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Abstract. Precipitation holds significant importance as a cli-
mate parameter in various applications, including studies on
the impacts of climate change. However, its simulation or
projection accuracy is low, primarily due to its high stochas-
ticity. Specifically, climate models often overestimate the
frequency of light rainy days while simultaneously under-
estimating the total amounts of extreme observed precipi-
tation. This phenomenon, known as “drizzle bias”, specifi-
cally refers to the model’s tendency to overestimate the oc-
currence of light precipitation events. Consequently, even
though the overall precipitation totals are generally well rep-
resented, there is often a significant bias in the number of
rainy days. The present study aims to minimize the drizzle
bias in model output by developing and applying two statis-
tical approaches. In the first approach, the number of rainy
days is adjusted based on the assumption that the relation-
ship between observed and simulated rainy days remains the
same in time (thresholding). In the second, a machine learn-
ing method (random forest or RF) is used for the develop-
ment of a statistical model that describes the relationship be-
tween several climate (modelled) variables and the observed
number of wet days. The results demonstrate that employing
a multivariate approach yields results that are comparable to
the conventional thresholding approach when correcting sub-
periods with similar climate characteristics. However, the im-
portance of utilizing RF becomes evident when addressing
periods exhibiting extreme events, marked by a significantly
distinct frequency of rainy days. These disparities are partic-
ularly pronounced when considering higher temporal resolu-

tions. Both methods are illustrated on data from three EURO-
CORDEX climate models. The two approaches are trained
during a calibration period, and they are applied for the se-
lected evaluation period.

1 Introduction

Climate models are the fundamental tool for simulating his-
torical conditions and projecting the future. However, due
to the chaotic nature and the fine spatio-temporal scales of
atmospheric processes, the ability to fully understand and
model parts of the climate system is limited, resulting in
incomplete representations of physical processes in climate
models (Maraun and Widmann, 2018). As a result, both
global climate model (GCM) and regional climate model
(RCM) outputs tend to have systematic errors, commonly re-
ferred to as biases (Jacob et al., 2007). In general, biases tend
to be more prominent for parameters characterized by high
stochasticity – such as precipitation (Flato et al., 2014). The
process of minimizing these discrepancies is known as “bias
adjustment” or “bias correction” (BC). This post-modelling
procedure is of paramount importance, particularly for im-
pact studies, as it significantly enhances the accuracy of re-
sults, including future climate projections (Christensen et al.,
2008).

Precipitation is a key variable that has been extensively
utilized in climate assessments and impact studies. However,
due to their high volatility, climate models exhibit signifi-
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cant biases, both in terms of the total amount and its spatio-
temporal distribution (Goodison et al., 1998). One prominent
discrepancy that arises in the context of precipitation is in the
simulated versus observed number of rainy days. The ma-
jority of climate models tend to overestimate the occurrence
of rainy days with low precipitation, while simultaneously
underestimating the intensity of more extreme events (Maity
et al., 2019). This behaviour is widely recognized as the driz-
zle bias, where climate models tend to over-predict the occur-
rence of light precipitation events like drizzle (Argüeso et al.,
2013; Gutowski et al., 2003). Consequently, while the over-
all precipitation totals are reasonably well represented, this is
compensated by an excessive number of drizzle events. How-
ever, this notable disparity in the number of wet days affects
several other precipitation statistics, such as the standard de-
viation (Baigorria et al., 2007). Moreover, this phenomenon
hinders accurate representation of temporal variability in cli-
mate models (Maraun et al., 2017).

Drizzle bias is of significant importance because it directly
impacts decisions made in impact studies, such as those re-
lated to water resource management and agriculture. For in-
stance, the presence of the drizzle bias hampers the accurate
representation of precipitation attributes and the forecast-
ing of hydrological extremes within climate models (Tren-
berth et al., 2003). Another noteworthy impact lies in the as-
sessment of wet and dry spells, where long dry spells may
wrongly manifest as shorter ones (Maraun et al., 2017). Agri-
culture is another domain significantly affected by drizzle
bias, notably impacting the outcomes of crop models. Specif-
ically, these models face challenges in accurately represent-
ing the water balance due to an excess of wet days, result-
ing in soil saturation before the onset of extreme events (Do-
sio and Paruolo, 2011). This bias can introduce complexities
in predicting and managing water resources within agricul-
tural systems. Furthermore, the precision of simulations and
forecasts of day-to-day precipitation is important for the re-
liability of forest fire predictions. Given the prominence of
forest fires as a high-risk and multi-impact hazard, the dis-
cernible correlation between precipitation occurrence and the
incidence of forest fires has been well documented (Argüeso
et al., 2013). Hence, precise rainfall representation is of crit-
ical significance in calculating fire indices, particularly those
involving precipitation as an input, e.g. the Fire Weather In-
dex (FWI) (Stocks et al., 1989).

The majority of bias correction (BC) methods alter
the least-wet days to dry ones, redistributing precipitation
amounts over the remaining wet days. In this way, the drizzle
phenomenon is addressed simultaneously with the correction
of the rainfall amount. A recent study by Pan et al. (2021)
attempts to address the frequency of rainy days as part of
their bias correction methodology by applying an adversar-
ial learning method. This data-driven approach improves the
representation of precipitation frequency and intensity. Gen-
erally, more sophisticated methods, such as machine learn-
ing approaches, have shown significant potential to enhance

the accuracy of precipitation values. This assertion is sup-
ported by another recent study (Hess et al., 2022), where
the authors utilized an approach based on neural networks
to improve the local distribution and spatial structure of pre-
cipitation simulations while maintaining low computational
costs. In this context, the correction of both the number of
dry days and the intensity of precipitation was achieved si-
multaneously. Additionally, Fulton et al. (2023) employed
an approach based on neural networks, specifically an unsu-
pervised image-to-image translation (UNIT) neural network,
to bias-correct climate parameters. They combined this with
other simpler bias-correction methods, such as quantile map-
ping, to increase the accuracy of the results. In their study,
the drizzle phenomenon is corrected simultaneously with the
correction of precipitation values, while temperature is also
included to allow for dynamic improvement. As such, a com-
prehensive treatment of both the frequency of dry days and
the intensity of precipitation is achieved.

The concept of splitting the BC of precipitation into two
steps – the first addressing the correction of dry-day fre-
quency and the second the wet-day intensity – is a promis-
ing approach (Smitha et al., 2018). Such a two-step approach
to bias correction of precipitation is also discussed by Pierce
et al. (2015), with an effort to preserve the daily precipita-
tion variability using a ratio or percentage change factor. This
shows potential for enhancing the accuracy of precipitation
modelling, but it also has limitations in locations that are dry
and have insufficient precipitation days.

To the best of our knowledge, there is a dearth of stud-
ies thoroughly investigating this topic; hence, it is a distinct
shortcoming that must be addressed before adjusting actual
precipitation amounts. Furthermore, it is widely acknowl-
edged that a more in-depth analysis of this subject is nec-
essary, along with a better understanding of how multivariate
methods impact the structure of time series (Van de Velde
et al., 2020).

A study on this two-step approach was conducted
by Van de Velde et al. (2020), who divided the precipitation
BC process into two stages: correcting precipitation occur-
rence (the number of rainy days) and correcting precipita-
tion intensity (the amount of precipitation). Three univariate
methods for correcting rainy days were tested, and the results
were then combined using both univariate and multivariate
approaches to adjust rainfall amounts. The study concluded
that the simplest method, thresholding, yields better results
when compared to other methods, even though they may
have a higher level of complexity. Thresholding has also been
used in several other studies where it was important to cor-
rect the frequency of wet days. For instance, Ines and Hansen
(2006) used thresholding for correcting the mean monthly
frequency of rainy data to make them more suitable as in-
puts to crop models. Schmidli et al. (2006) tried to improve
the accuracy of simulated precipitation values by removing,
separately, the bias in wet-day frequency and intensity, using
the general idea of the thresholding method. However, other
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studies emphasize the advantage of more complex univariate
approaches (Vrac et al., 2016).

Overall, it is widely acknowledged that the correction pro-
cess becomes unstable when there is a significant dispar-
ity between the observed and simulated frequencies of rainy
days, particularly for methods assuming temporal stationar-
ity in the correction (Switanek et al., 2017). Some recent
methods have emerged, building on the concept of quan-
tile mapping, such as the scaled distribution mapping (SDM)
method (Switanek et al., 2017).

Recently, extensive research has been conducted to ad-
dress the BC of precipitation, particularly at higher tempo-
ral resolutions (Lazoglou et al., 2020). However, not many
researchers are focusing on the challenging matter of driz-
zle BC. This issue plays a pivotal role in the broader context
of correcting biases in daily precipitation amounts. In this
study, we address the drizzle bias issue using both univariate
and multivariate approaches. We aim to determine the opti-
mal statistical approach for enhancing the accuracy of sim-
ulated and projected rainy-day counts in the broader Euro-
Mediterranean region.

2 Data and methodology

2.1 Data

This study utilizes daily observations collected over 25 years,
from 1981 to 2005. The data were sourced from the Global
Surface Summary of the Day (GSOD), provided by the Na-
tional Climatic Data Center (NCDC) (GSOD, 2022). GSOD
offers comprehensive coverage of daily meteorological mea-
surements from ground stations. These data underwent rigor-
ous quality control procedures to eliminate random errors. To
ensure the robustness of the analysis, we only considered sta-
tions with less than 5 % of missing values. Figure 1 depicts
the location of the 600 stations included in the analysis.

Additionally, for a more focused analysis, the studied area
has been split into specific sub-regions which have simi-
lar characteristics. Based on the PRUDENCE (Prediction
of Regional Scenarios and Uncertainties for Defining Eu-
ropean Climate Change Risks and Effects) project, which
was a research initiative that aimed to assess the regional
climate change impacts over Europe, we divided Europe
into sub-domains for more detailed analysis (Fig. 1) (Chris-
tensen and Christensen, 2007). Namely, the 10 PRUDENCE
regions are the Iberian Peninsula (IP), France (FR), mid-
Europe (ME), the Alps (AL), the Mediterranean (MD), East-
ern Europe (EA), Northwestern Africa (NA), the Middle East
(MI), Scandinavia (SC), and the British Isles (BI). Stations
that are not included in any of these sub-domains are ex-
cluded from this part of the analysis.

In conjunction with ground station data, this study in-
corporates daily fields from three EURO-CORDEX climate
models (Jacob et al., 2020), serving as the target input data

Figure 1. Location of the 600 available stations for the period 1981–
2005 and definition of sub-domains: (1) Iberian Peninsula (IP),
(2) France (FR), (3) mid-Europe (ME), (4) Alps (AL), (5) Mediter-
ranean (MD), (6) Eastern Europe (EA), (7) Northwestern Africa
(NA), (8) Middle East (MI), (9) Scandinavia (SC), and (10) British
Isles (BI).

for correction (Table 1). The three climate models consid-
ered were chosen to evaluate BC methods across various re-
gional climate models (RCMs), with initial conditions dis-
tinct from different global climate models (GCMs). We se-
lected models exhibiting different behaviour in key climate
parameters such as precipitation, temperature, and the fre-
quency of projected wet days (including the drizzle phe-
nomenon), which is the primary focus of this study. Given
that many climate models tend to overestimate the number
of dry days, our emphasis was on addressing this. The box-
plots in Fig. 2 illustrate for each RCM the total annual pre-
cipitation, the number of rainy days, and the mean annual
temperature for the grid cells closest to the 600 GSOD sta-
tions over the 1981–2005 period. In line with common prac-
tice for distinguishing between rainy and non-rainy days us-
ing a threshold of 0.1 mm, we have adopted this criterion
for the present research (Anagnostopoulou and Tolika, 2012;
Liu et al., 2013; Lehner et al., 2020). Another commonly
used threshold is 1 mm (e.g. Velasquez et al., 2020); how-
ever, given that the present study includes areas such as the
Mediterranean, where the phenomenon of drought is crucial,
we consider the 0.1 mm threshold to be more appropriate.
On average, the first RCM is the driest and the coldest one,
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whereas its rainy-day average number closely aligns with the
other two models. The second RCM is the wettest, while the
third one simulates the highest temperatures. Notably, the
disparity in rainy days between the second and third models
is marginal, except for differences observed in extreme con-
ditions. The RCM output considered in our analysis includes
daily precipitation, mean temperature, and relative and spe-
cific humidity. The continental grid nearest to each station
was selected for applying the BC.

2.2 Methodology

The objective of this study is to assess the efficacy of uni-
variate and multivariate BC methods in addressing the driz-
zle bias in climate models. The investigation utilizes daily
time series of precipitation collected from 600 stations across
the broader Euro-Mediterranean region as well as time series
of various climate parameters from three EURO-CORDEX
climate models. Specifically, the study evaluates the perfor-
mance of two distinct methods – thresholding and random
forest – in enhancing the precision of modelled rainy-day
occurrences. The two methods are assessed and compared
using both standard and extreme deviation cases. To accom-
plish this, a systematic approach has been adopted, involving
a series of steps implemented for each of the 600 stations.
The whole procedure is applied separately to each grid point,
meaning that each station is treated as a unique case and the
behaviour of the rest does not affect the others. Due to this,
information for the coordinates of the stations is not needed
in the analysis. The steps that have been followed are de-
scribed below and are depicted in Fig. 3.

1. The initial stage of the methodology includes segregat-
ing observed and simulated time series data into two
distinct periods: calibration and evaluation. This sepa-
ration facilitates the identification of both standard and
extreme deviation cases.

– In the standard case, the evaluation period di-
rectly follows the calibration period. In our 25-year
dataset, the initial 20 years (1981–2000) consti-
tute the calibration period. The subsequent 5 years
(2001–2005) serves as the target period for BC and
is used for method evaluation.

– The term extreme deviation case refers to target
years for which the discrepancy between the ob-
served and simulated number of rainy days is ex-
treme. Specifically, for each station and each year
between 1981 and 2005, the difference between the
simulated and observed rainy-day frequency is cal-
culated. Subsequently, the 95th percentile of these
differences is computed. Years exhibiting differ-
ences surpassing this threshold are identified as ex-
treme deviation cases. These selected years consti-
tute the target data for BC evaluation, while the re-
maining years serve as the calibration period. The

target dataset for this analysis typically comprises
2–3 years.

2. After the definition of the calibration and evaluation pe-
riods, monthly statistics of all climate parameters are
computed. For the observations, the total count of rainy
days is computed. For the simulated data, we estimate
the sum of rainy days, total precipitation, and mean tem-
perature, as well as mean specific and relative humidity.

3. After establishing the final monthly database, the se-
lected BC methods (thresholding and random forest) are
applied to model the relationship between the observed
count of wet days and the simulated data. The threshold-
ing method uses only the observed and simulated counts
of rainy days, while the random forest method incor-
porates additional climate model output variables. Both
BC methods are trained using data from the calibration
period, assuming that the BC mechanism remains the
same over time. Subsequently, each trained method is
applied to data from the evaluation period to correct the
number of rainy days. The choice of the thresholding
approach was guided by the aim to employ a univari-
ate, simple, and well-established BC method that yields
satisfactory outcomes. This method was selected as the
baseline for comparative analysis alongside a more so-
phisticated multivariate method, which offers the flexi-
bility to incorporate several additional parameters eas-
ily. The two methods are described in what follows.

Thresholding. This is a widely used method for cor-
recting the frequency of wet days – the occurrence-
bias-adjusting method (Van de Velde et al., 2020). It
is an effective and easy-to-use method, but it is mostly
applied in cases where the model simulates more wet
days than the observations (Vrac et al., 2016). In its ba-
sic form, thresholding involves converting all simulated
values below a designated threshold to zero. The more
refined implementation aims to equate the count of days
falling below this threshold in the simulated data with
the corresponding count in the observed data. This study
adopts the thresholding approach detailed by Van de
Velde et al. (2020). Initially, dry-day frequencies in both
observed and simulated datasets are computed. Subse-
quently, the difference between these frequencies de-
fined the associated count of days in the simulated data
that required adjustment. The simulated wet days are
ordered based on ascending precipitation amounts, and
the appropriate number of days with the lowest precipi-
tation is set to zero in order to make the two frequencies
match. Importantly, these adjustments are performed on
a monthly basis to preserve a realistic temporal struc-
ture.

Random forest. This is a tree-based method, known for
its flexibility and robustness, that has been proven to
be a powerful ensemble learning algorithm for predic-
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Table 1. List of assessed EURO-CORDEX regional climate models (RCMs).

Model Driving global model Regional climate model

RCM1 CNRM-CERFACS-CNRM-CM5 KNMI-RACMO22E
RCM2 MPI-M-MPI-ESM-LR SMHI-RCA4
RCM3 NCC-NorESM1-M GERICS-REMO2015

Figure 2. Comparison between the three EURO-CORDEX models based on their annual precipitation total, number of rainy days, and mean
annual temperature, averaged for the period 1981–2005.

tive modelling and machine learning tasks. The algo-
rithm constructs an array of decision trees during train-
ing and combines their predictions to improve accu-
racy and generalization. In the random forest frame-
work, each decision tree is constructed using a random
subset of the features (here it is climate model output),
which effectively reduces over-fitting and enhances the
model’s ability to capture complex relationships in the
data (Breiman, 2001a). Finally, the output prediction is
obtained by aggregating the predictions of all trees. In
the random forest regressor, as used in this study, the
output prediction is obtained by averaging the decision
trees. This ensemble approach not only provides a pow-
erful prediction tool but also offers resilience to outliers
and noisy data (Hastie et al., 2009).

For the training and evaluation procedures, the random
forest regressor implementation included in the randomFor-
est (version 4.7-1.1) package in the R programming lan-
guage was utilized (Breiman, 2001b). The specific pack-
age was used for both feature selection and model train-
ing. Initially, feature importance was assessed using the ran-
dom.forest.importance function, which calculates the impor-
tance of each predictor variable. The feature set used to train
the models comprised the following model-generated vari-
ables: total number of rainy days in each month, monthly pre-
cipitation sum, monthly mean near-surface relative humidity,
monthly mean near-surface specific humidity, monthly mean
near-surface air temperature, and month of the year. These
variables were utilized to build the random forest model in

the calibration period, while the target variable for the ran-
dom forest model was the total number of rainy days in the
evaluation period. These steps have been followed both for
the standard cases and for the extreme deviation cases. We
employed a total number of 2500 trees in the forest and set
the importance parameter to TRUE to compute variable im-
portance scores for feature selection. Additionally, other pa-
rameters such as node size were left at their default values
to maintain model stability. Lastly, it is important to mention
that the whole procedure was followed separately for each
station. Hence, each station is treated as a unique case, and
a different random forest model is calculated using all the
available variables for the whole calibration period.

3 Results

3.1 RCM drizzle bias in Europe and the
Mediterranean

To assess the extent of drizzle bias, we initiate by contrasting
the observed frequency of rainy days with the simulated oc-
currences generated by three widely used RCMs. The analy-
sis is performed for both the default evaluation period (2001–
2005) (standard case) and the extreme deviation cases. Fig-
ure 4 illustrates the annual frequency of rainy days based
on station observations (left panels) and the corresponding
model biases for the standard 5-year and extreme deviation
evaluation periods (right panels). The results relate to one of
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Figure 3. Flowchart of methodology steps.

the three climate models; however, similar behaviour is evi-
dent in the other models (Figs. S1 and S2 in the Supplement).

Figure 4 (top panels) indicates a consistent latitudinal
change in not only the number of rainy days but also the
degree of bias, varying from the northern to the southern
regions. Stations in northern Europe experience over 260
rainy days annually, which is in sharp contrast with the
Mediterranean region, where the number is generally below
80 d yr−1. Notably, the southernmost stations record the low-
est number at around 20 wet days yr−1.

In terms of the bias, Fig. 4 indicates that across the en-
tire area, the model consistently overestimates rainy days,
as indicated by universally positive differences. In most sta-
tions, the percentage overestimation is around 80 %. How-
ever, there are many exceptions, notably in the Mediterranean
area, where the overestimation surpasses 100 % due to lower
rainy day counts. Moreover, the scale of overestimation re-
veals the existence of stations where the model simulates
over 200 % more relative to observed wet days. These sta-
tions are detected in northwest Africa, in the Alpine region,
and near the Black Sea. Similar patterns were found in the
analysis of the other two models (Figs. S1 and S2). No-
tably, the second model yields higher overestimation, partic-
ularly in southern areas, where percentiles frequently exceed
150 %.

The bottom row of Fig. 4 (second-row maps) presents the
extreme deviation cases, with different outcomes than the
standard case (top row). Northwest Europe records higher

rainy day numbers, with high frequencies in the eastern part
also showing substantial counts (> 120 d). Conversely, the
Balkan Peninsula reports fewer wet days, while the Mediter-
ranean consistently has the lowest counts. Notably, during
these extreme deviation years, stations in Africa did not ex-
ceed 25 rainy days annually. These maps (Fig. 4) originate
from years displaying extreme behaviour, posing consider-
able challenges for climate models. This complexity is ev-
ident in the bottom-right map of Fig. 4, where percentiles
indicate an overestimation of recorded wet days by the initial
model surpassing 100 % across all stations. In areas with the
highest rainy day frequency, overestimation hovers around
150 %. Notably, a significant number of stations exhibit de-
viations exceeding 200 %, covering vast regions like the
Mediterranean, Poland, and the Balkans. This pattern aligns
with findings from the other two climate models.

3.2 Method comparison: station improvement
percentiles

The relative performance of the two methods is summarized
in Table 2 in terms of the percentage of stations (600 in total)
where either approach wins or there is indeed equal perfor-
mance. The quantity used to measure performance is the dif-
ference between the bias-corrected number of rainy days and
the observed number of rainy days. The results are shown
for both monthly and annual timescales for each of the three
climate models and for both the standard and extreme devi-
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Figure 4. Mean annual frequency of rainy days for the standard and extreme deviation cases (a, c) and the bias of rainy days (in percentages)
based on the first model (b, d). Locations with biases greater than 200 % are highlighted in grey.

ation cases. The relative performance results are also shown
for a subset of stations, where the difference in performance
between the two methods is significant. Here, “significance”
is defined as instances where the variance in the number of
corrected rainy days between methods exceeds 5 % of the
annual rainy days for each station. For instance, consider a
scenario where the initial count of rainy days at a station is
100 d. Hence, the 5 % of the rainy days of this station is equal
to 5 d. Employing the rainfall factor (RF) method yielded a
corrected count of 105 d, whereas the thresholding method
resulted in 107 d. The difference between the corrected val-
ues derived from these two distinct methods amounts to 2 d.
This difference of 2 d falls below the 5 d threshold we estab-
lished for this station. Consequently, this discrepancy fails
to meet the established threshold for significance, indicating
that the variance between the two correction methodologies

is not statistically meaningful within the confines of this sta-
tion’s characteristics.

This detailed investigation allows for a focused analysis
of the accuracy and effectiveness of the two methods. In the
subsequent in-depth analysis (column difference of > 5 %),
this comparison includes stations where the corrected rainy
days from the two methods are not precisely equal but re-
main very close – with less than 5 % bias from the obser-
vations. This nuanced comparison in the focused analysis
specifically focuses on differences exceeding the aforemen-
tioned 5 % threshold in corrected rainy-day counts.

At an annual scale and for the standard cases (evalua-
tion period 2001–2005), the percentage of stations exhibiting
equal performance between the two methods remains consis-
tently below 2 % for all models. However, for the case with
a difference of < 5 % (termed here as case 1 as opposed to
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Table 2. Percentage of stations for which either method performs best or has equal performance at both yearly and monthly temporal scales,
for both standard and extreme cases. The percentages are computed not only for all stations (case 0) but also for the subset of stations where
the difference in performance is greater than 5 % (case 1). Equal means that the results from thresholding and RF are equal; thresholding
means that the bias-corrected results from thresholding are closer to the station compared to the RF, while the RF implies the reverse situation.
For case 1 (difference of > 5 %), equal means the difference is ≤ 5 %.

Yearly Monthly

Standard cases Extreme deviation cases Standard cases Extreme deviation cases

Model Performance Case 0 Case 1 Case 0 Case 1 Case 0 Case 1 Case 0 Case 1

RCM1
Equal 0 76 0 33 5 38 1 20
Thresholding 37 14 11 5 25 24 27 30
RF 63 10 88 62 70 37 72 50

RCM2
Equal 1 70 2 18 8 35 1 19
Thresholding 32 18 10 7 24 23 24 27
RF 67 10 90 74 70 42 74 54

RCM3
Equal 2 72 0 23 8 34 2 20
Thresholding 43 9 8 5 23 23 25 28
RF 56 19 92 72 70 42 73 52

case 0), these percentages significantly rise in all models, sur-
passing 70 %. For case 0, the RF method consistently yields
greater accuracy. For models RCM1 and RCM2, the annual
count of rainy days is closer to observations compared to the
adjustments derived from the thresholding method in 65 %
of the 600 stations. However, for case 1, the thresholding
method achieves a slight advantage for RCM1 and RCM2,
with percentages 4 %–8 % greater than those of the RF, as
sometimes the complexity of the variables adds some noise.
Nonetheless, for RCM3, a different trend emerges as RF pre-
vails in both case 0 and case 1.

The clear superiority of the RF method, which incorpo-
rates various climate parameters, becomes more pronounced
in the extreme deviation cases. On a yearly basis, the per-
centage of stations showing equal performance of the two
methods is effectively zero for all three models for case 0,
while for case 1, this increased to about 20 %–30 %. It is
clear, however, that the RF method is overwhelmingly better
for the extreme deviation cases, for both case 0 and case 1,
for all three models. In that particular case, the RF method is
superior for about 90 % of the stations across all three mod-
els. The corresponding percentages for case 1 exceed 62 %.

In the monthly analysis, the results reflect the superior-
ity of the RF method in correcting the number of rainy days
compared to the thresholding method. This is the case for
both the standard and extreme deviation cases and is consis-
tent for all models. Specifically, under the standard case, the
percentage of stations with the two methods having an equal
performance ranges from 5 % to 8 % in case 0. This number
increases to around 35 % when considering case 1. Looking
at the standard case and case 0 highlights that in 70 % of
the stations, the RF corrections prove to be more accurate.

Moreover, for case 1, the RF method maintains substantially
higher percentages compared to thresholding.

The monthly analysis for the extreme deviation cases indi-
cates that stations exhibiting equal results between the meth-
ods constitute less than 2 % of the total for case 0, while for
case 1, the number rises to about 20 %. Then, for both case
0 and case 1, the RF method significantly outperforms the
thresholding method, with percentages of > 70 % for case 0
and > 50 % for case 1.

3.3 Direct spatial comparison of the two BC methods

Figure 5 provides a visual comparison between the two BC
methods. The absolute difference between the observations
and the bias-corrected data (for each method) is computed
for the annual count of rainy days. The difference between
these differences then defines the relative accuracy of the
two methods. Positive values (shown in red) indicate a bet-
ter performance of the thresholding method, while negative
values (blue) denote the opposite. The analysis is shown for
RCM1, with corresponding figures for the other two models
presented in the Supplement (Figs. S3 and S4).

The left panel of Fig. 5 illustrates that, for the standard
cases, both methods exhibit comparable performances across
most stations. The differences between the two approaches
range from −4 to 4 d in most of the stations (in white). A
prevalence of the thresholding method is mainly obtained for
eastern Europe and a few locations in the Mediterranean re-
gion. However, for stations with large differences between
the methods, the RF method demonstrates better perfor-
mance. This is particularly evident in the Balkan Penin-
sula, where the differences are, on average, approximately 16
rainy days yr−1. Additionally, the RF method is superior in
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other regions across central Europe. The right panel of Fig. 5
(extreme deviation cases) demonstrates a pronounced dom-
inance of the RF method. Negative values are universally
observed across the studied area. In central Europe, dispar-
ities range from 2 to 12 d, with higher ranges evident in other
regions. Notably, in the Mediterranean region and its east-
ern sectors, differences exceed 25 d in certain stations. These
variations are also recorded in parts of central and northeast-
ern Europe.

Overall, the results from all three models indicate that both
methods offer similar accuracy in correcting simulated rainy
days across the majority of stations during normal periods.
However, the RF method exhibits better skills in some re-
gions relative to the thresholding method. In all three mod-
els, this disparity is amplified for the extreme deviation cases,
highlighting the superiority of the RF method across the stud-
ied area.

3.4 Focused analysis on European sub-domains

To better understand the relative performance of the two
methods across different climatic conditions, we utilize
quantile–quantile (Q–Q) plots across the 10 sub-areas de-
fined earlier. These plots facilitate a graphical comparison
between two probability distributions by plotting their quan-
tiles against each other. Figures 6 and 7 show Q–Q plots
of the annual number of rainy days in the standard and ex-
treme deviation cases respectively. The results from the other
two models exhibit similar behaviour and are provided in
the Supplement (Figs. S5–S8). In each figure, there are two
groups of panels. In the first group (top two rows), the raw
model output and its corresponding bias-corrected values
from each method are compared to quantiles from the ob-
servations. In the second group (bottom two rows), the raw
model output is omitted to facilitate a more clear analysis of
the two BC methods.

The first group of Q–Q plots in Fig. 6 demonstrates that
in standard cases, both thresholding and RF methods con-
tribute to enhancing the accuracy of simulated rainy-day
numbers across all sub-domains. Notably, the model consis-
tently tends to overestimate observed numbers, as indicated
by the green line being above the diagonal line across all
areas unlike the bias-corrected quantiles. A more focused
comparison between the two methods shown in the second
group of Q–Q plots reveals the advantage of the RF over the
thresholding method in multiple areas. Specifically, in SC,
BI, FR, ME, and MI areas, the thresholding line diverges
from the diagonal, particularly in the upper or lower tails.
This suggests that for the standard cases, the inclusion of
other climate parameters can significantly aid in correcting
the tails of the count distribution. In these areas, the RF line
better aligns with the diagonal line representing the default
observed dataset with high accuracy. In the remaining areas,
both methods yield very good and nearly identical results.

The significance of this general outcome becomes more
pronounced in the extreme deviation cases shown in Fig. 7.
The model predicts significantly more annual rainy days
across all sub-areas, with some areas showing simulated val-
ues 3 times higher than the recorded ones. Consequently,
both methods effectively correct these discrepancies. How-
ever, upon closer inspection of the two BC methods, a dis-
tinct advantage emerges for RF. Across 7 of the 10 sub-areas,
the RF lines more closely align with the diagonal, while the
divergence of the thresholding line, particularly in the tails,
is notably significant. In the remaining three areas (AL, EA,
and MI), the adjustments made by both methods are remark-
ably similar.

3.5 Degree of improvement for the European
sub-domains

Besides the visual analysis conducted for the 10 sub-
domains, Table 3 offers a percentage-based examination of
improvement facilitated by the two BC methods. This ta-
ble shows percentages corresponding to Table 2 for both the
standard and extreme deviation cases and all three models.
The numbers relate to the annual count of rainy days.

Table 3 indicates the superiority of the RF for RCM1
across almost all sub-areas. Notably, in SC, IP, EA, MI, and
AL, the percentages relating to the RF method are nearly
double relative to thresholding. Conversely, in the BI, FR,
and MD areas, the results are more evenly distributed, with
each method covering nearly half of the stations. Outcomes
from extreme deviation cases reveal a markedly different pic-
ture. In all areas, station percentages relating to the RF ex-
ceed 70 %, with 5 out of 10 areas reaching a percentage ex-
ceeding 90 %.

For RCM2, the results are similar in the extreme deviation
cases, where the RF is superior in over 80 % of the stations
within each area. For the standard deviation cases, the RF is
superior for most areas although differences are small when
thresholding has the advantage.

For RCM3, the RF is again overwhelmingly superior
of for the extreme deviation cases. The results are a bit
more volatile for the standard cases, where the thresholding
method exhibits higher accuracy in the FR and NA sub-areas,
comparable accuracy in the MD and ME sub-areas, while
across the remaining six sub-areas, the RF method dominates
with numbers of over 60 %.

4 Discussion and conclusions

This study focused on the important issue of the drizzle
bias effect in regional climate models, described by an over-
prediction of the number of rainy days while underestimating
associated precipitation amounts. The primary objective was
to ascertain an optimal statistical approach aimed at enhanc-
ing the accuracy of projected rainy days in the broader Euro-
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Figure 5. Comparison between absolute deviations: absolute value of the RF method minus observed values vs. the absolute value of the
thresholding method with the observed values for annual corrected rainy days subtracted.

Table 3. Percentages of improvement of the three models for the 10 sub-areas on a yearly scale, considering standard and extreme deviation
cases.

RCM1 RCM2 RCM3

Standard cases Extreme deviation cases Standard cases Extreme deviation cases Standard cases Extreme deviation cases

Thresholding RF Thresholding RF Thresholding RF Thresholding RF Thresholding RF Thresholding RF

SC 31 69 4 96 54 44 10 90 27 73 8 92
BI 44 56 29 71 24 76 15 85 41 59 7 93
FR 55 45 21 79 29 71 5 95 68 32 13 87
ME 38 62 8 92 16 84 10 90 46 52 7 93
AL 27 73 18 82 45 55 5 95 24 75 11 89
IP 32 68 2 98 57 43 4 96 40 60 11 89
MD 44 56 6 94 29 71 6 94 40 60 3 97
EA 29 71 18 82 21 78 21 79 52 47 10 90
MI 31 69 0 100 31 64 4 93 38 62 9 91
NA 73 27 9 91 24 76 0 100 88 12 0 100

Mediterranean region. To this end, two distinct methodolo-
gies were applied and rigorously evaluated. The first method,
known as thresholding, is a type of change factor approach,
which assumes that the proportion of the difference between
observed and simulated rainy days remains the same. The
second method is random forest, a machine learning multi-
variate approach that encompasses various climate parame-
ters.

The analysis of data from three climate models highlights
a significant drizzle bias issue in the studied area, both on
monthly and yearly timescales, for standard and extreme
deviation cases. This finding is consistent with prior stud-
ies emphasizing the significance of the drizzle bias effect.
For instance, Maraun et al. (2017) highlight the challenge
in modelling temporal variability beyond the drizzle effect,
which substantially impacts various analyses, including the
duration of wet and dry spells. Additionally, the drizzle phe-

nomenon affects the model’s physical parameterizations by
depleting moisture essential to representing extreme rainfall
events (Jerez et al., 2013; Gianotti et al., 2012). This effect
becomes more pronounced during years of extreme deviation
behaviour, as confirmed by our results. There have been at-
tempts to overcome the drizzle based on a wet-day threshold
(1 mm) leading to overcorrections, also affecting the repre-
sentation of extremes (Maraun, 2013). The general outcome
of this study is the need for bias correction, showing the ad-
vantages which per the present research clarify the advan-
tages of a more complex multivariate method.

The superiority of the multivariate method, exemplified in
this research by random forest (RF), stems from its ability
to incorporate multiple climate parameters. A further anal-
ysis with respect to variable importance was conducted us-
ing the SHapley Additive exPlanations (SHAP) plot, which
is a model-agnostic tool derived from game theory that as-
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Figure 6. Q–Q plots comparing the number of rainy days (per year) for the default evaluation period (2001–2005): simulated values from
the first model (green) and their respective corrected values derived from both the thresholding method (blue) and the RF method (yellow)
are depicted. The first set of Q–Q plots displays outcomes for the 10 sub-areas, encompassing the model values. The second set illustrates
the identical outcomes, specifically focusing on BC methods.

signs each feature an importance value for a particular pre-
diction (Lundberg and Lee, 2017). The associated SHAP
file (Fig. S9) reveals that mean temperature holds partic-
ular importance in correcting the drizzle bias in that high
temperatures negatively impact the prediction of rainy days.
Furthermore, specific humidity emerges as the second-most-
significant climate parameter influencing the bias, with lower
humidity levels positively contributing to predictions. Thus,
the inclusion of at least these two parameters in the multi-
variate approach leads to more accurate results. Nonetheless,
a more focused investigation into the varying impacts of sev-
eral climate parameters on the drizzle phenomenon is recom-
mended.

Moreover, the intensity of the drizzle phenomenon varies
significantly across specific cases or regions. In areas with
monsoon seasons, the drizzle effect is notably intensified, at
times doubling or tripling compared to observations (Smitha

et al., 2018). Similar overestimation, particularly in extreme
deviation cases, has been found for various European re-
gions, corroborating our results. Specifically, our study iden-
tifies these areas predominantly within the Mediterranean
domain, where the driest stations are located. This finding
aligns with the notion that these regions experience signifi-
cant rainfall intermittence, thereby amplifying the drizzle ef-
fect, as previously noted by Ines and Hansen (2006). In addi-
tion, Olsson et al. (2016) mentioned that the intensity of dry
bias is the frequency of precipitation in the southern part of
Europe during summer. Our spatial analysis demonstrates the
methodological accuracy employed in this study, revealing
the broad enhancements seen across the entire region with
the application of RF methods, which are similarly reflected
in areas sharing analogous characteristics. Notably, in the
Middle East (MI) and the Iberian Peninsula (IP), RF meth-
ods significantly outperform thresholding for extreme cases
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Figure 7. Q–Q plots comparing the number of rainy days in extreme deviation cases: simulated values from the first model (green) and their
respective corrected values derived from both the thresholding method (blue) and the RF method (yellow) are depicted. The first set of Q–Q
plots displays outcomes for the 10 sub-areas, encompassing the model values. The second set illustrates the identical outcomes, specifically
focusing on BC methods.

across almost all stations. Furthermore, in standard cases,
better performance of RF is obtained for approximately 70 %
of sub-areas within these regions.

Upon clarifying the phenomenon’s significance in the
studied area, we applied two methods to minimize the drizzle
bias. The findings reveal that, for the standard cases and the
yearly temporal scale, while the RF method notably enhances
accuracy across most stations, differences between the two
approaches are generally insignificant. These discrepancies
amount to less than 5 % of the total rainy days per station.
Employing a multivariate approach yields outcomes compa-
rable to the default threshold method in correcting tempo-
ral coherence within analogous climate periods. However, at
a higher temporal resolution – at a monthly scale – the RF
method demonstrates superiority. Notably, the utility of ran-
dom forest (RF) becomes apparent when dealing with pe-
riods characterized by extreme deviation behaviour featur-

ing markedly different frequencies of rainy days. In these in-
stances, the RF method outperforms thresholding, especially
at higher temporal resolutions.

These results are encouraging for using the RF method,
as the thresholding method is one of the most efficient uni-
variate methods for occurrence-bias correction of precipita-
tion (Van de Velde et al., 2020). In particular, Van de Velde
et al. (2020) compared the thresholding method with two uni-
variate methods, stochastic singularity removal (SSR) (Vrac
et al., 2016) and triangular distribution adjustment (TDA)
(Pham et al., 2018), to test its ability to adjust the frequency
of rainy days for the area of Belgium. The results proved
that the randomness included in the SSR and TDA methods
performed generally worse than thresholding. However, this
differs from Vrac et al. (2016), who highlighted SSR’s supe-
riority over other methods although the overall performance
among the univariate methods was similar. To the best of the
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authors’ knowledge, there have been no similar endeavours
in using multivariate methods for occurrence bias correction.
However, the effectiveness of multivariate methods has been
proven in correcting precipitation intensity biases (e.g. Piani
and Haerter, 2012), and maybe their efficiency might stem
from their capability to consider inter-variable, spatial, and
temporal properties (Vrac and Friederichs, 2015).

In summary, this study significantly contributes to the field
by addressing the crucial correction of the number of wet
days – an essential preliminary step in correcting daily pre-
cipitation biases for future climate scenarios. In particular,
using the information for the number of drizzle days, the days
with the lowest rainfall amounts are counted as dry days. It
should be mentioned that as the present study is conducted on
a monthly basis, one cannot specify which particular days of
the month were dry – just their total number. Our findings in-
dicate that for standard years, both the widely used univariate
thresholding method and the multivariate machine learning
approach of random forest (RF) demonstrate comparable ac-
curacy in addressing drizzle bias on a yearly basis. However,
as temporal resolution increases, the predominance of the RF
method becomes more pronounced. Our results strongly sug-
gest that employing the RF method is highly advisable, par-
ticularly when dealing with target years for bias correction
that may exhibit extreme behaviour. The RF method proves
to be considerably more accurate than the univariate method,
chiefly due to its incorporation of several other climate pa-
rameters. Nevertheless, further comprehensive analyses and
studies are warranted to fully assess the broader implications
and potential applications of these findings.

Code and data availability. All the data, code, and supplemen-
tary material are available and can be accessed via Zenodo at
https://doi.org/10.5281/zenodo.11073021 (Lazoglou, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-4689-2024-supplement.

Author contributions. GL and TE conceived and designed the
project. AT and GL performed data curation and quality control.
GL, TE, and PG performed calculations and data analysis. GL and
TE led paper writing. GL, TE, CA, GZ, and JL interpreted the re-
sults and provided general scientific input, critical review, and over-
all support. All authors assisted in paper writing and preparation.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-

resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This research was supported by the PRE-
VENT project that has received funding from the EU Horizon Eu-
rope framework programme (grant no. 101081276). It was also sup-
ported by the EMME-CARE project that has received funding from
the European Union’s Horizon 2020 Research and Innovation pro-
gramme (grant no. 856612) as well as matching co-funding from
the Government of Cyprus.

Financial support. This research has been supported by the
European Union’s Horizon 2020 Research and Innovation pro-
gramme (grant no. 856612) and the EU Horizon Europe framework
programme (grant no. 101081276).

The article processing charges for this open-access
publication were covered by the Max Planck Society.

Review statement. This paper was edited by Peter Caldwell and re-
viewed by two anonymous referees.

References

Anagnostopoulou, C. and Tolika, K.: Extreme precipitation in Eu-
rope: statistical threshold selection based on climatological crite-
ria, Theor. Appl. Climatol., 107, 479–489, 2012.

Argüeso, D., Evans, J. P., and Fita, L.: Precipitation bias correction
of very high resolution regional climate models, Hydrol. Earth
Syst. Sci., 17, 4379–4388, https://doi.org/10.5194/hess-17-4379-
2013, 2013.

Baigorria, G. A., Jones, J. W., Shin, D.-W., Mishra, A., and O’Brien,
J. J.: Assessing uncertainties in crop model simulations using
daily bias-corrected regional circulation model outputs, Clim.
Res., 34, 211–222, 2007.

Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/a:1010933404324, 2001a.

Breiman, L.: Random forests, Mach Learn., 45, 5–32, 2001b.
Christensen, J. H. and Christensen, O. B.: A summary of the PRU-

DENCE model projections of changes in European climate by
the end of this century, Climatic Change, 81, 7–30, 2007.

Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-
Picher, P.: On the need for bias correction of regional climate
change projections of temperature and precipitation, Geophys.
Res. Lett., 35, L20709, https://doi.org/10.1029/2008GL035694,
2008.

Dosio, A. and Paruolo, P.: Bias correction of the ENSEMBLES
high-resolution climate change projections for use by impact
models: Evaluation on the present climate, J. Geophys. Res.-
Atmos., 116, D16106, https://doi.org/10.1029/2011JD015934,
2011.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.,
Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V.,
Forest, C., Gleckler, P., Guilyardi, E., Jakob C., Kattsov,

https://doi.org/10.5194/gmd-17-4689-2024 Geosci. Model Dev., 17, 4689–4703, 2024

https://doi.org/10.5281/zenodo.11073021
https://doi.org/10.5194/gmd-17-4689-2024-supplement
https://doi.org/10.5194/hess-17-4379-2013
https://doi.org/10.5194/hess-17-4379-2013
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1029/2008GL035694
https://doi.org/10.1029/2011JD015934


4702 G. Lazoglou et al.: Drizzle bias in Europe

V., Reason, C., and Rummukainen, M.: Evaluation of
climate models, in: Climate change 2013: the physical
science basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, 741–866,
https://doi.org/10.1017/CBO9781107415324.020, 2014.

Fulton, D. J., Clarke, B. J., and Hegerl, G. C.: Bias correcting cli-
mate model simulations using unpaired image-to-image transla-
tion networks, Artificial Intelligence for the Earth Systems, 2,
e220031, https://doi.org/10.1175/AIES-D-22-0031.1, 2023.

Gianotti, R. L., Zhang, D., and Eltahir, E. A.: Assessment of the re-
gional climate model version 3 over the maritime continent using
different cumulus parameterization and land surface schemes, J.
Climate, 25, 638–656, 2012.

Goodison, B. E., Louie, P. Y., and Yang, D.: WMO Solid Pre-
cipitation Measurement Intercomparison. World Meteorological
Organization-Publications-WMO TD. 67, 1998.

GSOD: Global Surface Summary of the Day, https:
//www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?
id=gov.noaa.ncdc:C00516 (last access: 3 August 2023), 2022.

Gutowski Jr., W. J., Decker, S. G., Donavon, R. A., Pan, Z., Ar-
ritt, R. W., and Takle, E. S.: Temporal–spatial scales of observed
and simulated precipitation in central US climate, J. Climate, 16,
3841–3847, 2003.

Hastie, T., Tibshirani, R., and Friedman, J.: Random Forests,
Springer New York, New York, NY, 587–604, ISBN 978-0-387-
84858-7, https://doi.org/10.1007/978-0-387-84858-7_15, 2009.

Hess, P., Drüke, M., Petri, S., Strnad, F. M., and Boers, N.: Physi-
cally constrained generative adversarial networks for improving
precipitation fields from Earth system models, Nature Machine
Intelligence, 4, 828–839, 2022.

Ines, A. V. and Hansen, J. W.: Bias correction of daily GCM rainfall
for crop simulation studies, Agr. Forest Meteorol., 138, 44–53,
2006.

Jacob, D., Bärring, L., Christensen, O., Christensen, J., Hagemann,
S., Hirschi, M., Kjellström, E., Lenderink, G., Rockel, B., Schär,
C., Seneviratne, S. I., Somot, S., van Ulden, A., and van den
Hurk, B.: An inter-comparison of regional climate models for
Europe: design of the experiments and model performance, Cli-
matic Change, 81, 31–52, https://doi.org/10.1007/s10584-006-
9213-4, 2007.

Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders,
I., Belda, M., Benestad, R., Boberg, F., Buonomo, E., Cardoso,
R. M., Casanueva, A., Christensen, O. B., Christensen, J. H.,
Coppola, E., De Cruz, L., Davin, E. L., Dobler, A., Domínguez,
M., Fealy, R., Fernandez, J., Gaertner, M. A., García-Díez,
M., Giorgi, F., Gobiet, A., Goergen, K., Gómez-Navarro, J. J.,
González Alemán, J. J., Gutiérrez, C., Gutiérrez, J. M., Güttler, I.,
Haensler, A., Halenka, T., Jerez, S., Jiménez-Guerrero, P., Jones,
R. G., Keuler, K., Kjellström, E., Knist, S., Kotlarski, S., Ma-
raun, D., van Meijgaard, E., Mercogliano, P., Montávez, J. P.,
Navarra, A., Nikulin, G., de Noblet-Ducoudré, N., Panitz, H.-J.,
Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen, J.-P., Prein, A. F.,
Preuschmann, S., Rechid, D., Rockel, B., Romera, R., Sánchez,
E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Sørland, S.
L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K., and
Wulfmeyer, V.: Regional climate downscaling over Europe: per-
spectives from the EURO-CORDEX community, Reg. Environ.
Change, 20, 1–20, 2020.

Jerez, S., Montavez, J. P., Jimenez-Guerrero, P., Gomez-Navarro,
J. J., Lorente-Plazas, R., and Zorita, E.: A multi-physics ensem-
ble of present-day climate regional simulations over the Iberian
Peninsula, Clim. Dynam., 40, 3023–3046, 2013.

Lazoglou, G.: Supplementary Material and Scripts for “Multi-
variate adjustment of drizzle bias using machine learning in
European climate projections”, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.11073021, 2024.

Lazoglou, G., Zittis, G., Anagnostopoulou, C., Hadjinicolaou, P.,
and Lelieveld, J.: Bias correction of RCM precipitation by TIN-
copula method: a case study for historical and future simulations
in Cyprus, Climate, 8, 85, https://doi.org/10.3390/cli8070085,
2020.

Lehner, F., Nadeem, I., and Formayer, H.: An improved sta-
tistical bias correction method that also corrects dry cli-
mate models, Hydrol. Earth Syst. Sci. Discuss. [preprint],
https://doi.org/10.5194/hess-2020-515, 2020.

Liu, B., Chen, J., Chen, X., Lian, Y., and Wu, L.: Uncertainty in de-
termining extreme precipitation thresholds, J. Hydrol., 503, 233–
245, 2013.

Lundberg, S. M. and Lee, S.-I.: A unified approach to
interpreting model predictions, Adv. Neur. In., 30,
https://proceedings.neurips.cc/paper_files/paper/2017/file/
8a20a8621978632d76c43dfd28b67767-Paper.pdf (last access:
11 June 2024), 2017.

Maity, R., Suman, M., Laux, P., and Kunstmann, H.: Bias correction
of zero-inflated RCM precipitation fields: a copula-based scheme
for both mean and extreme conditions, J. Hydrometeorol., 20,
595–611, 2019.

Maraun, D.: Bias correction, quantile mapping, and downscaling:
Revisiting the inflation issue, J. Climate, 26, 2137–2143, 2013.

Maraun, D. and Widmann, M.: Statistical Downscaling and Bias
Correction for Climate Research, Cambridge University Press,
https://doi.org/10.1017/9781107588783, 2018.

Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton,
D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M.
M., Hall, A., and Mearns, L. O.: Towards process-informed bias
correction of climate change simulations, Nat. Clim. Change, 7,
764–773, 2017.

Olsson, J., Arheimer, B., Borris, M., Donnelly, C., Foster,
K., Nikulin, G., Persson, M., Perttu, A.-M., Uvo, C. B.,
Viklander, M., and Yang, W.: Hydrological climate change
impact assessment at small and large scales: key mes-
sages from recent progress in Sweden, Climate, 4, 39,
https://doi.org/10.3390/cli4030039, 2016.

Pan, B., Anderson, G. J., Goncalves, A., Lucas, D. D., Bonfils, C. J.,
Lee, J., Tian, Y., and Ma, H.-Y.: Learning to correct climate pro-
jection biases, J. Adv. Model. Earth Sy., 13, e2021MS002509,
https://doi.org/10.1029/2021MS002509, 2021.

Pham, M. T., Vernieuwe, H., De Baets, B., and Verhoest, N. E. C.: A
coupled stochastic rainfall–evapotranspiration model for hydro-
logical impact analysis, Hydrol. Earth Syst. Sci., 22, 1263–1283,
https://doi.org/10.5194/hess-22-1263-2018, 2018.

Piani, C. and Haerter, J.: Two-dimensional bias correction of tem-
perature and precipitation copulas in climate models, Geophys.
Res. Lett., 39, L20401, https://doi.org/10.1029/2012GL053839,
2012.

Pierce, D. W., Cayan, D. R., Maurer, E. P., Abatzoglou, J. T., and
Hegewisch, K. C.: Improved bias correction techniques for hy-

Geosci. Model Dev., 17, 4689–4703, 2024 https://doi.org/10.5194/gmd-17-4689-2024

https://doi.org/10.1017/CBO9781107415324.020
https://doi.org/10.1175/AIES-D-22-0031.1
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://doi.org/10.1007/978-0-387-84858-7_15
https://doi.org/10.1007/s10584-006-9213-4
https://doi.org/10.1007/s10584-006-9213-4
https://doi.org/10.5281/zenodo.11073021
https://doi.org/10.3390/cli8070085
https://doi.org/10.5194/hess-2020-515
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1017/9781107588783
https://doi.org/10.3390/cli4030039
https://doi.org/10.1029/2021MS002509
https://doi.org/10.5194/hess-22-1263-2018
https://doi.org/10.1029/2012GL053839


G. Lazoglou et al.: Drizzle bias in Europe 4703

drological simulations of climate change, J. Hydrometeorol., 16,
2421–2442, 2015.

Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM
precipitation: a benchmark for dynamical and statistical down-
scaling methods, Int. J. Climatol., 26, 679–689, 2006.

Smitha, P., Narasimhan, B., Sudheer, K., and Annamalai, H.: An
improved bias correction method of daily rainfall data using a
sliding window technique for climate change impact assessment,
J. Hydrol., 556, 100–118, 2018.

Stocks, B. J., Lawson, B., Alexander, M., Wagner, C. V., McAlpine,
R., Lynham, T., and Dube, D.: The Canadian forest fire danger
rating system: an overview, Forest. Chron., 65, 450–457, 1989.

Switanek, M. B., Troch, P. A., Castro, C. L., Leuprecht, A., Chang,
H.-I., Mukherjee, R., and Demaria, E. M. C.: Scaled distribution
mapping: a bias correction method that preserves raw climate
model projected changes, Hydrol. Earth Syst. Sci., 21, 2649–
2666, https://doi.org/10.5194/hess-21-2649-2017, 2017.

Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.:
The changing character of precipitation, B. Am. Meteorol. Soc.,
84, 1205–1218, 2003.

Van de Velde, J., De Baets, B., Demuzere, M., and Verhoest, N.
E. C.: Comparison of occurrence-bias-adjusting methods for hy-
drological impact modelling, Hydrol. Earth Syst. Sci. Discuss.
[preprint], https://doi.org/10.5194/hess-2020-83, 2020.

Velasquez, P., Messmer, M., and Raible, C. C.: A new bias-
correction method for precipitation over complex terrain
suitable for different climate states: a case study using
WRF (version 3.8.1), Geosci. Model Dev., 13, 5007–5027,
https://doi.org/10.5194/gmd-13-5007-2020, 2020.

Vrac, M. and Friederichs, P.: Multivariate–intervariable, spatial, and
temporal–bias correction, J. Climate, 28, 218–237, 2015.

Vrac, M., Noël, T., and Vautard, R.: Bias correction of precipitation
through Singularity Stochastic Removal: Because occurrences
matter, J. Geophys. Res.-Atmos., 121, 5237–5258, 2016.

https://doi.org/10.5194/gmd-17-4689-2024 Geosci. Model Dev., 17, 4689–4703, 2024

https://doi.org/10.5194/hess-21-2649-2017
https://doi.org/10.5194/hess-2020-83
https://doi.org/10.5194/gmd-13-5007-2020

	Abstract
	Introduction
	Data and methodology
	Data
	Methodology

	Results
	RCM drizzle bias in Europe and the Mediterranean
	Method comparison: station improvement percentiles
	Direct spatial comparison of the two BC methods
	Focused analysis on European sub-domains
	Degree of improvement for the European sub-domains

	Discussion and conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

