Articles | Volume 17, issue 14
https://doi.org/10.5194/gmd-17-5759-2024
https://doi.org/10.5194/gmd-17-5759-2024
Model description paper
 | 
31 Jul 2024
Model description paper |  | 31 Jul 2024

A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0)

Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger

Related authors

Can katabatic winds directly force retreat of Greenland outlet glaciers? Hypothesis test on Helheim Glacier in Sermilik Fjord
Iain Wheel, Poul Christoffersen, and Sebastian H. Mernild
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-194,https://doi.org/10.5194/tc-2020-194, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Cryosphere
Computationally efficient subglacial drainage modelling using Gaussian process emulators: GlaDS-GP v1.0
Tim Hill, Derek Bingham, Gwenn E. Flowers, and Matthew J. Hoffman
Geosci. Model Dev., 18, 4045–4074, https://doi.org/10.5194/gmd-18-4045-2025,https://doi.org/10.5194/gmd-18-4045-2025, 2025
Short summary
Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025,https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Description and validation of the ice-sheet model Nix v1.0
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
Geosci. Model Dev., 18, 3895–3919, https://doi.org/10.5194/gmd-18-3895-2025,https://doi.org/10.5194/gmd-18-3895-2025, 2025
Short summary
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM) version 2.0 – Part 1: Description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge A. Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 3635–3659, https://doi.org/10.5194/gmd-18-3635-2025,https://doi.org/10.5194/gmd-18-3635-2025, 2025
Short summary
A Flexible Snow Model (FSM 2.1.1) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
Geosci. Model Dev., 18, 3583–3605, https://doi.org/10.5194/gmd-18-3583-2025,https://doi.org/10.5194/gmd-18-3583-2025, 2025
Short summary

Cited articles

Amaral, T., Bartholomaus, T. C., and Enderlin, E. M.: Evaluation of Iceberg Calving Models Against Observations From Greenland Outlet Glaciers, J. Geophys. Res.-Earth, 125, e2019JF005444, https://doi.org/10.1029/2019JF005444, 2020. a
Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D., Moore, J. C., and Timonen, J.: A particle based simulation model for glacier dynamics, The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013. a
Aström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Timonen, J., and Moore, J. C.: Termini of calving glaciers as self-organized critical systems, Nat. Geosci., 7, 874–878, https://doi.org/10.1038/ngeo2290, 2014. a
Benn, D. I. and Åström, J. A.: Calving glaciers and ice shelves Adv. Phys., 3, 1048–1076, https://doi.org/10.1080/23746149.2018.1513819, 2018. a
Benn, D., Todd, J., Luckman, A., Bevan, S., Chudley, T., Astrom, J., Zwinger, T., Cook, S., and Christoffersen, P.: Controls on calving at a large Greenland tidewater glacier: stress regime, self-organised criticality and the crevasse-depth calving law, J. Glaciol., 1–16, online first, https://doi.org/10.1017/jog.2023.81, 2023. a, b, c, d
Download
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Share