belong
to multiple groups or even none at all if the characteristics of
cloud, mass, or wind are not distinctly pronounced.

Visualizing the vertical profiles of the real feature values
(Fig. 3), their temperature profiles (t) are distinct. Events
with high values for the mass field have warmer tempera-
tures, and their temperatures decrease more strongly with
height than the other two classes. This indicates that less
work is required to displace particles in the vertical, thus
making it more prone to produce thunderstorm clouds. Since
the maximum possible amount of water vapor in the air be-
fore condensation occurs is exponentially related to temper-
ature via the Clausius–Clapeyron equation, events with high
values of the mass field also have by far the largest values for
specific humidity q, particularly in the part of the atmosphere
closest to the surface. When that water vapor condenses as
air is lifted from near the surface, the latent heat released
during this phase change will heat the air and thus decrease
its density and make a further rise of the air parcels more
likely. Since there is so much more water vapor available for
a phase change than with the other two categories, one would
expect the category with high mass field values to also have
higher amounts of liquid and solid water (ciwc, clwc, crwc,
cswc) at altitudes above the level where the phase change
occurs. However, the opposite is the case. The explanation
rests in the difference of the horizontal size of a grid cell
of the ERA5 atmospheric reanalysis data, which is approx-
imately 19km× 28 km in the region of interest, compared
to the typical diameter of 5 km of the most frequent type of
thunderstorms – single-cell thunderstorms (Markowski and
Richardson, 2010). ERA5 data are average values over the
whole grid cell, and when only one single-cell thunderstorm
occurs in an ERA5 grid cell, the average cloud-variables will
be low since most of the ERA5 grid cell is cloud-free. The
lowest absolute values of vertical velocity of all three cate-
gories support this conclusion. The deep learning approach
thus has learned lightning from single-cell thunderstorms.

The category with high wind-field values has the coldest
temperature (t) profiles of all three categories and – because
of the exponential relationship to maximum possible water
vapor – also the lowest values of specific humidity (q) in the
lower part of the atmosphere. Despite the least amount of
water vapor available for condensation, this category has the
largest amounts of cloud droplets (clwc) and of rain (crwc).
Consequently, such thunderstorms must occur in situations
when most or all of an ERA5 grid cell is filled with clouds.
Also, the absolute values of vertical velocity are the largest in
all three categories. The corresponding meteorological situa-
tions are large-scale patterns of lifting in the atmosphere such

as along cold fronts. Cold fronts in this region occur more
frequently in the months between fall and spring, which ex-
plains why this category has the coldest temperatures. Also,
cold fronts in this region typically occur in southwesterly
flow downstream of the trough axis, which explains the ex-
ceptional large values of the v component of the wind. Since
wind speed also increases most strongly with height, charge
separation occurs on a tilted instead of a nearly vertical path
as in mass-field lightning, thus earning this type of lightning
the name tilted thunderstorm (Brook et al., 1982; Takeuti et
al., 1978; Takahashi et al., 2019; Wang et al., 2021).

The third category in Fig. 3 with high cloud-field vari-
ables has the largest amounts of solid water – ice crystals
(ciwc), snowflakes, and graupel (cswc) – but only the second
largest amounts of liquid water (clwc, crwc). The vertical ve-
locities are also in between the other two categories. There-
fore, this category likely represents the meteorological situ-
ation of multicell and supercell thunderstorms (Markowski
and Richardson, 2010), which have a larger footprint than
single-cell thunderstorms (the mass-field category) and will
thus fill larger fractions of an ERA5 grid cell. This category
could also contain cold-front situations (the wind-field cate-
gory) where the cold front occupies only parts of an ERA5
grid cell.

To test the hypothesis that the category with high cloud-
field values contains both of these situations, i.e., mass-field-
and wind-field-dominant situations, we divide this category
into a cloud-mass and a cloud-wind category in Fig. 4. This
is an approach also taken by Morgenstern et al. (2023). The
grouping is based on whether the aggregate of scaled SHAP
values is greater for mass-related or wind-related parameters.

And indeed, we find that the cloud-wind subcategory again
has the largest amount of liquid water (clwc, crwc) and also
larger values of the southerly wind component (v), indicative
of the typical southwesterly flow for which (cold) fronts oc-
cur in this region. The cloud-wind category even has higher
solid water contents than the cloud-mass category, indicating
that even larger-sized thunderstorms in the absence of cold
fronts do not always completely fill an ERA5 grid cell.

4.3 Sample case study

Thunderstorms and lightning commonly exhibit linear orga-
nization along meteorological boundaries such as fronts or
convergence zones. Our deep learning model, trained exclu-
sively on individual vertical atmospheric profiles, success-
fully identifies these linear structures without explicit knowl-
edge of horizontal connections. A case study from 20 June
2019 demonstrates this capability. Two weak frontal systems
occur in the region shown in Fig. 5. They are embedded
within a region of high equivalent potential temperature (not
shown). The bow-shaped front in the eastern half of the fig-
ure is more pronounced and extends over a larger part of the
figure. The second one over Switzerland is only visible in the
westernmost part of the figure. The deep learning approach
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Figure 3. Vertical profiles of the real features per variable with colors indicating true negatives and different groups of true positives (cloud-,
mass-, wind-dominant). The solid lines show the median of all observations, and the dashed lines highlight the interquartile range. Note that
in pressure coordinates, negative values of vertical velocity indicate upward motion.

Figure 4. Vertical profiles of the real features per variable, with colors indicating cloud-mass- and cloud-wind-dominant true positives. The
solid lines show the median of all observations, and the dashed lines highlight the interquartile range.

model accurately reproduced the linear lightning pattern in
the eastern region. However, it overestimated the width of the
lightning zone and failed to capture its northernmost extent,
as indicated by false positives (small green circles, Fig. 5).
Nevertheless, the model exhibits deficiencies in reproduc-
ing the southwestern portion of the thunderstorm line over
Switzerland, generating an erroneous linear feature further
northward.

It is noteworthy that the threshold in this study was not
chosen to perfectly calibrate the model but instead to balance
between precision and recall. Due to the heavy class imbal-
ance, this generally results in overestimation.

Geosci. Model Dev., 18, 1141–1153, 2025 https://doi.org/10.5194/gmd-18-1141-2025



G. Ehrensperger et al.: Identifying lightning processes in ERA5 soundings with deep learning 1149

Figure 5. The map shows ERA5 grid cells with classifications of true positives (green diamonds), false negatives (red diamonds), and false
positives (dots) for the test data case 20 June 2019, in the hour before 18:00 UTC, which is a case of the unseen test data. The size of the green
diamonds indicates whether it is a very or less confident true positive. Low saturation of the red diamonds indicates that the output of the
network was close to labeling the cell as one with lightning activity. The data for the displayed topography layer are taken from TanDEM-X
(Rizzoli et al., 2017).

5 Discussion and conclusions

In this study, the region of interest is the Eastern Alps, a re-
gion that offers a variety of atmospheric processes due to its
complex terrain and is well understood (Simon et al., 2023;
Morgenstern et al., 2023). This is important because it al-
lows for critical evaluation of the patterns uncovered by ex-
plainable AI methods and provides insights into whether this
approach is suitable for accelerating scientific discovery in
regions where knowledge is still scarce.

A neural network is trained on the vertical columns of raw
ERA5 data without inducing any further expert knowledge
about atmospheric processes to classify whether there was a
lightning event or not. Then, scaled SHAP values are used to
explain which variables and vertical levels attribute the most
to correct classifications of cells with lightning activity. As
indicated in Sect. 4.2, the specific snow water and ice water
content significantly capture attention, with peak interest oc-
curring at a geopotential height of approximately 4000 and
7000 m (cswc) and at heights of 9000 and 11 000 m (ciwc),
respectively. Thus, by itself, the neural network discovered
the essential ingredient for lightning, namely charge sepa-
ration. It occurs when ice crystals (ciwc) and larger frozen

particles (graupel, cswc) are present in the convective up-
draft. Once the graupel is sufficiently heavy, its velocity is
smaller than the velocity of the rising ice crystals, and the
collisions between ice crystals and graupel result in oppo-
sitely charged particles (Reynolds et al., 1957; Saunders et
al., 2006). Lopez (2016, Fig. 1) shows the typical distribu-
tion of charges in a mature thunderstorm cloud. Addition-
ally, it is noteworthy that the model seems to be particularly
interested in the cloud ice water content at a height of 9000
to 11 000 m, while the recent literature usually examines the
cloud ice water content at 440 hPa (typically about 6000 m)
(Finney et al., 2014, 2018; Silva et al., 2022). Focusing on
the region between 9000 and 11 000 m means that it is cru-
cial to vent ice particles all the way up to the tropopause and
form anvils, as is typical of thunderstorm clouds.

Moreover, the model leverages the presence of southerly
winds and vertical updrafts as reliable indicators for light-
ning occurrence, especially in the northwestern Po Plain. Ad-
ditionally, high specific humidity below 4000 m serves as a
robust proxy in the central and eastern Po Plain, as well as in
the southern regions of the Slovenian Alps.

The case study in Sect. 4.3 demonstrates that, although re-
call and precision of the neural network may appear to be low
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at first glance, the model effectively reproduces the general
patterns of thunderstorms, despite overestimating and under-
estimating their extents. Similar observations were also made
for many other examples not included in this paper.

The results in this work suggest promising future applica-
tions. Being able to train a neural network directly on atmo-
spheric soundings with good ability to distinguish between
cells with and without lightning activity and then opening
the black box may enable researchers to gain a better un-
derstanding of atmospheric processes in regions like equato-
rial Africa, where ample studies are scarce (Chakraborty et
al., 2022). The first MTG-I satellite was launched on 13 De-
cember 2022 and will provide a lightning imager (Holmlund
et al., 2021), which appears to be a promising source for
the target variable. Furthermore, many existing models come
with two very different parameterizations for ocean and land
(Finney et al., 2014), and this inevitably leads to discontinu-
ities in coastal areas. Also the reasons for the much lower
lightning frequency over ocean are not as well understood
yet. XAI might be a valuable building block in moving to-
wards a more holistic understanding of the underlying atmo-
spheric processes.

Using ML models to find parameterizations requires them
to be generalizable. In Ehrensperger et al. (2023), a similar
model was trained on the same region but without using lon-
gitude, latitude, and day of the year as input features. While
not giving the location to the model still provided a compara-
ble performance, it enabled us to evaluate the model on con-
tinental Europe. The results show that the model is still able
to perform comparably well on land-covered areas on previ-
ously unseen test data, demonstrating its ability to generalize
across both time and location.

Future work might improve the results presented in this
study. Here, a simple fully connected neural network is used,
and therefore the model loses information about the connec-
tivity of the values along the levels of the vertical profiles.
Using convolutional layers to process the profiles would,
most likely, improve the results.

Convection and cloud processes are not purely verti-
cal processes, and thus ML parameterization greatly ben-
efits from using multiple neighboring vertical atmospheric
columns instead of a single column. Wang et al. (2022) work
with 192km×192 km grid cells to model, among others, sub-
grid zonal and meridional momentum flux due to vertical ad-
vection and suggest that a 3×3 subgrid could further improve
the performance of the deep learning approach.

Code and data availability. The software (version 1.2; Python
and R code) used to produce the results and plots in
this paper is licensed under MIT and published on Zenodo
(https://doi.org/10.5281/zenodo.13907708) (Ehrensperger et al.,
2024). The source code relies on two data sources:

1. ERA5 (Hersbach et al., 2020) data are available via the Climate
Data Store (https://doi.org/10.24381/cds.adbb2d47, Hersbach

et al., 2018, 2017. Scripts for sending the retrievals are
included in the data-preprocessing directory of the
Zenodo repository (https://doi.org/10.5281/zenodo.13907708,
Ehrensperger et al., 2024).

2. ALDIS (Schulz et al., 2016) data were aggregated to align with
the spatio-temporal grid cells of ERA5 for use in this work.
The transformed data are published in Simon et al. (2024).
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