Articles | Volume 18, issue 24
https://doi.org/10.5194/gmd-18-10077-2025
https://doi.org/10.5194/gmd-18-10077-2025
Development and technical paper
 | 
16 Dec 2025
Development and technical paper |  | 16 Dec 2025

Improvement of near-surface wind speed modeling through refined aerodynamic roughness length in high-roughness surface regions: implementation and validation in the Weather Research and Forecasting (WRF) model version 4.0

Jiamin Wang, Kun Yang, Jiarui Liu, Xu Zhou, Xiaogang Ma, Wenjun Tang, Ling Yuan, and Zuhuan Ren

Related authors

Simulating lake ice phenology using a coupled atmosphere–lake model at Nam Co, a typical deep alpine lake on the Tibetan Plateau
Xu Zhou, Binbin Wang, Xiaogang Ma, Zhu La, and Kun Yang
The Cryosphere, 18, 4589–4605, https://doi.org/10.5194/tc-18-4589-2024,https://doi.org/10.5194/tc-18-4589-2024, 2024
Short summary
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024,https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
Long-term monthly 0.05° terrestrial evapotranspiration dataset (1982–2018) for the Tibetan Plateau
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024,https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary
A dense station-based, long-term and high-accuracy dataset of daily surface solar radiation in China
Wenjun Tang, Junmei He, Jingwen Qi, and Kun Yang
Earth Syst. Sci. Data, 15, 4537–4551, https://doi.org/10.5194/essd-15-4537-2023,https://doi.org/10.5194/essd-15-4537-2023, 2023
Short summary
TPHiPr: a long-term (1979–2020) high-accuracy precipitation dataset (1∕30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023,https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary

Cited articles

Beljaars, A., Brown, A. R., and Wood, N: A new parametrization of turbulent orographic form drag, Q. J. Roy. Meteorol. Soc., 130, 1327–1347, https://doi.org/10.1256/qj.03.73, 2004. 
Beijing Normal University Global Change Data Archive: Leaf Area Index (LAI), Beijing Normal University Global Change Data Archive [data set], http://globalchange.bnu.edu.cn/research/laiv061 (last access: 24 March 2022), 2022. 
Bottema, M. and Mestayer, P. G.: Urban roughness mapping – Validation techniques and some first results, J. Wind Eng. Indust. Aerodynam., 74–76, 163–173, https://doi.org/10.1016/S0167-6105(98)00014-2, 1998. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., and Zhang, C.: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems, Int. J. Climatol., 31, 273–288, https://doi.org/10.1002/joc.2158, 2011. 
Download
Short summary
We set out to improve the accuracy of near-surface wind simulations in areas where buildings and tall vegetation have made the ground surface very rough. Through a clever use of differences between weather station measurements and reanalysis data, we estimated more realistic surface roughness values and created a new high-resolution map for China. This map greatly improves wind speed simulations and supports better decisions in wind-related fields.
Share