Articles | Volume 17, issue 22
https://doi.org/10.5194/gmd-17-8093-2024
https://doi.org/10.5194/gmd-17-8093-2024
Development and technical paper
 | 
14 Nov 2024
Development and technical paper |  | 14 Nov 2024

An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system

Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra

Related authors

Optimizing WRF-Hydro Calibration in the Himalayan Basin: Precipitation Influence and Parameter Sensitivity Analysis
Ankur Dixit, Sandeep Sahany, Flavio Lehner, and Saroj Kanta Mishra
EGUsphere, https://doi.org/10.5194/egusphere-2024-587,https://doi.org/10.5194/egusphere-2024-587, 2024
Preprint archived
Short summary
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024,https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary

Related subject area

Atmospheric sciences
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024,https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024,https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary

Cited articles

Bourassa, M., Gille, S., Bitz, C., Carlson, D., Cerovecki, I., Clayson, C., Cronin, M., Drennan, W., Fairall, C., Hoffman, R., Magnusdottir, G., Pinker, R., Renfrew, I., Serreze, M., Speer, K., Talley, L. and Wick, G.: High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research, B. Am. Meteorol. Soc., 94, 403–423, https://doi.org/10.1175/BAMS-D-11-00244.1, 2013. 
Brutsaert, W.: Evaporation into the Atmosphere: Theory, History, and Applications. Springer, Dordrecht, 299, https://doi.org/10.1007/978-94-017-1497-6, 1982. 
Brutsaert, W.: Stability Correction Functions for the Mean Wind Speed and Temperature in the Unstable Surface Layer, Geophys. Res. Lett., 19, 469–472, https://doi.org/10.1029/92GL00084, 1992. 
Businger, J. A.: Transfer of heat and momentum in the atmospheric boundary layer, Proceedings of the Symposium on the Arctic Heat Budget and Atmospheric Circulation, edited by: Fletcher, J. O., The Rand Corporation, 305–332, 1966. 
Businger, J. A.: A Note on the Businger-Dyer Profiles: (Research Note), in: Topics in Micrometeorology, A Festschrift for Arch Dyer, 145–151, Springer, Dordrecht, the Netherlands, 1988. 
Download
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.