Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-3975-2024
https://doi.org/10.5194/gmd-17-3975-2024
Development and technical paper
 | 
15 May 2024
Development and technical paper |  | 15 May 2024

LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)

Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che

Related authors

A highly-efficient automated optimization approach for kilometer-level resolution Earth system models on heterogeneous many-core supercomputers
Xiaojing Lv, Zhao Liu, Yuxuan Li, Shaoqing Zhang, Haohuan Fu, Xiaohui Duan, Shiming Xu, Yang Gao, Yujing Fan, Lifeng Yan, Haopeng Huang, Haitian Lu, Lingfeng Wan, Haoran Lin, Qixin Chang, Chenlin Li, Quanjie He, Yangyang Yu, Qinghui Lin, Sheng Jia, Tengda Zhao, Weiguo Liu, and Guangwen Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5297,https://doi.org/10.5194/egusphere-2025-5297, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
HOPE: an arbitrary-order non-oscillatory finite-volume shallow water dynamical core with automatic differentiation
Lilong Zhou, Wei Xue, and Xueshun Shen
Geosci. Model Dev., 18, 8175–8201, https://doi.org/10.5194/gmd-18-8175-2025,https://doi.org/10.5194/gmd-18-8175-2025, 2025
Short summary
Global Climate Modeling with Improved Precipitation Characteristics by Learning Physics (GRIST-MPS v1.0) from Global Storm-Resolving Modeling
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790,https://doi.org/10.5194/egusphere-2025-2790, 2025
Short summary
Enhancing single precision with quasi-double precision: achieving double-precision accuracy in the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025,https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024,https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary

Cited articles

Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Schanen, D. P., Meyer, N. R., and Craig, C.: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: single-column experiments, Geosci. Model Dev., 5, 1407–1423, https://doi.org/10.5194/gmd-5-1407-2012, 2012. a
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., and Schanen, D. P.: Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model, J. Climate, 26, 9655–9676, 2013. a
Bogenschutz, P. A., Tang, S., Caldwell, P. M., Xie, S., Lin, W., and Chen, Y.-S.: The E3SM version 1 single-column model, Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020, 2020. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Caflisch, R. E.: Monte carlo and quasi-monte carlo methods, Acta Numer., 7, 1–49, 1998. a
Download
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Share