Articles | Volume 17, issue 15
https://doi.org/10.5194/gmd-17-5913-2024
https://doi.org/10.5194/gmd-17-5913-2024
Development and technical paper
 | 
08 Aug 2024
Development and technical paper |  | 08 Aug 2024

HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model

Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart

Model code and software

Code Supplement for "HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model" Joseph P. Hollowed et al. https://doi.org/10.5281/zenodo.10788338

Download
Short summary

Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.