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Abstract. Determining the source location and release rate
are critical tasks when assessing the environmental conse-
quences of atmospheric radionuclide releases, but they re-
main challenging because of the huge multi-dimensional so-
lution space. We propose a spatiotemporally separated two-
step framework that reduces the dimension of the solution
space in each step and improves the source reconstruction
accuracy. The separation process applies a temporal sliding-
window average filter to the observations, thereby reducing
the influence of temporal variations in the release rate on the
observations and ensuring that the features of the filtered data
are dominated by the source location. A machine-learning
model is trained to link these features to the source loca-
tion, enabling independent source-location estimations. The
release rate is then determined using the projected alternat-
ing minimization with L1 norm and total variation regular-
ization algorithm. This method is validated against the local-
scale SCK CEN (Belgian Nuclear Research Centre) 41Ar
field experiment and the first release of the continental-scale
European Tracer Experiment, for which the lowest source-
location errors are 4.52 m and 5.19 km, respectively. This
presents higher accuracy and a smaller uncertainty range than
the correlation-based and Bayesian methods when estimating
the source location. The temporal variations in release rates
are accurately reconstructed, and the mean relative errors
in the total release are 65.09 % and 72.14 % lower than the
Bayesian method for the SCK CEN experiment and the Eu-
ropean Tracer Experiment, respectively. A sensitivity study
demonstrates the robustness of the proposed method to dif-
ferent hyperparameters. With an appropriate site layout, low

error levels can be achieved from only a single observation
site or under meteorological errors.

1 Introduction

Atmospheric radionuclide release is a major environmental
concern in the nuclear industry, including in the domains
of nuclear energy and applications of the associated heat,
isotope production, and the post-processing of radioactive
waste. Such releases occurred after the Chernobyl nuclear ac-
cident (Anspaugh et al., 1988) and the Fukushima nuclear ex-
plosion (Katata et al., 2012), and information on the sources
(i.e., the locations) of these releases is incomplete. Recently,
there have been several atmospheric radionuclide leaks from
unknown sources, such as the 2017 106Ru leakage (Masson
et al., 2019) and the 2020 134/137Cs detection in northern
Europe (Ingremeau and Saunier, 2022), which have raised
global concerns regarding the subsequent hazard to public
health. Identifying source information for these events is crit-
ical for the safe operation of nuclear facilities, consequence
assessment, and the emergency response.

During these events, source data often cannot be directly
measured or determined because of the lack of informa-
tion on the source of the leak. Instead, source information
can only be reconstructed through inversion methods, which
identify the optimal solution by comparing the environmen-
tal observations with atmospheric dispersion simulations us-
ing different estimates of the source location and release
rate. Such reconstructions simultaneously identify the source
location and release rate because the observations are in-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4962 Y. Xu et al.: Spatiotemporally separated source reconstruction of radionuclide releases

tuitively determined by both parameters. In this case, the
reconstruction searches for a solution over a large multi-
dimensional space, where the dimension is the sum of the
number of spatial coordinates and the length of the esti-
mated release window. Therefore, the inversion is weakly
constrained and can become ill-posed in the case of spa-
tiotemporally limited observations and uncertainties in the
atmospheric dispersion models. Unfortunately, this is quite
often the case for atmospheric radionuclide releases.

To reduce the problem of ill-posedness, most previous
studies have attempted to constrain the reconstruction by
imposing assumptions on the model–observation discrepan-
cies or release characteristics. Assumptions about model–
observation discrepancies are widely used in Bayesian meth-
ods to simultaneously reconstruct the posterior distributions
of spatiotemporal source parameters (De Meutter et al., 2021;
De Meutter and Hoffman, 2020; Xue et al., 2017a). These as-
sume that the model–observation discrepancies follow a cer-
tain statistical distribution (i.e., the likelihood of Bayesian
methods), with the normal (Eslinger and Schrom, 2016; Guo
et al., 2009; Keats et al., 2007, 2010; Rajaona et al., 2015;
Xue et al., 2017a, b; Yee, 2017; Yee et al., 2008; Zhao
et al., 2021) and log-normal (Chow et al., 2008; Dumont Le
Brazidec et al., 2020; KIM et al., 2011; Monache et al., 2008;
Saunier et al., 2019; Senocak, 2010; Senocak et al., 2008)
distributions being two popular choices. Other candidates in-
clude the t distribution (with the number of degrees of free-
dom ranging from 3–10), the Cauchy distribution, and the
log-Cauchy distribution, all of which were compared against
the normal and log-normal distributions in terms of recon-
structing the source parameters of the Prairie Grass field ex-
periment (Wang et al., 2017). The results demonstrate that
the likelihoods are sensitive to both the dataset and the target
source parameters. Several studies have constructed the like-
lihood based on multiple metrics that measure the model–
observation discrepancies in an attempt to better constrain
the solution (Lucas et al., 2017; Jensen et al., 2019). More
sophisticated methods involve the use of different statisti-
cal distributions for the likelihoods of non-detection and de-
tection (De Meutter et al., 2021; De Meutter and Hoffman,
2020). Recent studies have suggested the use of log-based
distributions and the tailored parameterization of the covari-
ance matrix as a means of better quantifying the uncertain-
ties in the reconstruction (Dumont Le Brazidec et al., 2021).
These Bayesian methods have been applied to real atmo-
spheric radionuclide releases, such as the 2017 106Ru event,
and have provided important insights into the source and
release process (Dumont Le Brazidec et al., 2020, 2021;
Saunier et al., 2019; De Meutter et al., 2021). However,
these studies have also revealed that in Bayesian methods,
the likelihood must be exquisitely designed and parame-
terized to achieve satisfactory spatiotemporal source recon-
struction (Dumont Le Brazidec et al., 2021; Wang et al.,
2017). With suboptimal design, the reconstruction may ex-
hibit a bimodal posterior distribution (De Meutter and Hoff-

man, 2020), which remains a challenge to achieving robust
applications in different scenarios.

Assumptions on the release characteristics aim to reduce
the dimension of solution space to 4 or 5, namely the two
source-location coordinates, the total release, and the re-
lease time (or the release start and end time); i.e., it is as-
sumed that there is either an instantaneous release at one
time or a constant release over a period (Kovalets et al.,
2020, 2018; Efthimiou et al., 2018, 2017; Tomas et al., 2021;
Andronopoulos and Kovalets, 2021; Ma et al., 2018). Un-
der these assumptions, the correlation-based method exhibits
high accuracy for ideal cases under stationary meteorolog-
ical conditions, such as synthetic simulation experiments
(Ma et al., 2018) and wind tunnel experiments (Kovalets
et al., 2018; Efthimiou et al., 2017). However, previous stud-
ies have also demonstrated that real-world applications may
be much more challenging (Kovalets et al., 2020; Tomas
et al., 2021; Andronopoulos and Kovalets, 2021; Becker
et al., 2007) because the release usually exhibits temporal
variations and may experience non-stationary meteorologi-
cal fields. In addition, inaccurate calculation of the meteo-
rological field input can further intensify these challenges.
The interaction between the time-varying release character-
istics and non-stationary meteorological fields is neglected in
the instantaneous-release and constant-release assumptions,
leading to inaccurate reconstruction.

Given the assumption-related reconstruction deviations in
complex scenarios, we propose a spatiotemporally sepa-
rated source reconstruction method that is less dependent
on such assumptions. Our approach reduces the complex-
ity of the source reconstruction using the simple fact that
the source location is fixed during the atmospheric radionu-
clide release process. In this case, the spatiotemporal varia-
tions in observations are influenced by the time-varying re-
lease rate, source location, and meteorology, among which
the last variable is generally known. The proposed method
reduces the influence of the release rate through a temporal
sliding-window average filter, making the filtered observa-
tions more sensitive to the source location than to the re-
lease rate. After filtering, existing methods based on direct
observation–simulation comparisons may be unable to lo-
cate the source. Thus, the response features of the filtered
observations are extracted and mapped to the source loca-
tion by training a data-driven machine-learning model using
the extreme gradient boosting (XGBoost) algorithm (Chen
and Guestrin, 2016). To fully capture the response features at
each observation site, tailored time- and frequency-domain
features are designed and optimized using the feature selec-
tion technique of XGBoost. Using this optimized model, the
source location is estimated based on the filtered observa-
tions. Once the source location has been retrieved, the non-
constant release rate is determined using the projected alter-
nating minimization with L1 norm and total variation regu-
larization (PAMILT) algorithm (Fang et al., 2022), which is
robust to model uncertainties. The sequential spatiotemporal
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reconstruction reduces the dimension of the solution space at
each step, which helps to improve the accuracy and reliability
of the reconstruction.

The proposed method is validated using the data from
multi-scale field experiments, namely the local-scale SCK
CEN (Belgian Nuclear Research Centre) 41Ar experiment
(Rojas-Palma et al., 2004) and the first release of the
continental-scale European Tracer Experiment (ETEX-1)
(Nodop et al., 1998), which traced emissions of perflu-
oromethylcyclohexane (PMCH). The performance of the
proposed method is compared with the correlation-based
method in terms of source-location estimation and with the
Bayesian method in terms of spatiotemporal accuracy. The
sensitivity of the source-location estimation to the spatial
search range, size of the sliding window, feature type, num-
ber and combination of sites, and meteorological errors is
also investigated for the SCK CEN 41Ar experiment.

2 Materials and methods

2.1 Source reconstruction models

For an atmospheric radionuclide release, Eq. (1) relates the
observations at each observation site to the source parame-
ters:

µ= F(r,q)+ ε, (1)

where µ= [µ1,µ2, . . .,µN ]
T
∈ RN is an observation vec-

tor composed of N observations; the function F maps the
source parameters to the observations, i.e., an atmospheric
dispersion model; r refers to the source location; q ∈ RS is
the temporally varying release rate; and ε ∈ RN is a vector
containing both model and measurement errors.

In most source reconstruction models, F is simplified to
the product of q and a source–receptor matrix A that depends
on the source location:

µ= A(r)q + ε, (2)

where A(r)= [A1(r),A2(r), . . .,AN (r)]
T
∈ RN×S and

each row describes the sensitivity of an observation to the
release rate q given the source location r .

2.2 Observation filtering for spatiotemporally
separated reconstruction

A straightforward way to solve Eq. (2) is to simultaneously
retrieve the source location and release rate; however, the so-
lution space is huge and difficult to constrain. Several stud-
ies have noted that the source location can be retrieved sepa-
rately without knowledge of the exact release rate on the con-
dition that the release rate is constant (Efthimiou et al., 2018,
2017; Kovalets et al., 2018; Ma et al., 2018). The key rea-
son for this is that, in constant-release cases, the relative spa-
tiotemporal distribution of radionuclides is determined by the

meteorological conditions and the relative positions between
the source and receptors, and the constant release rate only
changes the absolute values. Although the release rate may
counteract the influence of the meteorological conditions and
the relative position at a single observation site, it cannot
change the whole spatiotemporal distribution at multiple ob-
servation sites. Therefore, by analyzing the spatiotemporal
distribution of radionuclides at multiple observation sites, it
is possible to locate the source without knowing the release
rate under the constant-release assumption.

To provide a more general method, we take advantage of
the fact that the source location was fixed during all known
atmospheric radionuclide releases, such as the Chernobyl nu-
clear accident (Anspaugh et al., 1988), the Fukushima nu-
clear explosion (Katata et al., 2012), and the 2017 106Ru
leakage (Masson et al., 2019). With a fixed source location,
the release rate and meteorology jointly determine the tem-
poral variations in the observations (Li et al., 2019b). The
influence of the meteorology can be pre-calculated (like the
source–receptor sensitivities) and subsequently stored in ma-
trix A(r). By reducing the influence of the release rate, the
constant-release case can be approximated and the sensitivity
of the observations to the source location can be improved,
enabling separate source-location and release-rate estima-
tions and reducing the solution space at each step. For this
purpose, we introduce an operator matrix P ∈ RN×N to re-
duce the temporal variations in A(r)q:

µp = Pµ= PA(r)q +Pε, (3)

where µp refers to the filtered observations. In this study,
the following operator matrix is constructed to impose a one-
sided temporal sliding-window average filter (Keogh et al.,
2004):

P=
1
T



1
1 1

...
1 1 · · · 1
1 1 · · · 1 1

1 1 · · · 1 1
1 1 · · · 1 1

. . .
. . .

. . .
. . .

. . .
1 1 · · · 1 1

1 1 1 1 1


, (4)

where T is the size of the sliding window. This one-sided fil-
ter utilizes the current and previous observations in the win-
dow, acknowledging that future observations are not avail-
able for filtering in practice. Although a sliding-window av-
erage filter is used in this study, Eq. (3) is compatible with
more advanced processing methods.

2.3 Source-location estimation without knowing the
exact release rates

After applying the filter in Eq. (4), the peak observations (pri-
marily shaped by the temporal release profile) are smoothed
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Figure 1. Flowchart of XGBoost for predicting r̂ i based on a deci-
sion tree model. The yellow squares are the root nodes within each
tree, which represent the input features in this paper. The purple
ellipses denote the child nodes, where the model evaluates input
features and makes decisions to split the data. The green rectangles
depict the leaf nodes and refer to the prediction results. The vertical
rectangles abstract the internal splitting processes of the trees, thus
indicating decision-making not explicitly detailed in the diagram.

out. However, the influences of the source position and mete-
orology remain relatively unchanged, as they determine the
long-term temporal trends in the observations and are less
affected by the filter. The meteorology is known, so it be-
comes possible to locate the source using the filtered obser-
vations. Nevertheless, the specificity of source-location es-
timation methods that rely on direct observation–simulation
comparisons may be substantially compromised because the
peak amplitude is reduced. A better choice for locating the
source would be to use the response features of the filtered
observations, which preserve most of the location informa-
tion. Therefore, it is necessary to establish a link between the
response features of the filtered observations and the source
location. To achieve this, we train an XGBoost model that
maps the response features of the filtered observations to the
coordinates of the source.

XGBoost is an optimized distributed gradient-boosting li-
brary. Suppose D = {(Xi, r i)}(|D| = n,Xi ∈ Rp,r i ∈ R2),
where the number of samples is n and each sample contains
p features.Xi is the given input feature vector of the ith sam-
ple and r i = (xi,yi) is the location vector. XGBoost typically
uses multiple decision trees (Fig. 1) to fit the target, which
can be formulated as

r̂ i =G(X)|X=Xi =
∑K

k=1
fk(Xi),fk ∈ F , (5)

where K is the number of trees, F = {f (x)= ωQ(x)}(Q :
Rp→M,ω ∈ RM ) is the space of the decision trees, and
Q represents the structure of each tree by mapping the fea-
ture vector to M leaf nodes. Each fk corresponds to an
independent tree structure Q with leaf node weights ω =
(ω1,ω2, . . .,ωM)

T . Equation (5) is then used to predict r̂ i =
(x̂i, ŷi) for the ith sample.

XGBoost trainsG(X) in Eq. (5) by continuously fitting the
residual error until the following objective function is mini-
mized:

Obj(t) =
n∑
i=1

(
r i −

(
r̂
(t−1)
i + ft (Xi)

))2
+

t∑
k=1

�(fk), (6)

where t represents the training of the t th tree and �(fk) is
the regularization term given by

�(f )= ϒM +
1
2
λ

M∑
j=1

ω2
j , (7)

where M is the number of leaf nodes, ωj is the leaf node
weight for the j th leaf node, and ϒ and λ are penalty co-
efficients. The minimization of Eq. (6) provides a paramet-
ric model G(X) that maps the feature ensemble X extracted
from µp to the source location r .

To comprehensively evaluate the influence of the source
location, both time- and frequency-domain features (as out-
lined in Table 1) are considered during the training process
and mapped to the source location by G(X). Among the
time-domain features, the wave rate quantifies the fluctua-
tions in µp over time, while the temporal mean and median
values are measures of the central tendency of µp (Witte and
Witte, 2017). The sample entropy measures the complexity
of µp, with a lower sample entropy indicating greater self-
similarity and less randomness in µp. The frequency-domain
features are calculated based on the fast Fourier transform
(FFT). The FFT mean is the mean value of the Fourier coef-
ficients for µp, and the FFT shape mean describes the shape
of the Fourier coefficients. These quantities are formulated
as follows:

FFT mean=
1
N

N∑
k=1

|µik| , (8)

FFT shape mean=
1

N∑
k=1
|µik|

N∑
k=1

k |µik| , (9)

whereµik is the Fourier coefficient andN is the length ofµp.
These features are calculated from the simulated observa-
tions at each site and provided to XGBoost as initial inputs.

2.4 Release rate estimation

Once the source location has been retrieved, many existing
methods can be used to inversely estimate the release rate.
In this study, we choose the recently developed PAMILT
method (Fang et al., 2022) because it can correct the intrin-
sic model errors of the release rate estimation and accurately
retrieve the temporal variations in the release rates.
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Table 1. Summary of basic information on the features of the observation series.

Attribute Feature Description

Time domain Wave rate Difference between 90th and 10th quantiles of normalized observation series
Mean Temporal mean value of observation series
Median Temporal median value of observation series
Sample entropy Complexity of observation series

Frequency domain FFT mean Amplitude of the power spectral density from FFT
FFT shape mean Shape of the power spectral density from FFT

2.5 Numerical implementation

2.5.1 Pre-screening of potential source locations

To reduce the computational cost and remove low-quality
samples, the search range for the source location is pre-
screened by evaluating the correlation coefficients between
the observations and atmospheric dispersion model simula-
tions, with the candidate source locations randomly sampled
in the considered calculation domain. Because the release
rate is unknown, it is assumed to be 1 for all simulations.
Source locations corresponding to the highest 40 % of corre-
lation coefficients are selected as the search range of the sub-
sequent refined source-location estimation using XGBoost.

2.5.2 Samples for training XGBoost

The samples for trainingG(X) in Eq. (5) are generated based
on the simulations described in Sect. 2.5.1, and the source
locations of these simulations are within the search range de-
termined according to Sect. 2.5.1. The simulation data are
scaled by a constant factor (the ratio between the median
value of all observations and that of the simulations using a
unit release rate), which ensures that the simulations and ob-
servations have the same order of magnitude. Gaussian noise
is added to the simulation data to simulate the statistical fluc-
tuations in the measurements. The simulations between the
first and last data points above the noise level are filtered by
a temporal sliding-window average filter with a window size
of 5, yielding samples for feature extraction as described in
Sect. 2.3.

2.5.3 Automatic optimization of the XGBoost model

The XGBoost model for source-location estimation is auto-
matically optimized with respect to the hyperparameters and
feature selection. Specifically, the Bayesian optimization al-
gorithm is used to optimize the hyperparameters by mini-
mizing the following generalization coefficient (GC) defined

under the 5-fold cross-validation framework:

GC= (1−MCV)2+Var
(
R2
k

)
, (10)

MCV=
1
5

∑
k

R2
k , (11)

where R2
k is the goodness of fit and k is the index of

each fold (k = 1,2, . . .,5). MCV is the mean cross-validation
score R2

k among the 5 folds, and Var(R2
k ) measures the

variance of R2
k . This function aims to balance the average

and the variance of R2
k , thus enhancing the generalization

ability of the XGBoost model. In this study, the optimized
hyperparameters include max_depth (the maximum depth
of a decision tree), learning_rate (the step size shrinkage
when updating), n_estimators (the number of decision trees),
min_child_weight (the minimum sum of sample weights of
a child node), subsample (the subsample ratio of the train-
ing samples), colsample_bytree (the subsample ratio of the
columns when constructing a decision tree), reg_lambda (the
L2 regularization term based on weights), and gamma (the
minimum loss reduction required to split the decision tree).

The initial input features (Table 1) are optimized through a
feature selection step, where MCV serves as the selection cri-
terion. The selection is implemented by recursively remov-
ing the feature with the least importance and reassessing the
MCV based on cross-validation (Akhtar et al., 2020). Ini-
tially, an XGBoost model is trained with all features, and the
importance of each feature is assessed based on its contribu-
tion to the model accuracy. The feature with the least impor-
tance is removed and the XGBoost model is retrained using
the remaining features. The feature importance and MCV are
updated accordingly, and another feature is removed. This
iterative process continues until the optimal number of fea-
tures is identified, which corresponds to the highest MCV
achieved during the process. The overall flowchart of the
proposed spatiotemporally separated source reconstruction
model is shown in Fig. S1 in the Supplement.
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2.6 Validation case

2.6.1 Field experiments

The proposed methodology was validated against the
observations of the SCK CEN 41Ar and ETEX-1 field
experiments. The SCK CEN 41Ar experiment was carried
out at the Belgian Reactor 1 (BR1) research reactor in Mol,
Belgium, in October 2001 as a collaboration between Nordic
Nuclear Safety Research (NKS) and the Belgian Nuclear
Research Centre (SCK CEN) (Rojas-Palma et al., 2004). The
major part of the experiment was conducted on 3–4 October,
during which time 41Ar was emitted from a 60 m stack
with a release rate of approximately 1.5× 1011 Bqh−1.
Meteorological data such as wind speed and direction were
provided by the on-site weather mast. For most of the
experimental period, the atmospheric stability was neutral,
and the wind was blowing from the southwest. As illustrated
in Fig. 2a, the source coordinates were (650 m, 210 m). The
60 s average ground-level fluence rates were continuously
collected by an array of NaI(Tl) gamma detectors, with
different observation sites used on the 2 d. To convert the
measured fluence rates to gamma dose rates (mSvh−1),
we used the 41Ar parameters from a previous study
(Li et al., 2019a): Eγ = 1.2938 MeV, f n(Eγ )= 0.9921,
µa= 2.05× 10−3 m−1, and ω= 7.3516× 10−1 SvGy−1.
More details about these measurements can be found in
Rojas-Palma et al. (2004).

The ETEX-1 experiment took place at Monterfil in
Brittany, France, starting on 23 October 1994 (Nodop
et al., 1998). During ETEX-1, a total of 340 kg of PMCH
was released into the atmosphere on 23 October 1994 at
16:00:00 UTC and 24 October 1994 at 03:50:00 UTC. As il-
lustrated in Fig. 2b, the source coordinates were (48.058° N,
2.0083° W). A total of 3104 available observations (3 h av-
eraged concentrations) were collected at 168 ground sites.
ETEX-1 has been widely used as a validation scenario when
reconstructing atmospheric radionuclide releases (Ulimoen
and Klein, 2023; Tomas et al., 2021). The candidate source
locations are uniformly sampled from the green-shaded zone.
We choose two groups of observation sites: the first group
comprises four sites (i.e., B05, D10, D16, and F02) randomly
selected from the sites within the sample zone (Group 1, with
a total of 92 available observations), and the second group in-
volves four sites (i.e., CR02, D15, DK08, and S09) randomly
selected from the sites beyond the sample zone boundaries
(Group 2, with a total of 90 available observations). Com-
pared with the SCK CEN 41Ar experiment, the ETEX-1 ob-
servations exhibit temporal sparsity, lower temporal resolu-
tion, and increased complexity of meteorological conditions.

Figure 2. Release locations and observation sites in two field ex-
periments. (a) The SCK CEN 41Ar experiment. The map was cre-
ated based on the relative positions of the release source and the
observation sites (Drews et al., 2002). The coordinates of the sam-
ple border were (500 m, −200 m) and (1180 m, 580 m) on 3 Octo-
ber and (450 m, 10 m) and (850 m, 450 m) on 4 October. This fig-
ure was plotted using MATLAB 2016b rather than a map provider.
(b) The ETEX-1 experiment. The map was created based on the
real longitudes and latitudes of the release source and the observa-
tion sites (Nodop et al., 1998). The coordinates of the sample border
are (40° N, 10° W) and (60° N, 10° E). This figure was plotted using
the cartopy function of Python rather than a map provider.

2.6.2 Simulation settings of the atmospheric dispersion
model

For the SCK CEN 41Ar field experiment, the Risø Mesoscale
PUFF (RIMPUFF) model was employed to simulate the dis-
persion of radionuclides and calculate the dose rates at each
observation site (Thykier-Nielsen et al., 1999). The simu-
lations used meteorological data measured on-site and the
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modified Karlsruhe–Jülich diffusion coefficients. The calcu-
lation domain measured 1800 m× 1800 m, and the grid res-
olution was 10 m× 10 m. The release height of 41Ar was
assumed to be 60 m. Other RIMPUFF calculation settings
followed those of a previous study (Li et al., 2019a) and
have been validated against the observations. To establish
the datasets for the XGBoost model, 2050 simulations and
1000 simulations with different source locations were per-
formed by RIMPUFF for the experiments on 3 and 4 Octo-
ber, respectively. Candidate source locations were randomly
sampled from the shaded zones in Fig. 2a, which were deter-
mined according to the positions of the observation sites and
the upwind direction. Each simulation, along with its corre-
sponding source location, forms one sample. As described in
Sect. 2.5.1, we calculated the correlation coefficient for each
sample and preserved the 40 % of samples with the highest
40 % of correlation coefficients (i.e., 820 samples for 3 Oc-
tober and 400 samples for 4 October). The constant factors
mentioned in Sect. 2.5.2 are 1.53× 1011 and 1.48× 1011 for
3 and 4 October, respectively.

For the ETEX-1 experiment, the FLEXible PARTicle
(FLEXPART) model (version 10.4) was applied to simulate
the dispersion of PMCH (Pisso et al., 2019). The meteoro-
logical data were obtained from the United States National
Centers for Environmental Prediction Climate Forecast Sys-
tem Reanalysis and have a spatial resolution of 0.5°× 0.5°
and a time resolution of 6 h. To rapidly establish the rela-
tionship between the varying source locations and the ob-
servations, 182 backward simulations were performed us-
ing FLEXPART with a time interval of 3 h, a grid size of
0.25°× 0.25°, and eight vertical levels (from 100–50 000 m).
Only the lowest model output layer was used for source
reconstruction. Candidate source locations were uniformly
sampled from the shaded zone in Fig. 2b, resulting in a total
of 6561 source locations. As described in Sect. 2.5.1, 2624
candidate source locations were preserved following the pre-
screening step. The constant factors mentioned in Sect. 2.5.2
are 5.60× 1012 and 2.86× 1013 for Group 1 and Group 2,
respectively.

2.7 Sensitivity study

1. Search range. The search range is controlled by the
pre-screening threshold, which is the top proportion of
the correlation coefficients in the pre-screening step.
Specifically, we use source locations corresponding to
the highest 20 %, 40 %, 50 %, 60 %, 80 %, and 100 %
of correlation coefficients to define the search ranges,
with a lower proportion indicating a narrower and more
focused search area.

2. Size of the sliding window. Temporal filtering with dif-
ferent sliding-window sizes is applied to separate the
source-location estimation from the release rate estima-
tion. In this study, the size of the sliding window ranges

from 3–10. With these filtered data, the XGBoost model
is trained using the same pattern for the source-location
estimation.

3. Feature type. The XGBoost model is trained using only
time-domain features and only frequency-domain fea-
tures to investigate the influence of these features on
the source-location estimation. The performance of the
time-feature-only and frequency-feature-only models is
compared with the all-features result.

4. Number and combination of observation sites. The
XGBoost model is trained and applied to the source-
location estimation with different numbers of observa-
tion sites, namely a single site, two sites, and three sites.
For the two- and three-site cases, the model is trained
using different combinations of sites and the source lo-
cation is estimated accordingly.

5. Meteorological errors. Meteorological errors, espe-
cially the random errors in the wind field (Mekhaimr
and Abdel Wahab, 2019), are important uncertainties in
source reconstruction. To simulate such uncertainties, a
stochastic perturbation of ± 10 % is introduced into the
x and y components of the observed wind speeds, and
a perturbation of ± 1 stability class is applied to the sta-
bility parameters (e.g., from C to B or D). For both days,
50 meteorological groups are generated based on these
random perturbations.

In all the sensitivity tests, the source location is esti-
mated 50 times with randomly initialized hyperparameters
to demonstrate the uncertainty range of the proposed method
under different circumstances. The performance of source-
location estimation is compared quantitatively using the met-
rics specified in Sect. 2.8.3.

2.8 Performance evaluation

2.8.1 Observation filtering

The feasibility of filtering is demonstrated using both the
synthetic and the real observations of the SCK CEN 41Ar
experiment and the real observations of the ETEX-1 exper-
iment. The synthetic observations are generated by a sim-
ulation using a synthetic temporally varying release pro-
file with sharply increasing, stable, and gradually decreasing
phases (as illustrated in Fig. S2), which is typical of an atmo-
spheric radionuclide release (Davoine and Bocquet, 2007).
Because several temporal observations are missing at some
observation sites, we only choose observations sampled be-
tween 09:00:00 UTC on 24 October 1994 and 03:00:00 UTC
on 26 October 1994 for the source-location estimation. The
simulations corresponding to the synthetic and real observa-
tions should first be processed following the procedure de-
scribed in Sect. 2.5.2. The filtering performance is evaluated
by comparing the simulation–observation differences before

https://doi.org/10.5194/gmd-17-4961-2024 Geosci. Model Dev., 17, 4961–4982, 2024



4968 Y. Xu et al.: Spatiotemporally separated source reconstruction of radionuclide releases

and after the filtering step. Several statistical metrics can be
used to quantify this difference, including the normalized
mean square error (NMSE), Pearson’s correlation coefficient
(PCC), and the fraction of predictions within a factor of 2 or a
factor of 5 of the observations (FAC2 or FAC5, respectively)
(Chang and Hanna, 2004).

2.8.2 Optimization of the XGBoost model

The hyperparameters are optimized with respect to the GC in
Eq. (10), and the features are optimized with respect to the
MCV in Eq. (11). Larger values of MCV and smaller values
of GC indicate better optimization performance. In addition,
the importance of each feature to the XGBoost training is
evaluated with the built-in feature importance measure of the
XGBoost model.

2.8.3 Source reconstruction

The relative errors in the source location (δr ) and total release
(δQ) are calculated to evaluate the source reconstruction ac-
curacy:

δr =
|r true− rest|

LD
× 100%, (12)

δQ =
Qtrue−Qest

Qtrue
× 100%, (13)

where r true and Qtrue refer to the real source location and
total release in the field experiment, respectively, and rest and
Qest are the estimated location and total release, respectively.
LD represents the range of the source domain, which is the
distance between the lower and upper borders of the sampled
zone (Fig. 2). The values of r true, LD, and Qtrue are listed
in Table 2. In addition to the total release, the reconstructed
release rates are also compared with the true temporal release
profile.

2.8.4 Comparison with the Bayesian method

The proposed method is compared with the popular Bayesian
method based on the SCK CEN 41Ar and ETEX-1 exper-
iments, with the same search range used for locating the
source in both methods (Fig. 2). The Bayesian method is aug-
mented with an in-loop inversion of the release rate at each
iteration of the Markov chain Monte Carlo sampling. The
prior distribution of the Bayesian method is a uniform distri-
bution, and the likelihood is a log-Cauchy distribution. More
detailed information is presented in Note S1 in the Supple-
ment.

2.8.5 Uncertainty range

The uncertainty ranges are calculated and compared for the
correlation-based method, the Bayesian method, and the pro-
posed method. For the correlation-based method, the uncer-
tainty range is calculated using the source locations with the

top 50 correlation coefficients. For the proposed method, the
uncertainty range is calculated from 50 Monte Carlo runs
with randomly initialized hyperparameters. The Bayesian
method provides the uncertainty range directly through the
posterior distribution. For consistency with the other two
methods, the results with the top 50 frequencies are selected
for the comparison.

3 Results and discussion

3.1 Filtering performance

Figure S3 displays the original and filtered observations at
different observation sites for both days. The results demon-
strate that the peak values have been smoothed out and the
long-term trends are preserved to a large degree. Figure 3
compares the filtering performance for the synthetic and
real observations, where the constant-release simulations are
plotted against the observations before and after filtering. For
the synthetic observations, the filtered data are more concen-
trated along the 1 : 1 line for both days, and all filtered data
fall within the 2-fold lines for 3 October. For the real observa-
tions, the dots before filtering in Fig. 3 have a dispersed dis-
tribution for both 3 and 4 October, indicating limited correla-
tions with the simulations. After filtering, the dots are more
concentrated towards the 1 : 1 line for both the SCK CEN
41Ar and the ETEX-1 experiments. These phenomena indi-
cate a noticeably increased agreement between the filtered
observations and the constant-release simulations.

Table 3 quantitatively compares the results presented in
Fig. 3. For each case, all metrics are greatly improved af-
ter filtering, confirming the better agreement between the fil-
tered observations and the constant-release simulations. The
improved agreement indicates that the filtering step signifi-
cantly reduces the influence of temporal variations in release
rates across the observations. The filtering performs better
with the synthetic observations than with the real observa-
tions because the synthetic observations are free of measure-
ment errors. The filtering process produces a better effect
with the SCK CEN 41Ar experiment than with the ETEX-1
experiment, owing to the sparser observations in the ETEX-1
experiment (Fig. S3).

3.2 Optimization of the XGBoost model

3.2.1 Hyperparameters

Table S1 in the Supplement summarizes the optimal hyper-
parameters and corresponding GCs used for source-location
estimation in this study; Tables S2–S5 include all the opti-
mal hyperparameters used in the 50 runs of the SCK CEN
41Ar and ETEX-1 experiments. The optimal GCs of the SCK
CEN 41Ar experiment are smaller than those of the ETEX-
1 experiment, indicating better fitting performance. This is
because the sparse observations of the ETEX-1 experiment
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Table 2. Parameter settings of the field experiments.

Experiment Case Parameters

r true LD Qtrue

SCK CEN 41Ar 3 Oct (650 m, 210 m) 1034.8 m 423.10 GBq
4 Oct (650 m, 210 m) 565.7 m 1045.09 GBq

ETEX-1 Group 1 (48.058° N, 2.0083° W) 2620.5 km 340 kg
Group 2 (48.058° N, 2.0083° W) 2620.5 km 340 kg

Figure 3. Scatterplots of the original (yellow squares) and filtered (green squares) observations versus the constant-release simulation results.
SCK CEN 41Ar experiment: (a) 3 October (synthetic observations); (b) 4 October (synthetic observations); (c) 3 October (real observations);
(d) 4 October (real observations). ETEX-1 experiment: (e) Group 1 (real observations); (f) Group 2 (real observations).
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Table 3. Quantitative metrics for the filtering validation.

Experiment Case NMSE PCC FAC2 FAC5

SCK CEN 41Ar 3 Oct (synthetic observations) Before filtering 0.6970 0.5315 0.7647 0.8235
After filtering 0.0239 0.9514 1 1

4 Oct (synthetic observations) Before filtering 0.9290 −0.0267 0.7292 0.7292
After filtering 0.0956 0.6179 0.9412 0.9779

3 Oct (real observations) Before filtering 1.4437 0.3572 0.3824 0.5147
After filtering 0.2730 0.6976 0.7273 0.8864

4 Oct (real observations) Before filtering 1.9290 −0.2099 0.3073 0.4948
After filtering 0.3668 0.2802 0.6552 0.9310

ETEX-1 Group 1 (real observations) Before filtering 10.9936 0.3414 0.1000 0.2167
After filtering 6.6769 0.5145 0.2500 0.3667

Group 2 (real observations) Before filtering 5.8705 −0.2824 0.0667 0.1167
After filtering 4.9799 −0.2695 0.1167 0.2500

(Fig. S3) are more sensitive to the added Gaussian noise (see
Sect. 2.5.2).

3.2.2 Feature selection

Figure 4 compares the importance of the selected features at
each site for the two experiments. The time-domain features
are dominant for both days in the SCK CEN 41Ar experiment
(Fig. 4a and b). For 3 October, Site B is the most important,
possibly because it is farthest away in the crosswind direc-
tion. For 4 October, the four sites provide redundant feature
information, and many features are removed. This is because
the distribution of observation sites is almost parallel to the
wind direction on this day. According to Fig. S3b, the mea-
surements from Sites A and B have a high correlation, thus
leading to the removal of features from Site A on 4 October.
In summary, the feature selection process adapts XGBoost
to different application scenarios. Figure S4a and b show the
variations in MCV with the number of features for the x and
y coordinates. The MCV first increases with the number of
features and then decreases slightly after reaching the max-
imum. The optimal number of features for 4 October is no-
ticeably smaller than for 3 October. In addition, the selected
features for 3 October involve all four sites, whereas those for
4 October involve three sites. The reduced features and site
numbers indicate a high level of redundancy in the observa-
tions acquired on 4 October. This is because the observation
sites are parallel to the downwind direction and provide sim-
ilar location information in the crosswind direction.

For the ETEX-1 experiment, Fig. 4c and d show that the
features of Group 1 and Group 2 are largely preserved after
the feature selection process (only one feature is removed
for each case), indicating less redundancy than that in the
SCK CEN 41Ar experiment. The time-domain features are
dominant, but the frequency-domain features at some sites
(e.g., D16 and S09) also play important roles. The MCVs of
the ETEX-1 experiment have similar variation trends to those
for the SCK CEN 41Ar experiment (Fig. S4c and d).

3.3 Source reconstruction

3.3.1 Source locations

Figure 5 compares the best-estimated source locations of the
correlation-based method, the Bayesian method, and the pro-
posed method with the ground truth. The pre-screening zone
covers the true source location for both days, but the areas
with the highest correlation coefficients are still too large
for the point source to be accurately located. The locations
with the maximum correlation exhibit errors of 270.19 and
36.06 m for 3 and 4 October, respectively, indicating that
the correlation-based method may produce biased results in
the case of non-constant releases. The Bayesian method esti-
mates the location with errors of 19.62 and 52.81 m for 3 and
4 October, respectively. In comparison, the proposed method
achieves the best performance. The estimates without feature
selection are only 10.65 m (3 October) and 20.62 m (4 Oc-
tober) away from the true locations. Feature selection fur-
ther reduces these errors to 6.19 m (3 October; a relative
error of 0.60 %) and 4.52 m (4 October; a relative error of
0.80 %), which are below the grid size (10 m× 10 m) of the
atmospheric dispersion simulation. The ability to estimate
the source location with an accuracy surpassing the grid size
can be attributed to the strong fitting capability of the opti-
mized XGBoost model (Chen and Guestrin, 2016; Grinsztajn
et al., 2022). However, this capability, although inherent, is
not present across all optimized XGBoost models, as exter-
nal factors such as observation noise and meteorological data
inaccuracies can also impact the accuracy of source-location
estimation.

For the ETEX-1 experiment, the pre-screening zone also
covers the true source location for Group 1 and Group 2. The
source locations estimated by the correlation-based method
are 411.85 and 486.41 km away from the ground truth for
Group 1 and Group 2, respectively. The location error in the
Bayesian method estimates is only 30.50 km for Group 1
but increases to 520.77 km for Group 2, indicating the sen-
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Figure 4. Feature importance. SCK CEN 41Ar experiment: (a) 3 October; (b) 4 October. ETEX-1 experiment: (c) Group 1; (d) Group 2.
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Figure 5. Source-location estimation results. SCK CEN 41Ar experiment: (a) 3 October; (b) 4 October. ETEX-1 experiment: (c) Group 1;
(d) Group 2. A detailed enlargement of the region from (47.5° N, 2.5° W) to (48.5° N, 1.5° W) is shown in the bottom-right corner in (c) and
(d) to highlight the source-location estimation results of the proposed method. The yellow dots denote the maximum-correlation points,
which are the results of the correlation-based method. The green and red stars represent the results based on XGBoost before and after
feature selection, respectively. The cyan diamonds represent the results based on the Bayesian method.

sitivity of this method to the observations. In contrast, the
proposed method achieves much lower source-location er-
rors of 5.19 km for Group 1 (a relative error of 0.20 %) and
17.65 km for Group 2 (a relative error of 0.70 %). Group 1
exhibits a lower source-location error than Group 2 because
the observation sites of Group 1 are closer to the sampled
source locations than those of Group 2 and better charac-
terize the plume. Feature selection did not remove many
features (Fig. 4c and d), so the estimated source locations
with and without feature selection basically overlap for both
groups.

3.3.2 Release rates

Figure 6 displays the release rates estimated by the Bayesian
and PAMILT methods based on the source location estimates
in Fig. 5. For the SCK CEN 41Ar experiment (Fig. 6a and b),
the release rates provided by the Bayesian method present
several sharp peaks, corresponding to overestimates of up
to 269.03 % (3 October) and 532.35 % (4 October). Further-
more, the Bayesian estimates exhibit unrealistic oscillations
in the stable release phase. In contrast, the PAMILT method
successfully retrieves the peak releases without oscillations
for both days. Both the Bayesian and PAMILT estimates give
delayed release start times but accurately estimate the end
times, especially for 3 October. The PAMILT estimate un-
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Figure 6. Release rate estimation results with different location estimates. SCK CEN 41Ar experiment: (a) 3 October; (b) 4 October. ETEX-
1 experiment: (c) Group 1; (d) Group 2. The release rates labeled “XGBoost” or “XGBoost+feature selection” were estimated using the
PAMILT method.

derestimates the total release by 30.01 % and 45.95 % for 3
and 4 October, respectively; these values decrease to about
23.83 % and 30.60 %, respectively, after feature selection.
The Bayesian method gives better total releases because of
the overestimated peaks.

For the ETEX-1 experiment (Fig. 6c and d), the Bayesian
estimates exhibit notable fluctuations, leading to underesti-
mations of 58.11 % for Group 1 and 51.44 % for Group 2.
Furthermore, the temporal profile of the Bayesian estimates
for Group 2 falls completely outside the true-release window.
In contrast, most releases using the PAMILT estimates are
within the true-release time window, especially for Group 2,
despite the overestimations reaching 52.38 % for Group 1
and 57.65 % for Group 2, after the feature selection pro-
cess. Compared with the SCK CEN 41Ar experiment, the in-
creased deviation in the ETEX-1 experiment is caused by the
sparsity of observations at the four sites (Fig. S3).

3.3.3 Uncertainty range

Figure 7 compares the spatial distributions of 50 estimates
produced by different methods. For the SCK CEN 41Ar ex-
periment, the estimates of the correlation-based method are
highly dispersed for both days, leading to a very uniform dis-
tribution of the x coordinate for 3 October and two sepa-
rate distributions of both coordinates for 4 October. For both
days, the Bayesian method produces a multimodal distribu-

tion in which the estimates are more concentrated than those
of the correlation-based method. The corresponding full pos-
terior distributions in Fig. S5a and b better reveal the multi-
modal feature of the Bayesian method, with several peaks of
similar probabilities in the estimates of both coordinates on
3 October and the y coordinate on 4 October. The multimodal
feature indicates the difficulty of constraining the solution in
simultaneous spatiotemporal reconstruction, as reported in a
previous study (De Meutter and Hoffman, 2020). In compar-
ison, the proposed method provides the most concentrated
source-location estimates. The feature selection moves the
center of the distribution closer to the true location and nar-
rows the distribution of the estimates, especially for 4 Octo-
ber.

For the ETEX-1 experiment, the estimates of the
correlation-based method are quite dispersed, whereas those
of the Bayesian method are more concentrated. The Bayesian
estimates are close to the truth for Group 1 but deviate no-
ticeably for Group 2. This phenomenon indicates that the
Bayesian method is sensitive to the observations, especially
when the observations are sparse. Figure S5c and d reveal
that the Bayesian-estimated posterior distribution is multi-
modal for both ETEX-1 groups; this can be avoided by using
additional observations (Fig. S5e). In contrast, the proposed
method provides estimates that are concentrated around the
truth for both Group 1 and Group 2, indicating its efficiency
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Figure 7. Spatial distributions of 50 source-location estimates. SCK CEN 41Ar experiment: (a) 3 October; (b) 4 October. ETEX-1 exper-
iment: (c) Group 1; (d) Group 2. Each circle denotes an individual estimate as detailed in Sect. 2.8.5, with color variations indicating the
respective method employed. Histograms along the axes represent the frequency distribution of the estimates along the respective axis.

in the case of sparse observations. Due to the shorter distance
between observation sites and the sampled source locations,
the uncertainty range of the source location for Group 1 is
narrower than that for Group 2.

Figure 8 compares the uncertainty ranges and mean to-
tal releases of the release rate estimations for the SCK CEN
41Ar experiment. For 3 October, the Bayesian estimates sig-
nificantly overestimate the mean values and have a large
uncertainty range, whereas the mean PAMILT estimate is
very close to the true release and the uncertainty range is
smaller than that from the Bayesian method. For 4 October,
the mean Bayesian estimate exhibits greater deviations than
the mean PAMILT estimate. Feature selection improves the
mean estimate and reduces the uncertainty range of PAMILT
because it improves the source-location estimation, thus re-
ducing the deviation in the inverse model of the release rate.
On 3 and 4 October, the PAMILT method underestimates the
total release by 18.30 % and 47.42 %, respectively, whereas
the Bayesian method gives overestimations of 153.61 % and
42.29 %, respectively.

Figure 9 compares the uncertainty ranges of the release
rate estimates for the two ETEX-1 groups. For both groups,
the Bayesian estimates exhibit noticeable underestimations
(including in the mean estimate) and small uncertainty ranges
(Fig. 9a and c). The Bayesian estimates fall completely out-
side the true-release window for Group 2 (Fig. 9c). The
mean PAMILT estimates are more accurate than the mean
Bayesian estimates, with most releases occurring within the
true-release window (Fig. 9b and d). However, the PAMILT
estimates have a larger uncertainty range for the ETEX-I ex-
periment than for the SCK CEN 41Ar experiment, imply-
ing that the source–receptor matrices of the ETEX-1 exper-
iment are more sensitive to errors in source location than
those of the SCK CEN 41Ar experiment are. This greater
sensitivity originates from the complex meteorology in the
ETEX-1 experiment. As with the mean total releases, the
Bayesian method produces underestimations of 70.93 % for
Group 1 and 74.15 % for Group 2. In comparison, the pro-
posed method gives deviations of only 0.71 % for Group 1
and 0.09 % for Group 2 after feature selection.
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Figure 8. Release rate estimates over 50 calculations of the SCK CEN 41Ar experiment. (a) Estimates from the Bayesian method for
3 October. (b) Estimates from the PAMILT method for 3 October. (c) Estimates from the Bayesian method for 4 October. (d) Estimates from
the PAMILT method for 4 October. The shading represents the uncertainty range between the lower quartile and the upper quartile. The
shading in each figure is amplified in a subgraph. The legends in each figure provide the mean estimates for the total release.

Figure 9. Release rate estimates over 50 calculations of the ETEX-1 experiment. (a) Estimates from the Bayesian method for Group 1.
(b) Estimates from the PAMILT method for Group 1. (c) Estimates from the Bayesian method for Group 2. (d) Estimates from the PAMILT
method for Group 2.
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Table 4. Relative errors in source reconstruction. δr represents the relative error in source location, which is positive, and δQ denotes the
relative error in the total release, where a positive value indicates overestimation and a negative value denotes underestimation.

Experiment Case Statistical Correlation- Bayesian The proposed method
parameters based method method XGBoost XGBoost + feature

(relative error) (%) (%) (%) selection (%)

SCK CEN 41Ar 3 Oct δr Mean 14.10 11.88 5.18 4.68
SD 11.37 7.53 1.79 2.05

δQ Mean – 153.61 −16.93 −18.30
SD – 189.76 9.45 8.01

4 Oct δr Mean 14.30 12.83 6.83 4.71
SD 9.60 1.68 1.76 1.53

δQ Mean – 42.29 −54.12 −47.42
SD – 15.05 6.47 5.85

ETEX-I Group 1 δr Mean 16.95 3.22 2.32 2.42
SD 7.46 2.75 1.43 1.43

δQ Mean – −70.93 18.12 −0.71
SD – 17.87 99.85 102.01

Group 2 δr Mean 21.90 23.97 5.21 4.97
SD 5.05 1.97 2.42 2.35

δQ Mean – −74.15 16.67 0.09
SD – 11.68 93.50 109.56

Table 4 lists the mean and standard deviation of the relative
error for the 50 estimates given by different methods. The
correlation-based method produces the largest mean relative
error and standard deviation for source-location estimation,
except for Group 2 of ETEX-I. For the SCK CEN 41Ar ex-
periment, the proposed method gives the smallest mean error,
about half of that of the Bayesian method. Its standard devia-
tion is around one-quarter of that of the Bayesian method for
3 October but slightly larger for 4 October. For the total re-
lease, the PAMILT method gives a better standard deviation
of the relative error for both days and a better mean relative
error for 3 October, whereas the Bayesian method produces
a better mean relative error for 4 October. Feature selection
reduces the mean relative error, except for the total release
for 3 October, and slightly increases the standard deviation
of the source location and the total release results for 3 Octo-
ber. The mean relative error in the total release averaged over
the 2 d is 65.09 % lower than that of the Bayesian method.

For the ETEX-1 experiment, the Bayesian method exhibits
case-sensitive performance with respect to the mean relative
error in source-location estimation, whereas the proposed
method gives the most accurate source locations, with small
uncertainties for both groups. As with the total release, the
proposed method gives smaller mean relative errors than the
Bayesian method, but the Bayesian method has a smaller
standard deviation. Feature selection significantly reduces
the mean relative error for the two groups. The mean rela-
tive error in the total release averaged over the two groups is
72.14 % lower than that of the Bayesian method.

3.4 Sensitivity analysis results

3.4.1 Sensitivity to the search range

Figure 10 displays the source-location errors obtained us-
ing different pre-screening thresholds to determine the search
range. The error is smaller with a lower threshold, implying
that a small search range helps reduce the mean and median
errors. As the threshold increases, the mean and median er-
rors, as well as the error range, show an overall tendency to
increase but not in a strictly monotonic way. The mean and
median errors are less than 12 % for 3 October and less than
22 % for 4 October, indicating robust performance in these
tests. Feature selection reduces the mean, median, range, and
lower bound of the errors in most tests, demonstrating its ef-
ficiency.

3.4.2 Sensitivity to the size of the sliding window

Figure 11 shows the source-location errors obtained with dif-
ferent sliding-window sizes. The mean and median errors are
less than 8 % for 3 October and less than 11 % for 4 October,
both of which are smaller than for the various search ranges.
This indicates that the proposed method is more robust to this
parameter than to the search range. For both days, the low-
est mean, median, and error range occur with relatively large
window sizes, i.e., a window size of 9 for 3 October and a
window size of 10 for 4 October. This is because a large win-
dow size increases the strength of the filtering and removes
the temporal variations in the release rates more completely.
However, a large window size leads to an increased compu-
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Figure 10. Distribution of the relative error (%) over 50 runs with different search ranges. The solid blue and solid red lines denote the average
relative error (%) and median relative error (%), respectively. The upper and lower boundaries represent the upper and lower quartiles of the
relative error (%), respectively. The fences are 1.5 times the interquartile ranges of the upper and lower quartiles. The red circles denote data
that are not included between the fences. (a) 3 October; (b) 4 October.

Figure 11. Sensitivity to the size of the sliding window. (a) 3 October; (b) 4 October.

tational cost. Because the errors vary in a limited range, a
medium window size provides a better balance between ac-
curacy and computational cost. Feature selection improves
the results for medium and small window sizes but may have
less of an effect with large window sizes. This tendency im-
plies that it is more appropriate to apply feature selection
with medium window sizes than with large window sizes,
as done in this study.

3.4.3 Sensitivity to the feature type

Figure 12 compares the results obtained with different fea-
ture types. For 3 October, the source-location errors are quite
low when using only the time-domain features for the recon-
struction; indeed, the errors are only slightly larger than when

using all the features. In contrast, the results obtained using
only the frequency-domain features exhibit larger errors, in-
dicating that the time-domain features make a greater contri-
bution to the results for 3 October. For 4 October, the mean
source-location errors are similar when using either the time-
or frequency-domain features, but the error range is higher
when the frequency-domain features are used. In addition,
the errors in both the single-domain-feature results are higher
than those of the all-feature results, indicating that both fea-
ture types should be included to ensure accurate and robust
source-location estimation.
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Figure 12. Sensitivity to the feature type. (a) 3 October; (b) 4 October.

Figure 13. Sensitivity to the number and combination of observation sites. (a) 3 October; (b) 4 October.

3.4.4 Sensitivity to the number and combination of
observation sites

Figure 13 compares the results obtained with different num-
bers and combinations of observation sites. The results in-
dicate that the source-location error may be more sensitive
to the position of the observation site than to the number
of sites included. The error level of all-site estimations is
relatively low for both days, indicating that increasing the

number of observation sites better constrains the solution
and helps improve the robustness of the model. However,
the lowest error levels are achieved by a subset of sites, i.e.,
Site ABD on 3 October and Site BD on 4 October. This is
possibly because including all observation sites may cause
overfitting and reduce the prediction accuracy. This overfit-
ting can be alleviated by using only representative sites at
appropriate positions which capture the environmental vari-
ability and provide clear information for locating the source.
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For 3 October, multi-site estimations with Site B always pro-
duce low error levels, and single-site estimation using Site B
also achieves high accuracy. For 4 October, multi-site estima-
tions with Site BD always achieve relatively low error levels.
These results demonstrate the importance of using represen-
tative sites for source-location estimation. The representative
sites (Site B for 3 October and Site BD for 4 October) are
consistent with the importance calculated in the feature se-
lection step (Fig. 4), preliminarily indicating the potential of
feature selection to identify representative sites. In addition,
feature selection reduces the mean error level in most cases.

3.4.5 Sensitivity to the meteorological errors

Figure 14 illustrates the distribution of mean relative source-
location errors (averaged across 50 groups of hyperparame-
ters) retrieved with 50 perturbed meteorological inputs. For
3 October, the estimates generally present a low error level
(generally below 10 %), and the 50th-percentile error level
is lower than the error in the unperturbed results (4.68 %).
In comparison, for 4 October, most perturbed results exhibit
larger errors (primarily 10 %–20 %) than the unperturbed re-
sults (4.71 %), indicating that models for 4 October are more
sensitive to the meteorological errors. This sensitivity differ-
ence results from the layout of the observation sites (Fig. 2a).
On 3 October, the sites were almost perpendicular to the pre-
vailing wind direction, so they captured the plume for a large
range of wind directions. In contrast, on 4 October, the sites
were basically parallel to the wind direction, so they cap-
tured the plume for only a very limited range of wind di-
rections. This result indicates the importance of site layout
for robust reconstruction in the presence of meteorological
errors. Feature selection slightly changes the mean relative
error distribution and its percentiles for both days, indicating
that meteorological errors may alter the importance of each
feature and reduce the effectiveness of feature selection. In
addition to meteorological errors, dispersion errors such as
wet-deposition parameterization (Zhuang et al., 2023) may
influence the result, but these errors are not dominant in the
two field experiments. The handling of such dispersion errors
will be investigated in future work.

4 Conclusions

In this study, we relaxed the unrealistic constant-release
assumption of source reconstruction. Instead, we took ad-
vantage of the fact that most atmospheric radionuclide re-
leases have a spatially fixed source, and thus the release
rate mainly influences the peak values in the temporal ob-
servations. Based on this, a more general spatiotemporally
separated source reconstruction method was developed to
estimate non-constant releases. The separation process was
achieved by applying a temporal sliding-window average fil-
ter to the observations. This filter reduces the influence of

Figure 14. Sensitivity to the meteorological errors. The violin plots
illustrate the kernel density estimation of errors obtained with dif-
ferent meteorological groups for XGBoost models before and af-
ter feature selection. The vertical black lines inside the violins de-
pict the interquartile range, capturing the 25th, 50th (red dots), and
75th percentiles of mean relative error. The blue dots denote the
mean relative source-location errors for models without meteoro-
logical perturbation, as listed in Table 4.

temporal variations in the release rates on the observations
so that the relative spatiotemporal distribution of the fil-
tered observations is dominated by the source location and
known meteorology. A response feature vector was extracted
to quantify the long-term temporal response trends at each
observation site, utilizing tailored indicators of both the time
and the frequency domains. The XGBoost algorithm was
used to train a machine-learning model that links the source
location to the feature vector, enabling independent source-
location estimation without knowing the release rate. With
the retrieved source location, the detailed temporal variations
in the release rate were determined using the PAMILT algo-
rithm. Validation was performed against the 2 d SCK CEN
41Ar field experimental data and two groups of ETEX-1 data.
The results demonstrate that the proposed method success-
fully removes the influence of temporal variations in release
rates across observations and accurately reconstructs both the
spatial location and the temporal variations in the source.

For the local-scale SCK CEN 41Ar experiment, the source
location was reconstructed with errors as low as 0.60 %
(3 October) and 0.80 % (4 October), significantly lower
than for the correlation-based method and Bayesian method.
In terms of the release rate, the PAMILT method recon-
structed the temporal variations, peak, and total release
with high accuracy, thus avoiding the unrealistic oscillations
given by the Bayesian estimate. The proposed method pro-
duced smaller uncertainty ranges than the Bayesian method
and avoided the multimodal distribution of the Bayesian
method. The feature selection process removed the redun-
dant features and reduced the reconstruction errors. For the
continental-scale ETEX-1 experiment, the lowest relative
source-location errors were 0.20 % and 0.70 % for Group 1
and Group 2, respectively, which were again lower than those
for the correlation-based and Bayesian methods. The pro-
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posed method provides highly accurate mean estimates of the
release rate for both groups, although with a large uncertainty
range.

Sensitivity analyses of the SCK CEN 41Ar experiment
revealed that the proposed method exhibits stable source-
location estimation performance with different parameters
and remains effective with only a single observation site,
as long as the selected site is appropriately located. More-
over, the proposed method shows robust source-location es-
timation in the presence of meteorological errors, with mean
source-location error levels below 10 %, on the condition that
the site layout is appropriate.

These results demonstrate that spatiotemporally separated
source reconstruction is feasible and achieves satisfactory
accuracy in multi-scale release scenarios, thereby providing
a promising framework for reconstructing atmospheric ra-
dionuclide releases. However, the proposed method does not
consider the influence of temporal variations in the release
rate on the plume shape. Our future efforts will be directed
towards integrating spatial features to further enhance the
method.

Code and data availability. The code and data for the
proposed method can be downloaded from Zenodo
(https://doi.org/10.5281/zenodo.11119861; Xu, 2024). More recent
versions of the code and data will be published on GitHub.com
(https://github.com/rocket1ab/Source-reconstruction-gmd, last
access: 6 May 2024). The implementation is provided in Python,
and the instruction file is also available in the provided link.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-4961-2024-supplement.
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