Articles | Volume 17, issue 11
https://doi.org/10.5194/gmd-17-4689-2024
https://doi.org/10.5194/gmd-17-4689-2024
Methods for assessment of models
 | 
13 Jun 2024
Methods for assessment of models |  | 13 Jun 2024

Multivariate adjustment of drizzle bias using machine learning in European climate projections

Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld

Related authors

Evaluating the Performance of Objective Functions and Regional Climate Models for Hydrologic Climate Change Impact Studies: A Case Study in the Eastern Mediterranean
Ioannis Sofokleous, George Zittis, Gerald Dörflinger, and Adriana Bruggeman
EGUsphere, https://doi.org/10.5194/egusphere-2025-2478,https://doi.org/10.5194/egusphere-2025-2478, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short-lived organic nitrates in a suburban temperate forest: an indication of efficient assimilation of reactive nitrogen by the biosphere?
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 25, 5893–5909, https://doi.org/10.5194/acp-25-5893-2025,https://doi.org/10.5194/acp-25-5893-2025, 2025
Short summary
A new efficiency metric for the spatial evaluation and inter-comparison of climate and geoscientific model output
Andreas Karpasitis, Panos Hadjinicolaou, and George Zittis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1471,https://doi.org/10.5194/egusphere-2025-1471, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Global atmospheric hydrogen chemistry and long-term source-sink budget simulation with the EMAC v2.55 model
Nic Surawski, Benedikt Steil, Christoph Brühl, Sergey Gromov, Klaus Klingmüller, Anna Martin, Andrea Pozzer, and Jos Lelieveld
EGUsphere, https://doi.org/10.5194/egusphere-2025-1559,https://doi.org/10.5194/egusphere-2025-1559, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Shifts in global atmospheric oxidant chemistry from land cover change
Ryan Vella, Sergey Gromov, Clara M. Nussbaumer, Laura Stecher, Matthias Kohl, Samuel Ruhl, Holger Tost, Jos Lelieveld, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1800,https://doi.org/10.5194/egusphere-2025-1800, 2025
Short summary

Related subject area

Climate and Earth system modeling
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025,https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary

Cited articles

Anagnostopoulou, C. and Tolika, K.: Extreme precipitation in Europe: statistical threshold selection based on climatological criteria, Theor. Appl. Climatol., 107, 479–489, 2012. a
Argüeso, D., Evans, J. P., and Fita, L.: Precipitation bias correction of very high resolution regional climate models, Hydrol. Earth Syst. Sci., 17, 4379–4388, https://doi.org/10.5194/hess-17-4379-2013, 2013. a, b
Baigorria, G. A., Jones, J. W., Shin, D.-W., Mishra, A., and O’Brien, J. J.: Assessing uncertainties in crop model simulations using daily bias-corrected regional circulation model outputs, Clim. Res., 34, 211–222, 2007. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001a. a
Breiman, L.: Random forests, Mach Learn., 45, 5–32, 2001b. a
Download
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Share