Articles | Volume 17, issue 12
https://doi.org/10.5194/gmd-17-4961-2024
https://doi.org/10.5194/gmd-17-4961-2024
Development and technical paper
 | 
25 Jun 2024
Development and technical paper |  | 25 Jun 2024

A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases

Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang

Model code and software

A spatiotemporally separated framework for reconstructing the source of atmospheric radionuclide releases (v5.0) Y. Xu https://doi.org/10.5281/zenodo.11119861

Download
Short summary
Recent atmospheric radionuclide leakages from unknown sources have posed a new challenge in nuclear emergency assessment. Reconstruction via environmental observations is the only feasible way to identify sources, but simultaneous reconstruction of the source location and release rate yields high uncertainties. We propose a spatiotemporally separated reconstruction strategy that avoids these uncertainties and outperforms state-of-the-art methods with respect to accuracy and uncertainty ranges.