Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-3975-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-3975-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Jiaxu Guo
College of Computer Science and Technology, Jilin University, Changchun, China
National Supercomputing Center in Wuxi, Wuxi, China
Juepeng Zheng
CORRESPONDING AUTHOR
School of Artificial Intelligence, Sun Yat-sen University, Zhuhai, China
Yidan Xu
National Meteorological Information Centre, CMA Meteorological Data Centre, Beijing, China
Haohuan Fu
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
Ministry of Education Key Laboratory for Earth System Modeling and the Department of Earth System Science, Tsinghua University, Beijing, China
National Supercomputing Center in Wuxi, Wuxi, China
Wei Xue
Department of Computer Science and Technology, Tsinghua University, Beijing, China
National Supercomputing Center in Wuxi, Wuxi, China
Lanning Wang
Faculty of Geographical Science, Beijing Normal University, Beijing, China
National Supercomputing Center in Wuxi, Wuxi, China
Lin Gan
Department of Computer Science and Technology, Tsinghua University, Beijing, China
National Supercomputing Center in Wuxi, Wuxi, China
Department of Computer Science and Technology, Tsinghua University, Beijing, China
School of Software, Shandong University, Jinan, China
National Supercomputing Center in Wuxi, Wuxi, China
Wubing Wan
Department of Computer Science and Technology, Tsinghua University, Beijing, China
National Supercomputing Center in Wuxi, Wuxi, China
Xianwei Wu
College of Computer Science and Technology, Jilin University, Changchun, China
National Supercomputing Center in Wuxi, Wuxi, China
Zhitao Zhang
College of Geoexploration Science and Technology, Jilin University, Changchun, China
Liang Hu
CORRESPONDING AUTHOR
College of Computer Science and Technology, Jilin University, Changchun, China
Gaochao Xu
College of Computer Science and Technology, Jilin University, Changchun, China
Xilong Che
CORRESPONDING AUTHOR
College of Computer Science and Technology, Jilin University, Changchun, China
Related authors
No articles found.
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790, https://doi.org/10.5194/egusphere-2025-2790, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work explores the use of global storm-resolving model (GSRM) simulation data to enhance global climate modeling (GCM) through a machine learning–based model physics suite. Stable multiyear climate simulations with improved precipitation characteristics are achieved by using 80-day GSRM data.
Lilong Zhou and Wei Xue
EGUsphere, https://doi.org/10.5194/egusphere-2025-1889, https://doi.org/10.5194/egusphere-2025-1889, 2025
Short summary
Short summary
This study develops a novel physics-based weather prediction model using artificial intelligence development platforms, achieving high accuracy while maintaining strict physical conservation laws. Our algorithms are optimized for modern super computers, enabling efficient large-scale weather simulations. A key innovation is the model's inherent differentiable nature, allowing seamless integration with AI systems to enhance predictive capabilities through machine learning techniques.
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025, https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Short summary
High-performance computing limitations often hinder numerical model development. Traditional models use double precision for accuracy, which is computationally expensive. Lower precision reduces costs but can introduce errors. The quasi-double-precision (QDP) algorithm helps mitigate these errors. This study applies the QDP algorithm to the Model for Prediction Across Scales – Atmosphere, showing reduced errors and computational time, making it an efficient solution for large-scale simulations.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Dexun Chen, Yang Gao, Xiaopei Lin, Zhao Liu, and Xiaojing Lv
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-10, https://doi.org/10.5194/gmd-2024-10, 2024
Preprint withdrawn
Short summary
Short summary
The hardware-related perturbations caused by the heterogeneous many-core architectures can blend with software or human errors, which can affect the accuracy of the model consistency verification. We develop a deep learning-based consistency test tool for ESMs on the heterogeneous systems (ESM-DCT) and evaluate it in CESM on new Sunway system. The ESM-DCT can detect the existence of software or human errors when taking hardware-related perturbations into account.
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Xianwei Wu, Liang Hu, Lanning Wang, Haitian Lu, and Juepeng Zheng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-164, https://doi.org/10.5194/gmd-2023-164, 2023
Revised manuscript not accepted
Short summary
Short summary
In order to build an effective surrogate model for the community atmospheric model (CAM). We present a surrogate model-based parameter tuning framework for the CAM and apply it to improve the CAM5 precipitation performance and propose a multilevel surrogate model-based optimization method. We design a nonuniform parameter parameterization scheme and integrate the parameters using a parameter smoothing scheme, and the experimental results improve in four regions.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J. Zhang
Geosci. Model Dev., 15, 3923–3940, https://doi.org/10.5194/gmd-15-3923-2022, https://doi.org/10.5194/gmd-15-3923-2022, 2022
Short summary
Short summary
This study uses a set of deep neural networks to learn a parameterization scheme from a superparameterized general circulation model (GCM). After being embedded in a realistically configurated GCM, the parameterization scheme performs stably in long-term climate simulations and reproduces reasonable climatology and climate variability. This success is the first for long-term stable climate simulations using machine learning parameterization under real geographical boundary conditions.
Tongwen Wu, Rucong Yu, Yixiong Lu, Weihua Jie, Yongjie Fang, Jie Zhang, Li Zhang, Xiaoge Xin, Laurent Li, Zaizhi Wang, Yiming Liu, Fang Zhang, Fanghua Wu, Min Chu, Jianglong Li, Weiping Li, Yanwu Zhang, Xueli Shi, Wenyan Zhou, Junchen Yao, Xiangwen Liu, He Zhao, Jinghui Yan, Min Wei, Wei Xue, Anning Huang, Yaocun Zhang, Yu Zhang, Qi Shu, and Aixue Hu
Geosci. Model Dev., 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021, https://doi.org/10.5194/gmd-14-2977-2021, 2021
Short summary
Short summary
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate System Model, BCC-CSM2-HR, and describes its climate simulation performance including the atmospheric temperature and wind; precipitation; and the tropical climate phenomena such as TC, MJO, QBO, and ENSO. BCC-CSM2-HR is our model version contributing to the HighResMIP. We focused on its updates and differential characteristics from its predecessor, the medium-resolution version BCC-CSM2-MR.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238, https://doi.org/10.5194/gmd-14-223-2021, https://doi.org/10.5194/gmd-14-223-2021, 2021
Short summary
Short summary
Few studies have investigated the effects of initial conditions on the simulation or prediction of PM2.5 concentrations. Here, sensitivity experiments are used to explore the effects of three initial mechanisms (clean, restart, and continuous) and emissions in Xi’an in December 2016. According to this work, if the restart mechanism cannot be used due to computing resource and storage space limitations when forecasting PM2.5 concentrations, a spin-up time of at least 27 h is needed.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Cited articles
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Schanen, D. P., Meyer, N. R., and Craig, C.: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: single-column experiments, Geosci. Model Dev., 5, 1407–1423, https://doi.org/10.5194/gmd-5-1407-2012, 2012. a
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., and Schanen, D. P.: Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model, J. Climate, 26, 9655–9676, 2013. a
Bogenschutz, P. A., Tang, S., Caldwell, P. M., Xie, S., Lin, W., and Chen, Y.-S.: The E3SM version 1 single-column model, Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020, 2020. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Caflisch, R. E.: Monte carlo and quasi-monte carlo methods, Acta Numer., 7, 1–49, 1998. a
Dalbey, K. R., Eldred, M. S., Geraci, G., Jakeman, J. D., Maupin, K. A., Monschke, J. A., Seidl, D. T., Tran, A., Menhorn, F., and Zeng, X.: Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.16 Theory Manual, https://doi.org/10.2172/1868423, 2021. a
Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W., Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang, Y., Zhou, C., and Yang, G.: The Sunway TaihuLight supercomputer: system and applications, Science China Information Sciences, 59, 072001, https://doi.org/10.1007/s11432-016-5588-7, 2016. a
Gettelman, A., Morrison, H., and Ghan, S. J.: A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results, J. Climate, 21, 3660–3679, 2008. a
Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale, R. B., Bogenschutz, P. A., and Simpson, I. R.: The Single Column Atmosphere Model Version 6 (SCAM6): Not a Scam but a Tool for Model Evaluation and Development, J. Adv. Model. Earth Sy., 11, 1381–1401, https://doi.org/10.1029/2018MS001578, 2019. a, b
Guo, J.: LB-SCAM: a learning-based SCAM tuner, figshare [code], https://doi.org/10.6084/m9.figshare.21407109.v9, 2024a. a
Guo, J.: LB-SCAM: a learning-based SCAM tuner, figshare [data set], https://doi.org/10.6084/m9.figshare.25808251.v1, 2024b. a
Guo, J., Xu, Y., Fu, H., Xue, W., Gan, L., Tan, M., Wu, T., Shen, Y., Wu, X., Hu, L., and Che, X.: GEO-WMS: an improved approach to geoscientific workflow management system on HPC, CCF Trans. High Perform. Comput., 5, 360–373, https://doi.org/10.1007/S42514-022-00131-X, 2023. a
Harada, M.: GSA: Stata module to perform generalized sensitivity analysis, Statistical Software Components, https://EconPapers.repec.org/RePEc:boc:bocode:s457497 (last access: 27 January 2024), 2012. a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A Framework for Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Kennedy, J. and Eberhart, R.: Particle swarm optimization, Proceedings of ICNN'95 – International Conference on Neural Networks, Perth, WA, Australia, 1995, 1942–1948 Vol. 4, https://doi.org/10.1109/ICNN.1995.488968, 2002. a
May, P. T., Mather, J. H., Vaughan, G., Bower, K. N., Jakob, C., Mcfarquhar, G. M., and Mace, G. G.: The tropical warm pool international cloud experiment, B. Am. Meteorol. Soc., 89, 629–646, https://doi.org/10.1175/BAMS-89-5-629, 2008. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 42, 55–61, 2000. a
Mirjalili, S. and Lewis, A.: The Whale Optimization Algorithm, Adv. Eng. Softw., 95, 51–67, https://doi.org/10.1016/j.advengsoft.2016.01.008, 2016. a
Mitchell, M.: An Introduction to Genetic Algorithms, ISBN: 978-0-262-63185-3, https://doi.org/10.7551/mitpress/3927.001.0001, 1996. a
Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161–174, https://doi.org/10.1080/00401706.1991.10484804, 1991. a, b, c
NCAR: CESM Models, NCAR [code], http://www.cesm.ucar.edu/models/cesm1.2/ (last access: 2 February 2024), 2018. a
Neale, R. B., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J.-F., Mills, M., Tilmes, S., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Liu, X., Ghan, S. J., Rasch, P. J., and Taylor M. A.: Description of the NCAR community atmosphere model (CAM 5.0), NCAR Tech. Note NCAR/TN-486+STR, 1, 1–12, https://doi.org/10.5065/wgtk-4g06, 2010. a
Nelder, J. A. and Wedderburn, R. W.: Generalized linear models, J. Roy. Stat. Soc. Ser. A, 135, 370–384, 1972. a
Park, S.: A Unified Convection Scheme (UNICON). Part I: Formulation, J.e Atmos. Sci., 71, 3902–3930, 2014. a
Pathak, R., Dasari, H. P., El Mohtar, S., Subramanian, A. C., Sahany, S., Mishra, S. K., Knio, O., and Hoteit, I.: Uncertainty Quantification and Bayesian Inference of Cloud Parameterization in the NCAR Single Column Community Atmosphere Model (SCAM6), Front. Climate, 3, 670740, https://doi.org/10.3389/fclim.2021.670740, 2021. a, b, c
Qian, Y., Yan, H., Hou, Z., Johannesson, G., Klein, S., Lucas, D., Neale, R., Rasch, P., Swiler, L., Tannahill, J., Wang, H., Wang, M., and Zhao, C.: Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5, J. Adv. Model. Earth Sy., 7, 382–411, https://doi.org/10.1002/2014MS000354, 2015. a
Saltelli, A.: Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 280–297, 2002. a
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global sensitivity analysis: the primer, John Wiley & Sons, https://doi.org/10.1002/9780470725184, 2008. a, b
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., and Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 259–270, 2010. a
Schober, P., Boer, C., and Schwarte, L. A.: Correlation Coefficients: Appropriate Use and Interpretation, Anesth. Analg., 126, 1763–1768, 2018. a
Shi, L., Copot, C., and Vanlanduit, S.: Evaluating Dropout Placements in Bayesian Regression Resnet, J. Artif. Intell. Soft Comput. Res., 12, 61–73, https://doi.org/10.2478/jaiscr-2022-0005, 2022. a
Sobol, I. M.: Sensitivity analysis for non-linear mathematical models, Mathematical Modelling and Computational Experiment, 1, 407–414, 1993. a
Storn, R. and Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341–359, 1997. a
Tang, J., Deng, C., and Huang, G.-B.: Extreme Learning Machine for Multilayer Perceptron, IEEE T. Neur. Net. Lear., 27, 809–821, https://doi.org/10.1109/TNNLS.2015.2424995, 2016. a
Thompson, R. M., Payne, S. W., Recker, E., and Reed, R. J.: Structure and Properties of Synoptic-Scale Wave Disturbances in the Intertropical Convergence Zone of the Eastern Atlantic, J. Atmos., 36, 53–72, 1979. a
Tong, C.: Problem Solving Environment for Uncertainty Analysis and Design Exploration, 1–37, https://doi.org/10.1007/978-3-319-11259-6_53-1, 2016. a
Wang, X., Yan, X., and Ma, Y.: Research on User Consumption Behavior Prediction Based on Improved XGBoost Algorithm, 2018 IEEE International Conference on Big Data (Big Data) 4169–4175, https://doi.org/10.1109/BigData.2018.8622235, 2018. a
Webster, P. J. and Lukas, R.: TOGA COARE: the coupled ocean-atmosphere response experiment, B. Am. Meteorol. Soc., 73, 1377–1416, 1992. a
Yan, J., Chen, J., and Xu, J.: Analysis of Renting Office Information Based on Univariate Linear Regression Model, in: International Conference on Electrical And Control Engineering (ICECE 2015), Adv Sci Res Ctr, ISBN 978-1-60595-238-3, international Conference on Electrical and Control Engineering (ICECE), Guilin, Peoples R China, 18–19 April 2015, 780–784, 2015. a
Yang, B., Qian, Y., Lin, G., Leung, L. R., Rasch, P. J., Zhang, G. J., Mcfarlane, S. A., Zhao, C., Zhang, Y., and Wang, H.: Uncertainty quantification and parameter tuning in the CAM5 Zhang‐McFarlane convection scheme and impact of improved convection on the global circulation and climate, J. Geophys. Res.-Atmos., 118, 395–415, 2013. a, b
Zhang, G. J.: Sensitivity of climate simulation to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model, Atmos. Ocean, 33, 407–446, https://doi.org/10.1080/07055900.1995.9649539, 1995. a
Zhang, T., Zhang, M., Lin, W., Lin, Y., Xue, W., Yu, H., He, J., Xin, X., Ma, H.-Y., Xie, S., and Zheng, W.: Automatic tuning of the Community Atmospheric Model (CAM5) by using short-term hindcasts with an improved downhill simplex optimization method, Geosci. Model Dev., 11, 5189–5201, https://doi.org/10.5194/gmd-11-5189-2018, 2018. a
Zou, L., Qian, Y., Zhou, T., and Yang, B.: Parameter Tuning and Calibration of RegCM3 with MIT – Emanuel Cumulus Parameterization Scheme over CORDEX East Asia Domain, J. Climate, 27, 7687–7701, https://doi.org/10.1175/JCLI-D-14-00229.1, 2014. a
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model...